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Extending continuous functions on XxY
to subsets of X %Y

by

W. W. Comfort* (Amherst, Mass.) and Stelios Negrepontis*
(Bloomington, Ind.)

The Stone-Gech compactification fX of the completely regular
Hausdorff space X is that unique compactification of X to which each
bounded ‘continuous real-valued function on X admits a continuous
extension. It is a remarkable and beautiful theorem of Glicksberg [4],
reproved elegantly by Frolik in [2], that for infinite spaces X and ¥
the identity f(X X ¥) = X x Y holds precisely when every real-valued
continuous funetion on X X ¥ is bounded.

Glicksberg’s theorem, which gives a necessary and sufficient con-
dition that each bounded continuous real-valued funetion on XX ¥
extends continuously to fX x BY, suggests the following two questions:

(1) Must & bounded function on X x ¥ which extends continuously
to BX XY and to X X Y extend continuously to X x BY Y

(2) Suppose that every bounded real-valued continuous funection on
X xY extends continuously to fXx Y and to X xBY. Does it follow
that B(XXY) =X X pY? )

Tt is easy to reply in the negative to these questions as just posed
by choosing for both X and Y the countably infinite discrete space N.
For surely any bounded function on N XN exfends continuously to
BN xN and to N X BN, but many bounded funections—the Xronecker
delta function, for example—do not extend continuously to BN X pN.
One purpose of this paper is to answer (2) in the negative (and hence (1)
also) by an example which is nontrivial in the sense that neither X
nor Y has isolated points. Specifically, we show that a space concocted
and studied by one of us and K. Ross in another connection in [1] has
the required properties. The full results of that investigation will not be
reproduced here, but we cite in detail from [1] those facts which we
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now mneed: there exists a mnondiserete topological Hausdorff group &
which is a Lindelof space (so that, roughly speaking, open sets in @ are
pretty large) and in which every @, set is open (so that, roughly speak-
ing, there are some pretty small open sets). From the latter property
it follows easily that G admits an unbounded continuous real-valued
function (see [1] or 4K.2 of [3] or § 1 below) so that the relation (G x &)
= B@G x B@ fails; but we give in § 3 below a very general theorem which
shows that nevertheless each bounded real-valued continuous function
on GXxG@ extends continuously to pGx @ and to G x f@G. In the course
of developing this theorem we obtain (see especially 2.3 and 2.9) a couple
of simple results relating the extendability to X X BY of real-valued
functions on X x Y with the extendability to fX X BY of real-valued
functions on spaces of the form 4 xB where X CA CpX and Y CBCAY.
The construction depends upon the following fact, which one of us will
strengthen and generalize in a later communication: barring the existence
of measurable cardinals, the relation »(X X fY) =vX X Y holds for
every pair of spaces (X, ¥). Our remarks on the relation o(X xY)
=vX xXvY are summarized in 5.3. '

We wish finally to acknowledge the friendly generosity of A. W. Hager,
who in letters of February 15 and TFebruary 25, 1965 discussed our
results and their relation to his work (not yet published) with 8. Mréwka.
The Hager-Mrowka theorems on functional extendability run generally
in a direction different from ours, but our works overlap in theorem 3.1
below; in their more extensive treatment, this result will appear as one
of several parallel theorems.

1, Definitions and results from the literature. Except for
definition 1.1 below, each definition and theorem quoted in this section
appears in the Gillman-Jerison text [3], where it is studied in detail
and related to neighboring concepts. Many of the concepts we use, and
the crucial theorems connecting them, originated with Hewitt in [5]. As in
[3], we consider in this paper only completely regular Hausdorff spaces.

The ring of continuous real-valued functions on X is denoted by
C(X), and the set of bounded functions in C'(X) is denoted by C*X).
The space X is said to be pseudocompact if C(X) = 0*(X). There is
a pseudocompact space whose product with itself is not pseudocompact,
but the product of any pseudocompact space with a compact space is
pseudocompadct.

If X C Y and each function in C'(X) is the restriction to X of some
funetion in C(Y), then X is said to be U-embedded in Y. The exprossion
“X is C*-embedded in Y" is defined analogously, so that (according
to the theorem quoted in the first sentence of this paper) the space pX
is that unique compact space in which X is dense and C*-embedded.
If XCACpBX, then g4 =pX.
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The space X is said to be realcompact if it is homeomorphic with
a closed subset of a product of real lines; equivalently, if the quotient
field of O(X) by one of its maximal ideals M is the real field only when
(for some # in X) M has the form

M ={feC(X): f(z)=0}.

For each space X there is a unique realcompact space, denoted +X and
called the Hewitt realcompactification or the Nachbin completion of X,
in which X is dense and C-embedded. If X C A CvX, then vA = vX.
The relation X CoX C X is valid, and in fact vX is the smallest real-
compact subspace of fX which contains X. If f e O(fX) then f assumes
on X every value which it assumes on »X, and this theorem character-
izes vX as a subset of X in the following sense: if pefX\vX, then
there is a function in C(BX) which assumes value 0 at p but which is
positive on X.

A space in which each @, is open is a P-space. Every subspace of
2 P-space is a P-space, and vX is a P-space if and only if X is a P-space.
Each compact P-space is finite, and hence (since »X = X whenever
X is pseudocompact) each pseudocompact P-gpace is finite.

1.1. DEFINITION. A pair of spaces (X, ¥) is called a C*-pasr if
X XY is C*-embedded in X XY and in XX Y. The C*-pair (X, Y)
is a proper C*-pair if X XY is not C*-embedded in fX x 8Y.

By way of illustration, we observe that any pair (X, ¥) of discrete
spaces is a C*-pair; and according to Glicksberg’s theorem a pair (X, ¥)
cannot be a proper C*-pair if X XY is pseudocompact. The following
proposition will also help to fix ideas, but it is logically inessential to
all that comes later.

1.2. ProposSITION. In order that (X, Y) be a C*-pair it is mecessary
and sufficient that X X Y be C*-embedded in the space (X X Y) v (X x BY).

Proof. Sufficiency is clear, and necessity follows from this amusing
bit of folklore, reported in 6H of [3]. In order that a funection ¢, mapping
a space I' to a space R, be continuous on 7', it suffices that there exists
a dense subset § of 7' for which the restriction of ¢ to Su {p} is con-
tinmous for each p in 7.

2. Theorems on proper C*-pairs.
2.1. THEOREM. If X X Y is C*-embedded in BX XY, then either X is
pseudocompact or ¥ is a P-space.
Proof. If not, then (because X is not pseudocompact) there is
a sequence U, of nonvoid open subsets of X such that each point in X
admits a neighborhood meeting at most one of the sets U,; and (because
Y is not a P-space) there is a sequence Y, of closed subsets of ¥ and
1*
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a point ¥, ¢|J Yu such that y,ecl(l) Yn). Selecting in Us a point @y,
n n

we let f, be a continuous funetion on X satisfying these conditions:

(b) falma) =15 (¢) fa=0 off Us.

Using the fact that {m}x ¥y i3 a closed subset of the (completely
regular Hausdorff) space Up X ¥, we find for each n a continuous funec-
tion g, on Unx Y satisfying these conditions:

(@) 0</ <15

(@) 0<ga<<l; (D) gal@n, %) =1; () gn=0 on {#} X ¥n.

Now define &, on XX Y by the rule

fu(@) - galo,y) i
0 it

2eUp,

i, §) = { oy

and set b = ), hy. Bach point in X X ¥ admits a neighborhood (of the

form U xY) throughout which the bounded function h agrees with one
of the continuous funetions h,. Hence I e O X x ¥). To see that h ad-
mits no continuous extension to X X Y, use the fact that the noncom-
pact set {#n}aey is closed in X to find & point p in XNX with p e clyx{zn}.
Each neighborhood in X X ¥ of the point (p, y,) contains points of the
form (s, ¥,) and meets sets of the form {w,} X ¥»n, so that any fw
continuous at (p, ¥,) and agreeing with & on X X Y must assume
taneously the values 1 and 0 at (p, ¥o)-

2.2, TEEoREM. If (X, XY) is o proper C*-pair, then both X and Y
are P-spaces.

Proof. If X, say, were not a P-space, then X is pseudocompact
by theorem 2.1. But then by Glicksberg’s theorem the pseudocompact
space X X BY is O*-embedded in X x Y, so that (X XY) = XX Y
and the O*-pair (X, Y) is not proper.

2.3. ComroLLARY. Let X C A C X and suppose that (4, B) is a proper
CO*-pair for some space B. Then 4 CoX.

Proof. If the inclusion fails, then there is a point p in A\vX. There
is a function f in C(AX) which is positive on X and which assumes value
0 at p, and so by 2.2 the set f(0) ~ 4, which is surely a G; in 4, is
a neighborhood in 4 of p which misses the dense subset X of 4.

In 2.9 below we present the converse to a weak form of 2.3 but
first we take a moment to emphasize a couple of special cases of 2.3.
We recall from Chapter 12 of [3] that a cardinal number n is said to be
measurable if the discrete space of cardinality n supports a countably
additive measure assuming the values 0 and 1 (and only these values)
and assigning measure 0 to each point; an equivalent condition is that
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the discrete space of cardinality n fails to be realcompact. It is con-
sistent with the usual axioms of set theory to assume that every cardinal
is nonmeasurable. According to a recent communication from S. Tennen-
bawm, it is not known ‘“whether the existence of measurable cardinals
is consistent with set theory... their existence implies a number of
esoteric but plausible propositions.”

2.4. CorOLLARY. Let X De realcompact and let X C A C BX. Suppose
that (A, B) is a proper C*-pair for some space B. Then A = X.

2.5. COROLLARY. Let X be o-compact (or even o-pseudocompact) and
let XC AC BX. Suppose that (4, B) is a proper C*-pair for some space B.
Then A =X = N.

Proof. The space X is a countable union of pseudocompact P -spaces,
hence is itself countable. X is infinite beeause the C*-pair (4,B) is
proper; hence X is (homeomorphic with) the realcompact space N, so
that N =XCACvX = N.

The primary interest of 2.6 below is that (see 4.4) its analogue for
measurable cardinals fails. ’

2.6. CorROLLARY. Let D C A C 8D, where D s a discrete space of non-
measurable cardinal, and suppose that (A, B) is a proper O*-pair for some
space B. Then 4 = D.

2.7. Discussion. The assertion that every metric space is real-
compact is shown in [3] to be equivalent to the assertion that no meas-
urable cardinals exist. Our next result, which serves as a lemma for 2.9
but which we believe is of interest in its own right, asserts that for
practical purposes the relation »(X X K) =vX X K holds for each space X
and each compact space K. The proof that the relation does fail (for
appropriately chosen X and K) in case a measurable cardinal does exist
is postponed to 4.8 and 4.9.

For each space Y, the ring C*(fY), which is ring-isomorphic to
0*(Y), is a metric space relative to the metric induced by the norm

Il = sup {lf @)]: ¥ e BY} =sup{f(y)]: y ¢ ¥}.

According to the discussion above, the hypothesis that the metric space
O*(Y) is realcompact is essential in the following theorem, but its failure
involves a pathology not encountered in everyday analysis. The reader
familiar with lemma 1 of Glicksberg’s [4] will recognize our debt to that
source. The technique by which our function is extended, however, differs
(of necessity) from that of Glicksberg’s lemma 2.

2.8. THEOREM. If the metric space C*(XY) is realcompact, then the
identity

(XX BY) =vXXBY

holds for each space X.
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Proof. We may clearly suppose that ¥ is compact, so thatb Y =pY.
Given f in O(X xY), we are to produce a function g continuous on the
realcompact space vX X Y which agrees with f on X XY.

With each 2 in X we associate a real-valued function fz on Y by
the rule (J#)(y) = f(#,%). Then fre C(Y)= O%X), and the mapping F
from X into C’*(Y) is easily checked to be continuous: Given x ¢ X and
£> 0 there exist for each ¥ in ¥ neighbourhoods Uy of # and Vy of y
such that '

If(z, y)—f (@, 9')| < &2 whenever (#,9)eUyxVy.

If (Vg -y Vyo} covers Y and we set U =kﬂ Uy, then
N =1

(@, y)—F(o whenever (#/,9) e UXY,

o that |[fx —f#’|| < ¢ whenever &' € U.

Since 7 is continuous from X into the realcompact space C*(X),
there is (see 8.7 of [8], for example) a continuous extension § of 7 map-
ping »X into C*¥). The desired function g on vX XY is now defined

a§ follows:

Lyl <e

g(p,y) = () (y)

To see that g is continuous at a point (p,y) in vX X ¥, choose ¢>0
and find a neighborhood U of p such that

lgp—apl <e2 whenever p'eU.

If the neighborhood V of y in Y is chosen so that

|(@p) (y)—(Gp) (y")| <e/2  whenever ¥y’ eV,

then U XV is a neighborhood of (p,y) with the property that

lg(p, 9)—g(p’,¥)l <& whenever (p,y")eUXV.

Since ¢ agrees with f on X X ¥, our proof is complete.

Our next result is the promised partial converse to 2.3.

2.9. TEEOREM. Let X C A CoX and suppose that (X, Y) s a proper
C*-pair for some space Y for which the metric space O*(Y) is realcompact.
Then (4,Y) is a proper C*-pair.

Proof. We must show that the space 4 X Y hag the following prop-
erties:

(a) @ 45 C*-embedded in BAXY;

(b) 4t is O*-embedded in A X BY;

(c) it is not O*-embedded in BA X BY.
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To prove (a), we associate with a given f in 0*(4 x Y) its restriction
to Xx Y, called g. By hypothesis, g admits a continuous extension j
to PXXY = A XY, and the restriction of § to 4 XY is clearly f.

To prove (b), let f e C*(A X Y) and let ¢ denote the restriction of f
to Xx Y. By hypothesis there is a continuous function § on X x fY
whose restriction to X X ¥ agrees with f there, and by 2.8 the function 7
admits a continuous extension % to vX X f¥. The restriction of % to
A XpPY is the desired extension of f.

For (c), note that the space X X ¥ is surely C*-embedded in 4 X Y.
If the latter space were C*-embedded in AX X AY then the former
would be also, contrary to the hypothesis that the C*-pair (X, Y) is
proper.

2.10. CoroLLARY. Let (X, ¥) be a proper C*-pair and suppose that
card X and cardY are nonmeasurable cardinals. If X C A CoX and
YCBCwvY, then (4, B) is a proper C*-pair.

Proof. It is shown in 15.24 of [3] that a metric space of nonmeasur-
able cardinal is realcompact. Since the class of nonmeasurable cardinals
is closed under the usual operations of cardinal arithmetic (see 12.5
of [3]) and contains ¢, we see that C*Y), whose cardinality surely does
not exceed ccard¥, iy realcompact. Thus (4, Y) is a proper C*-pair
by 2.9. A similar argument gives the desired conclusion on (4, B), once
it is noted that card C*(4) = card 0%(X).

3. A proper C*-pair without isolated points. In this section
we show that the nondiscrete topological group G constructed and
studied in [1] has the property that (&, &) is a proper C*-pair. For our
first theorem, which we believe duplicates a small fraction of the Hager—
Mréwka work referred to in the introduction, the reader should recall
the following definition: a mapping = is said to be closed if nK is closed
whenever K is closed.

3.1. THEOREM. If the projection = from XXY to Y is closed, then
X xY is C*-embedded in fX XY,

Proof. Let fe C*(XxY). The restriction of f to each set of the
form X X {y} (with 4 € ¥) is continuous and bounded there, hence extends
continuously to fX X {y}. This observation furnishes us with a function Fi
defined on fX XY which extends f and which assumes only values in
the real interval [—{|f[, |fIl]. It remains to show that f is continuous, and
according to the lemma cited in the proof of 1.2 it is enough to show
the following: for each point (p,y) in BX XY and each s> 0 there is
a neighborhood W of (p,%) in X XY such that

(', y') whenever

—fp,l<e (@, y) e W~ (XIXT).
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To achieve this, fix (p,y) and define

={(#,y) e IxT: [f (2, 1) —F(p, 9| <52

and [f(a, y)—F(@, )| = &

Then K is closed in XX ¥ and K contains no point of the form (#', y)
with #' ¢ X. Denoting by 7 the projection from X x¥ onto ¥, we
consequently have: #4(aK) is a closed subseb of BX xY which misses
7-1({y}). For the desired neighborhood W in X XY of (p,y) we can
take the set W = U XV, where by definition

U={p'epX: [f(p', ) —F(p, v)| < &2}

V =aYY\nK).
3.2. TaEOREM. If Y is a P-space and X is Lindelsf, then the pro-
jection w from X XY onto Y is closed.
Proof. If K is closed in XX Y and y ¢ Y\xnK, then for each # in X
there is a neighborhood U, of & and a neighborhood V, of y such that
UsXVe~ K =0. There is a sequenee axx of points in X such that

X = U Uy, and defining V = ﬂ V., we see that V is a neighborhood

and

of y Whmh misses wK. Thus g J¢ol(:zK) and s« is closed.

3.3. ExampLE. There is a nondiscrete Hausdorff topological group G
for which (@, @) is a proper C*-pair.

Proof. The following descriptive definition of @ is quoted from 3.2
of [1]: “Let A be an index set of cardinality x, and let @ consist of all
elements # in ] {—1, -1}, such that @, =1 for all but finitely many

a€d

coordinates «. Let 2 be the first uncountable ordinal and well-order 4
according to the order-type Q: A = {a: a < 2}. For ae 4, let

H,={zeG: mg=1 for all f<a}.

We decree that the subgroups H, and each of their translates be open
and thereby obtain a basis for a topology under which ¢ is a topological
group. Clearly @ is a P-space and @ is not discrete.”

The text in [1] continues with a proof that & is Lindeldf. According
to 3.2 above, then, each projection from G X @& to @ is closed, so by 3.1
Gx @G is 0*-embedded in BG@X @G and in G X p@. Since the P-space G
is infinite, it is mot psendocompact, and consequently by Glicksberg’s
theorem the C*-pair (&, @) is proper.

4, Counterexamples and corollaries. We have seen in theo-
rem 2.2 that every proper C*-pair is a pair of P-spaces. It is a con-
sequence of our next result, theorem 4.2, that the converse assertion
fails. We begin with a proposition which is probably well known.
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4.1. ProOPOSITION. Let D be a discrete space for which cardD > s
Then some point in BD lies in the closure of no countable subset of D.

Proof. Because D is discrete the points p in gD may be identified
with ultrafilters 4% on D, the correspondence chosen so that for each
pepD and SCD we have SeA” if and only if peclspS. (See [3],
especially 6.5, for details.) The family F of subsets of D whose com-
plement in D is countable is a filter on D, and for the desired point
we may choose any p for which & C A",

4.2. THEOREM. For each discrete space D, the following assertions are
equivalent:  (a) cardD = w;

(b) (D, ¥) s a proper C*-pair for each infinite P-space Y.

Proof. (a)=(b). Surely DxY is C*-embedded in DX Y, and
when cardD = », then 3.1 applies to show that DX Y is C*-embedded
in DX Y. Because both D and Y are infinite and D X Y is not pseudo-
compact, however, this latter space is not C*-embedded in FD X BY.

(b)= (a). The condition card D < s, is incompatible with (b), so our
proof by contradiction will begin with the assumption that there exists
E C D with card E = s,. For Y we choose the space Y = ¥ v {g}, where
q is a point in ¥\¥ and neighborhoods of ¢ are by definition those sub-
sets V of ¥ for which geV and card(¥\V) <%, We well-order E
according to the smallest ordinal number of cardinality s, and we de-
fine a function f on DX Y as follows:

0 if wxeD\E;
flz,y) = 0 if (w,y) = (maymy)EEXE and a> y;
ll it (2,9) = (@, 2,) cExXE and a<y;
1 if y=qand xck.

Now § is clearly continuous at any point not in D x {g}; and f is also
continuous at points in D x {g} because for each a the set

{(@a, Q)Y © {(Bg, @p): ¥ >}

ig-a neighborhood of (24, g) throughout which f assumes only the value 1.

According to 4.1 there exists p e fENE C BIDND such that p is in
the closure (in AE, say) of no countable subset of E. There is by hypo-
thesis (b) a continuous function f on (D v {p})x ¥ which agrees with f
on DX Y. Since p e clyp{wg: a> y} for each y, we have f(p, x,) =0 for
each @, ¢ ECY so that f(p,q) =0. But F(®q, @) =1 for each z,¢ E,
so that f(p,q) =1.

4.3. Discussion. We have been unable to prove the following
conjecture (%), a strengthened form of 4.2: If (X,Y) is a proper C*-pair
for each infinite P-space ¥, then X = N.

() Added in proof: A. W. Hager has established this conjecture.
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As it stands, however, 4.2 is strong enough to show the failure of
the measurable analogue of 2.6. .

4.4, Bxavpre. If D is a discrele space of measurable cardinal, then
there is a proper C*-pair (A, B) for which DCACSD and A # D.

Proof. Choose p evD\D, set 4 =D v {p}, let B be the countably
infinite discrete space and apply 4.2.

4.5. EXAMPLE. There emist P-spaces X and Y such that (X, Y) is
not a proper O*-pair.

Proof. The pair (¥, Y) of 4.2 is such a pair.

Our next example shows that the converse to 2.1 fails.

4.6, BxampLE. There is a pseudocompact space X and o P-space ¥
such that X XY 4s not O%-embedded in fXXY.

Proof. We take for ¥ the space ¥ = B u {g} of 4.2, and (adopting
notation from [3]) we denote by W that ordinal space according to
which B was well-ordered. Then B is discrete and dense in ¥ and W
with its interval topology is a pseudocompact space whose Stone-Cech
compactification §W is homeomorphic with the space W* = W {W}
of ordinals less than or equal to the first uncountable ordinal. An argu-
ment very similar to that given in (b)=-(a) of 4.2 now shows that the
continuous function f, defined on Wx ¥ by the rule

flayp)={1 it y=u0, with y>a;
0 otherwise

admits no continuous extension to the point ({W}, g) e fW X Y.

In 2.8 we showed in effect that the relation »(X XK) =X XK
holds for each compact space K for which the metric space C*(K) is
realcompact. In case a measurable cardinal exists, however, then (as
shown below) there a compact space K for which C*(K) is not real-
compact, and in our final example we show that for at least one such
space K the relation v(X X K) =vX XK does fail.

4.7. ProPOSITION. Let D be a diserete space of measurable cardinal
and let K = BD. Then C*XK) is not realcompact.

Proof. With each # in D we associate that continuous function fs
defined on K as follows:

1 if
faly) = { 0

©=y;
it ws£y.

The family & = {fz: # € D} is a discrete set of measurable cardinality,
hence is not realcompact. But & is closed in the metric space C*(K)
and therefore (since every closed subspace of a realcompact space is
realcompact) the space C*(K) is not realcompact.
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4.8. EXAMPLE. Let n be the smallest measurable cardinal, and let D be
the disorete. space of cardinality n. Then the relation v(D X D) = vD x D
fails.

Proof. Well-order D according to the smallest ordinal number £
of cardinality n, so that for each ordinal a < Q the set D, defined by
the identity

Do ={dy: y<a},
has cardinality less than n.

Since the discrete space D is not realcompact, there is a point p
in »D\D. It iy a consequence of 12.3 (a) in [3] that p ¢ cl,pF whenever
ECD and card <n. Since D =F v (D\E) for each ECD, then,
we have

(%) p eclpll ECD and card(D\E) < cardD.
Now define f on D xD as follows:

0 if
1 if

whenever

o> 95
ey,

f(@ary) =

and let 7 denote the continuous extension of f to D x fD. If g extends 7
continuously to (D w {p}) X fD, then from () we must have g(p, #,) = 0
for each y, so that g(p, p) = 0. But also from (x) we have g(a,,p) =1
for each a, so that g(p,p)=1.

4.9. TumorEM. The following are equivalent:

(a) v(X xK) =vXxE for cach space X and each compact space K;

(b) there are mo measurable cardinals.

Proof. (a)=(b). If (b) fails, then so must (a) by 4.8.

(b) = (a). According to 2.8 we need only show that O*(K) is real-
compact for each compact space K, and in the presence of (b) this
follows from 15.24 of [3], according to which each metric space of non-
measurable cardinal is realcompact.

5, Concerning the relation v(X X ¥) =vX xvY. It follows read-
ily from Glicksberg’s theorem that the relation »(XX Y) =vXxX0vY
holds whenever X XY is pseudocompact, but according to 2.8 above
the converse implication fails. Lacking a simple topological condition
equivalent to the condition »(X X¥) = vX XvY¥, we content ourselves
with summarizing (and slightly generalizing) the theorems above. The
following definition is handy: A subset X of a topological space X is
said to be Gy-dense in X if X meets each nonvoid Gy subset of X.

Becauge we are dealing only with completely regular Hausdorff
spaces, in which each nonvoid G contains a nonvoid set of the form
774(0) for some continuous real-valued function f, the following observation


GUEST


12 W. W. Comfort and 8. Negrepontis

observation is valid: X 4s G4-dense in X if and only if X meets each non-
void closed Gy subset of x.

5.1. PROPOSITION. If X is Gy-dense in X and Y is Gy-dense in ¥,
then X xY is Qy-dense in ¥x¥.

5.2. TamorEM. If X XY 48 O*- embcdded in vX xvY, then X XY s
C-embedded in vX XvY.

Proof. According to 1.18 of [3] it suffices to show that each non-
void closed @, subset Z of vX XY which misses X x Y satisfies a certain
condition. Since X and ¥ are G4-dense in vX and »Y respectively, there
are by 5.1 no such sets Z.

5.3. TEEOREM. Lei card Y be nonmeasurable and suppose that either

(a) Y is compact;

or

(b) the projection from X xX ¥ to X is closed;
or

(e) XxY is C*-embedded in X X Y.

Then v(X X Y) =vX xX0Y.

Proof. It suffices to deduce the desired conclusion from hypo-
thesis (c), the implication (a)=-(b) being well-known and the impli-
cation (b)=(c) being given by 3.1. According to 5.2 it iy enough to show
that each bounded continuous real-valued function on X XY extends
continuously to »X XvY. By (¢) we can extend to X X Y, and 2.8 takes
us from there to the space »X x ¥, which contains vX XvY.
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On defining well-orderings
by
E. G. K. Lopez-Escobar (Cambridge, Mass.)

0. Introduction. Let L,, be the extension of the finitary first-
order predicate logic obtained by allowing conjunctions and disjunctions
of u-sequences of formulas (u < a). The purpose of this note is to show
that even allowing arbitrary many non-logical constants the notion of a well-
ordered relation cannot be expressed by a set of sentences of the infinitary
first-order language Ly, (i.e. that for all a, W ¢ PCy(L,,) where W is the
class of all non-empty well-orderings) (°).

The method used can be summarized as follows: First we determine
an upper bound for the Hanf-number of Ly, (*). Then we show that if
for some a, W ¢PC,(L,,), then there would exist cardinals x, i, and
a sentence @ of L,, such that (i) @ does not have arbitrarily large
models, and (i) @ has a model of cardinality 4 and 2 is equal to the
upper bound previously obtained for the Hanf-number of L.

I. The language L,,. It is convenient for our purposes to define
the language Ly, in a slightly different (but clearly equivalent) way to
that suggested in the introduction.

DermNiTION 1.1 (%).

(1) T is a pseudo-a-tree if and only if 7' is a set of finite sequences
of ordinals smaller than « such that (i) 0 e T, (i) if <ug, ..y tu—z; pn—1> €T,
then <upy ooy pin—2p € I and for all 6 < fipe1, {Hoy-ory tin—2, 6> € T, and
(iii) if seX, then [{u: s <udeT}H < a.

(®) This answers a problem raised by Professor Mostowski, namely, whether there
existed an « such that W e PCa(Lyp)-

(1) See Definition 4.1.

(*) Standard set-theoretical terminology will be used. In particular an ordinal
iy the set of smaller ordinals (small greek letters: u, 6, ¢, £ shall denote ordinals;
w is the smallest infinite ordinal). u+ & is the ordinal sum of x and 6. A cardinal is
an initial ordinal and if X is a set then |X| is the eardinal of X. A function whose
domain is an ordinal will also be called a sequence. If f and g are sequences, then f7g
is the concatenation of 7 and g (i.e. the sequence h such if £, { are the domains of f
and g respectively then h = {(u,f(u): we&} v {(E+n,g(w): & L},
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