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(2) every model of 0 is isomorphic to a system of the form
¢B, 0, 60y Sudu<y Where ¢ is a (non-zero) ordinal.

Next let » = 2exp(2exp(2expm)) and m= 2, and finally let & be
the ordinal m-+1. In [2] we proved that the Hanf-number (for single
sentences) of Ly, is smaller than or equal to m. Let P be the unary relation
symbol occurring in 6 whose interpretation is the well-ordered set,
i.e. g in (1) and (2). Then by essentially velativizing the quantifiers to the
predicate P we obtain by the methods used in [2] that there exists
a sentence y of Ly, such that:

(3) there exists C, 8, B such that W= <0, d, &5, 8y, Beducnecs is
a model of HAwy,

(4) any model of Ay must be isomorphic to a system of the form
D, ¢y cgs Up; Vedg<anen Where o] <.

Let F be a binary relation symbol not occurring in 6Ay and let 4
be a sentence which expresses the condition that (the interpretation
of) F be a (1-1) function from the universe onto (the interpretation of) P,
for example let y be the sentence

(Vay) (Foy —-Py) A (V) (By) Fay A (Vayz) (Foy AFoz—y = 2) ,
(Vayz) (Foy AFzy —o = 2)A (Vy) (Py —(Bx) (Fzy)) .

Finally let © be the sentence 9A ¥ Ay Suppose that (B, 4,..)
is & model of @. Then from y it follows that 4 and B are of the same
cardinally. Thus it follows from (4) that © does not have arbitrarily
large models. Thus in order to complete the proof of the theorem it suffices
to show that O has a model of cardinallity m. Let 9, be the model of
6A ¥ mentioned in (3). Since max(m, a) = m, we can apply the downward
Lowenheim-Skolem Theorem for L, (cf. [1], Theorem 2, p. 34, modified
for the languages L,,) to obtain a subsystem B of U, whose universe
includes ¢ and such B is a model of A W of cardinality m. It follows then
that B is a model of OA Y of the form (B, §, &, Sy, Ridycnys<s Where &
and B are both of cardinality m. It is now clear how to add an extra
relation to B in order to obtain a model of @.
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Characterizations of weakly modular lattices *
by
Igqbalunnisa (Madras)

This paper deals with the characterizations of weakly modular
lattices. Defining ¢, the weakly modular congruence on a lattice I to be
that congruence generated by its ineffective intervals, we show that the
intersection of all maximal congruences on any lattice L contains y in
general (theorem 2) and equals p when I is semidiscrete (theorem 8).
As a consequence of theorem 2, we arrive at a characterization of semi-
discrete weakly modular lattices (theorem 4). Next we prove that the
quotient of a weakly modular lattice by a separable congruence iy weakly
modular (theorem 6). This enables us to give a characterization theorem
for semi-discrete lattices—viz. theorem 7 which states that “any semi-
discrete lattice is a subdirect union of simple lattices if and only if it is
weakly modular”. We next prove that Ljy is weakly modular if the weakly
modular congruence y on the lattice I is separable.

We start with

DEFINITION 1. Let L be any lattice and ¢ be the join in (L) (the
lattice of congruences on I) of all congruences generated by the ineffective
intervals (cf. [3]) of L. v is called the weakly modular congruence on L.

The weakly modular congruence on a weakly modular lattice L
is the null congruence on L.

LeMMA 1. Let L be a weakly modular lattice and I be a prime interval
of L such that 0r, the congruence generated by I, is a separable congruence
on L. Then there exists a mawimal congruence on L not annuling I.

Proof. As 6;is separable and L weakly modular, 6; is complemented
(cf. [2]). Let @ be the complement of 6r. Also @ is defined by = = y (P)
if and only if the interval (x4, #y) consists of single point eongruence
clagses under 67 (cf. [2]). That is, # =y () if and only if the interval
(z4y, 2y) contains no nontrivial interval J with the property J is
a lattice tranglate of I. But then & is a maximal congruence on L. For
if £ strietly contains @, it annuls at least one J with the property that J

* Forms a part of the Doctoral thesis submitted to the University of Madras
in January 1964.
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is a lattice translate of I. L being weakly modular, J is effective:
and as I is prime, one has that I is a lattice translate of J. o C’
annuls I and hence { contains 0r also; hence { is the universal con-
gruence on L.

TaEOREM 1. If L is a weakly atomic, weakly modular lattice and any
congruence generated by a prime interval on L is separable, then any separable
congruence on L is an intersection of maximal congruences on I.

Proof. Let { be a separable congruence on L. Let 4 be the inter-
section of all maximal congruences on L containing ¢. Let J he an interval
of L not annulled by {. Since ¢ is separable, there exists a subinterval J
of J consisting of one element congruence classes under . As I is W@fnkl;1
atomic, J; contains a prime interval I not annulled by (.

Let 6 be the maximal congruence on .L not annuling I, which exists
by lemma 1. Now § does not annul J; also { v 6 does not annul I, as I
is prime and each of { and 0 does not annul I. Therefore £\ @ is not the
universal congruence on L. Now the maximality of 6 implies ¢ C§. Thus
7 C 0. Hence J is not annulled by . As the choice of J is arbit?ary, any
interval not. annulled by ¢ is not annulled by . This means » C¢; thus
n==¢ as trivially ¢ C 1. -

CorOLLARY. If L is a« weakly atomic, distributive lattice, then anmy
separable congruence on L is am intersection of mazimal congruences on L.

.Pro.of‘ For when L is distributive, any congruence generated by
a prime interval is separable; and the rest of the proof follows from theo-
rem 1 above.

F[‘HEOB.EM 2. Let L be an arbitrary laitice; then the intersection of all
maximal congruences L containg vy, the weakly modular congruence on L.

Proof. It is sufficient to show that any maximal congruence f
on L annuls every ineffective interval of I. Let T be an ineffective interval
of I; then there exists an interval J in I such that I is a lattice translate
of J but no subinterval of J is a lattice translate of I.

Suppose that 6 does not annul T ; then 6 cannot annul J. Let 67 be
thfa congruence generated by I. Then 6v 8y, as it annulls I, strietly con-
taan{s 6. Buti 6v6r cannot annul J, for § does not annul J and J consists
of single point congruence classes under Or. Then 6v0r is not the uni-
versal congruence on L. Hence 6 is not a maximal congruence on L. Thus

ever, i i i
'y maximal congruence on L annulls all ineffective intervals of L.
Hence the conclusion.

THEOREM 3. If Lis a weakly atomic lattice and any congruence generated

Y prime val on L [ 7 Lt
by a reme interval o 18 sepay able then /
P 'y the ollowzng statements are

@) I is weakly modular.
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(i) Any separable congruence on L is an infersection of mamimal
congruences on L.

(iil) The null congruence on L is the intersection of mamimal congruence
on L.

Proof. (i) implies (ii) by theorem 1.

(ii) implies (iii) trivially.

(ifi) implies (i) by theorem 2. .

As a particular case of theorem 3, we get

TaEoREM 4. If T is a semi-discrete lattice, then the following statements
are equivalent.

(1) L is weakly modular.

(ii) Any comgruence on L is an intersection of mawimal congruences
on L.

(iid)
on L.

Proof. The theorem follows from the fact that any congruence
of 2 semi-discrete lattice is separable and a semi-discrete lattice is weakly
atomic.

Ag a corollary to theorem 4, we get

The null congruence on L is an intersection of mawimal congruence

TasorEM 5. If L is a semi-discrele, weakly modular lattice, then
every homomorphic image of L is a semi-discrete weakly modular lattice.

Proof. Let 0 be any congruence on L. Any maximal congruence
containing 6 on L goes over to a maximal congruence on L/6. Thus the
intersection of maximal congruences of I/6 is the null congruence on Lj6;
as the intersection of all maximal congruences containing 6 on Lis 6.
Hence L/6 is weakly modular by theorem 4, a8 I/ is semi-discrete, being
2 homomorphic image of a semi-discrete lattice. Hence the conclusion.

More generally, we can prove the following

TuroREM 6. Let L be a weakly modular lattice and 6 a separable con-
gruence on L; then LJ0 is weakly modular.

Proof. Let I = (a,b) and J = (¢, d) be two intervals not annulled
by 6. As 6 is separable and I is not apnulled by 6, there exists at least
one subinterval I, of I consisting of single point congruence clagses under 6.
Tet I be a lattice translate of J; then I, is a Jattice translate of J; for
I, iz a lattice translate of I. Therefore a nontrivial subinterval Jy of J
is a lattice tramslate of I,, as I, being an interval of weakly modular
lattice is effective. Now the pseudo-complement g’ of 6 annuls I, (cf. [2])
and hence annuls J;. Therefore J; consists of single point congrgex'me
classes under 6. Thus there is a nontrivial subinterval ‘Jl of J consisting
of single point congruence classes under 6 is a lattice translate of.I1
and hence of I. Thus a nontrivial subinterval J, of J is- a lattice
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translate of I and is not annulled by 6. This proves that L/ is weakly
modular.

LevMA 2. Any subdivectly irredicible, lattice in

which all congruences are separable is simple.

Proof. Let I be a subdirectly irreducible, weakly modular lattice
in which all congruences are separable. Let 6 be any congruence on I,
other than the null congruence and the universal congruence on L. § ig
complemented (cf. [2]) and the complement 6’ is other than the null
congruence and the universal congruence on L. Now 6A 0’ = 0 and neither
of 0 nor 6’ equals the null congruence. A. contradiction because L is sub-
directly irreducible. Hence L is simple.

COROLLARY. Any semi-discrete, weakly modular subdirectly irreducible
lattice is simple.

weakly modular

THEOREM 7. Any semi-discrete lattice is weakly modular if and only
if it is a subdirect union of simple lattices. ‘

Proof. Any lattice is a subdirect union of subdirectly irreducible
lattices; in particular, any semi-discrete weakly modular lattice L is a sub-
direct union of subdirectly irreducible weakly modular lattice (by theo-
rem 6). Hence L is a subdirect union of simple lattices, by corollary to
lemma 2 above.

To prove the converse, it will suffice to note that the intersection
of all maximal congruences on L is the null congruence on L, when L
is a subdirect union of simple lattices; then the weak modularity of L
follows by theorem 4.

TEEOREM 8. If v, the weakly modular congruence om L, is separable,
then Ly is weakly modular.

Proof. Let I = (a, b) (a > b) and J = (¢,d) (¢> d) be two intervals
of L not annulled by y. As y is separable there exists a finite chain O: a = [’
20 2.2, =D such that either (i) I;= (@-1, a¢) iy annulled by o
or (ii) It = (-1, as) consists of single point congruence classes under y.

Now as I is not annulled by v, ¢ contains at least one I; satisfying (if).
Let J be a lattice translate of 7. Then there exists X, X ..., Xpin L
such that = f(a, Xy, ..., X,) and 4= f(b, Xy Xy ooy Xn) where f is
& finite lattice polynomial. Consider the chain ¢ = Ghzdz..2di=d,
where d; = f(as, Xy, ... y Xa) Let J; = (dhi-1, d¢); then J is a lattice translate
of I, for each i. Now as J is not annulled by v, at least one J; is not an-
nulled by y. Let J be the interval not annulled by v. Then Iy, the interval
corresponding to Jy, satisfies (ii).

Next, J is effective as it is not annulled by . Hence there exists
& subinterval N of Ij such that N is a lattice translate of Jy. New N is
not annulled by y as Ip satisties (if). Thus there exists a subinterval ¥
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of I such that ¥ is not annulled by v and is a lattice translate of J and
hence a lattice translate of J. This proves that L}y is weakly modular.
CoROLLARY. If L is a semi-discrete latiice, then Liy is weakly modular.
This is because every congruence on a semi-discrete lattice is separable,
and so is y, the weakly modular congruence on I.
Using the above we have the following

THEOREM 9. In any semi-discrete lattice L, the following conditions
hold.

(1) The intersection of all mamimal congruences on I is the weakly
modular congruence on L.

(if) Any congruence 6 on L containing v is an intersection of mazimal
congruences on L.

Proof. There is a natural isomorphism between the lattice of con-
grunces of Lfy and congruences on L containing y. Thus there is a (1-1)
correspondence between all maximal congruences of Ljy and maximal
congruences on L, as any maximal congruence on I containg v by theorem 2.
But Ljy is weakly modular by corollary to theorem 8. Hence the inter-
section of maximal congruences on Ly is the null congruence on Ljy by
theorem 4, and so the intersection of all maximal congruences I is P

To prove the second assertion it will suffice to note thas Ly is weakly
modular and hence satisfies (ii) by theorem 4.

My thanks are due to Professor V. S. Krishnan for his constant
help during the preparation of this paper.
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