

(2) every model of θ is isomorphic to a system of the form $\langle B, \varrho, \varepsilon_{\varrho}, S_{\mu} \rangle_{\mu < \eta}$ where ϱ is a (non-zero) ordinal.

Next let $\varkappa=2\exp\left(2\exp\left(2\exp n\right)\right)$ and $\mathfrak{m}=\mathbb{Z}_\varkappa$ and finally let δ be the ordinal $\mathfrak{m}+1$. In [2] we proved that the Hanf-number (for single sentences) of $\mathbf{L}_{\alpha\omega}$ is smaller than or equal to \mathfrak{m} . Let \mathbf{P} be the unary relation symbol occurring in θ whose interpretation is the well-ordered set, i.e. ϱ in (1) and (2). Then by essentially relativizing the quantifiers to the predicate \mathbf{P} we obtain by the methods used in [2] that there exists a sentence ψ of $\mathbf{L}_{\alpha\omega}$ such that:

- (3) there exists C, S_{μ} , R such that $\mathfrak{A}_{0}=\langle C, \delta, \varepsilon_{\delta}, S_{\mu}, R_{\xi} \rangle_{\mu < \eta, \xi < \lambda}$ is a model of $\theta \wedge \psi$,
- (4) any model of $\theta \land \psi$ must be isomorphic to a system of the form $\langle D, \varrho, \varepsilon_{\varrho}, U_{\mu}, V_{\xi} \rangle_{\xi < \lambda, \mu < \eta}$ where $|\varrho| \leq \mathfrak{m}$.

Let **F** be a binary relation symbol not occurring in $\theta \wedge \psi$ and let χ be a sentence which expresses the condition that (the interpretation of) **F** be a (1-1) function from the universe onto (the interpretation of) **P**, for example let χ be the sentence

$$(\nabla xy) (\mathbf{F}xy \to \mathbf{P}y) \wedge (\nabla x) (\mathbf{E}y) \mathbf{F}xy \wedge (\nabla_x yz) (\mathbf{F}xy \wedge \mathbf{F}xz \to y = z) ,$$

$$(\nabla xyz) (\mathbf{F}xy \wedge \mathbf{F}zy \to x = z) \wedge (\nabla y) (\mathbf{P}y \to (\mathbf{E}x) (\mathbf{F}xy)) .$$

Finally let Θ be the sentence $\theta \land \Psi \land \chi$. Suppose that $\langle B, A, ... \rangle$ is a model of Θ . Then from χ it follows that A and B are of the same cardinally. Thus it follows from (4) that Θ does not have arbitrarily large models. Thus in order to complete the proof of the theorem it suffices to show that Θ has a model of cardinallity \mathfrak{m} . Let \mathfrak{A}_0 be the model of $\theta \land \Psi$ mentioned in (3). Since $\max(\mathfrak{m}, \alpha) = \mathfrak{m}$, we can apply the downward Lowenheim-Skolem Theorem for $\mathbf{L}_{\alpha\omega}$ (cf. [1], Theorem 2, p. 34, modified for the languages $\mathbf{L}_{\alpha\omega}$) to obtain a subsystem \mathfrak{B} of \mathfrak{A}_0 whose universe includes δ and such \mathfrak{B} is a model of $\theta \land \Psi$ of cardinality \mathfrak{m} . It follows then that \mathfrak{B} is a model of $\theta \land \Psi$ of the form $\langle B, \delta, \varepsilon_{\varrho}, S'_{\mu}, R'_{\xi} \rangle_{\mu < \eta, \xi < \lambda}$ where δ and B are both of cardinality \mathfrak{m} . It is now clear how to add an extra relation to \mathfrak{B} in order to obtain a model of Θ .

References

[1] W. P. Hanf, Some fundamental problems concerning languages with expressive expressions of infinite length, Doctoral Dissertation, University of California, Berkeley, California.

[2] E. G. K. Lopez-Escobar, On defining well-orderings, Fund. Math. this volume, pp. 13-21.

Reçu par la Rédaction le 25. 11. 1965

Characterizations of weakly modular lattices *

b)

Iqbalunnisa (Madras)

This paper deals with the characterizations of weakly modular lattices. Defining ψ , the weakly modular congruence on a lattice L to be that congruence generated by its ineffective intervals, we show that the intersection of all maximal congruences on any lattice L contains ψ in general (theorem 2) and equals ψ when L is semidiscrete (theorem 8). As a consequence of theorem 2, we arrive at a characterization of semi-discrete weakly modular lattices (theorem 4). Next we prove that the quotient of a weakly modular lattice by a separable congruence is weakly modular (theorem 6). This enables us to give a characterization theorem for semi-discrete lattices—viz. theorem 7 which states that "any semi-discrete lattice is a subdirect union of simple lattices if and only if it is weakly modular". We next prove that L/ψ is weakly modular if the weakly modular congruence ψ on the lattice L is separable.

We start with

DEFINITION 1. Let L be any lattice and ψ be the join in $\theta(L)$ (the lattice of congruences on L) of all congruences generated by the ineffective intervals (cf. [3]) of L. ψ is called the weakly modular congruence on L.

The weakly modular congruence on a weakly modular lattice L is the $null\ congruence\ on\ L.$

LEMMA 1. Let L be a weakly modular lattice and I be a prime interval of L such that θ_I , the congruence generated by I, is a separable congruence on L. Then there exists a maximal congruence on L not annuling I.

Proof. As θ_I is separable and L weakly modular, θ_I is complemented (cf. [2]). Let Φ be the complement of θ_I . Also Φ is defined by $x \equiv y$ (Φ) if and only if the interval (x+y,xy) consists of single point congruence classes under θ_I (cf. [2]). That is, $x \equiv y$ (Φ) if and only if the interval (x+y,xy) contains no nontrivial interval J with the property J is a lattice translate of I. But then Φ is a maximal congruence on L. For if ζ strictly contains Φ , it annuls at least one J with the property that J

^{*} Forms a part of the Doctoral thesis submitted to the University of Madras in January 1964.

is a lattice translate of I. L being weakly modular, J is effective; and as I is prime, one has that I is a lattice translate of J. So ζ annuls I and hence ζ contains θ_I also; hence ζ is the universal congruence on L.

THEOREM 1. If L is a weakly atomic, weakly modular lattice and any congruence generated by a prime interval on L is separable, then any separable congruence on L is an intersection of maximal congruences on L.

Proof. Let ζ be a separable congruence on L. Let η be the intersection of all maximal congruences on L containing ζ . Let J be an interval of L not annulled by ζ . Since ζ is separable, there exists a subinterval J_1 of J consisting of one element congruence classes under ζ . As L is weakly atomic, J_1 contains a prime interval I not annulled by ζ .

Let θ be the maximal congruence on L not annuling I, which exists by lemma 1. Now θ does not annul J; also $\zeta \cup \theta$ does not annul I, as I is prime and each of ζ and θ does not annul I. Therefore $\zeta \cup \theta$ is not the universal congruence on L. Now the maximality of θ implies $\zeta \subseteq \theta$. Thus $\eta \subseteq \theta$. Hence J is not annulled by η . As the choice of J is arbitrary, any interval not annulled by ζ is not annulled by η . This means $\eta \subseteq \zeta$; thus $\eta = \zeta$ as trivially $\zeta \subseteq \eta$.

COROLLARY. If L is a weakly atomic, distributive lattice, then any separable congruence on L is an intersection of maximal congruences on L.

Proof. For when L is distributive, any congruence generated by a prime interval is separable; and the rest of the proof follows from theorem 1 above.

Theorem 2. Let L be an arbitrary lattice; then the intersection of all maximal congruences L contains ψ , the weakly modular congruence on L.

Proof. It is sufficient to show that any maximal congruence θ on L annuls every ineffective interval of L. Let I be an ineffective interval of L; then there exists an interval J in L such that I is a lattice translate of J but no subinterval of J is a lattice translate of I.

Suppose that θ does not annul I; then θ cannot annul J. Let θ_I be the congruence generated by I. Then $\theta \vee \theta_I$, as it annulls I, strictly contains θ . But $\theta \vee \theta_I$ cannot annul J, for θ does not annul J and J consists of single point congruence classes under θ_I . Then $\theta \vee \theta_I$ is not the universal congruence on L. Hence θ is not a maximal congruence on L. Thus every maximal congruence on L annulls all ineffective intervals of L. Hence the conclusion.

THEOREM 3. If L is a weakly atomic lattice and any congruence generated by a prime interval on L is separable, then the following statements are equivalent.

(i) L is weakly modular.

- (ii) Any separable congruence on L is an intersection of maximal congruences on L.
- (iii) The null congruence on L is the intersection of maximal congruence on L.

Proof. (i) implies (ii) by theorem 1.

- (ii) implies (iii) trivially.
- (iii) implies (i) by theorem 2.

As a particular case of theorem 3, we get

THEOREM 4. If L is a semi-discrete lattice, then the following statements are equivalent.

- (i) L is weakly modular.
- (ii) Any congruence on L is an intersection of maximal congruences on L.
- (iii) The null congruence on L is an intersection of maximal congruence on L.

Proof. The theorem follows from the fact that any congruence of a semi-discrete lattice is separable and a semi-discrete lattice is weakly atomic.

As a corollary to theorem 4, we get

THEOREM 5. If L is a semi-discrete, weakly modular lattice, then every homomorphic image of L is a semi-discrete weakly modular lattice.

Proof. Let θ be any congruence on L. Any maximal congruence containing θ on L goes over to a maximal congruence on L/θ . Thus the intersection of maximal congruences of L/θ is the null congruence on L/θ ; as the intersection of all maximal congruences containing θ on L is θ . Hence L/θ is weakly modular by theorem 4, as L/θ is semi-discrete, being a homomorphic image of a semi-discrete lattice. Hence the conclusion.

More generally, we can prove the following

THEOREM 6. Let L be a weakly modular lattice and θ a separable congruence on L; then L/θ is weakly modular.

Proof. Let I=(a,b) and J=(c,d) be two intervals not annulled by θ . As θ is separable and I is not annulled by θ , there exists at least one subinterval I_1 of I consisting of single point congruence classes under θ . Let I be a lattice translate of J; then I_1 is a lattice translate of J; for I_1 is a lattice translate of I. Therefore a nontrivial subinterval I_1 of I is a lattice translate of I_1 , as I_1 being an interval of weakly modular lattice is effective. Now the pseudo-complement θ' of θ annuls I_1 (cf. [2]) and hence annuls I_1 . Therefore I_1 consists of single point congruence classes under θ . Thus there is a nontrivial subinterval I_1 of I consisting of single point congruence classes under θ is a lattice translate of I_1 and hence of I. Thus a nontrivial subinterval I_1 of I is a lattice

translate of I and is not annulled by $\theta.$ This proves that L/θ is weakly modular.

LEMMA 2. Any subdirectly irredicible, weakly modular lattice in which all congruences are separable is simple.

Proof. Let L be a subdirectly irreducible, weakly modular lattice in which all congruences are separable. Let θ be any congruence on L other than the null congruence and the universal congruence on L. θ is complemented (cf. [2]) and the complement θ' is other than the null congruence and the universal congruence on L. Now $\theta \wedge \theta' = 0$ and neither of θ nor θ' equals the null congruence. A contradiction because L is subdirectly irreducible. Hence L is simple.

COROLLARY. Any semi-discrete, weakly modular subdirectly irreducible lattice is simple.

THEOREM 7. Any semi-discrete lattice is weakly modular if and only if it is a subdirect union of simple lattices.

Proof. Any lattice is a subdirect union of subdirectly irreducible lattices; in particular, any semi-discrete weakly modular lattice L is a subdirect union of subdirectly irreducible weakly modular lattice (by theorem 6). Hence L is a subdirect union of simple lattices, by corollary to lemma 2 above.

To prove the converse, it will suffice to note that the intersection of all maximal congruences on L is the null congruence on L, when L is a subdirect union of simple lattices; then the weak modularity of L follows by theorem 4.

Theorem 8. If ψ , the weakly modular congruence on L, is separable, then L/ψ is weakly modular.

Proof. Let I=(a,b) (a>b) and J=(c,d) (c>d) be two intervals of L not annulled by ψ . As ψ is separable there exists a finite chain $C\colon a=a_0\geqslant a_1\geqslant \ldots\geqslant a_n=b$ such that either (i) $I_i=(a_{i-1},a_i)$ is annulled by ψ or (ii) $I_i=(a_{i-1},a_i)$ consists of single point congruence classes under ψ .

Now as I is not annulled by ψ , C contains at least one I_i satisfying (ii). Let J be a lattice translate of I. Then there exists $X_1, X_2, ..., X_n$ in L such that $C = f(a, X_1, ..., X_n)$ and $d = f(b, X_1, X_2, ..., X_n)$ where f is a finite lattice polynomial. Consider the chain $c = d_0 \ge d_1 \ge ... \ge d_n = d$, where $d_i = f(a_i, X_1, ..., X_n)$. Let $J_i = (d_{i-1}, d_i)$; then J_i is a lattice translate of I_i , for each i. Now as J is not annulled by ψ , at least one J_i is not annulled by ψ . Let J_k be the interval not annulled by ψ . Then I_k , the interval corresponding to J_k , satisfies (ii).

Next, J_k is effective as it is not annulled by ψ . Hence there exists a subinterval N of I_k such that N is a lattice translate of J_k . New N is not annulled by ψ as I_k satisfies (ii). Thus there exists a subinterval N

of I such that N is not annulled by ψ and is a lattice translate of J_k and hence a lattice translate of J. This proves that L/ψ is weakly modular.

COROLLARY. If L is a semi-discrete lattice, then L/ψ is weakly modular. This is because every congruence on a semi-discrete lattice is separable, and so is ψ , the weakly modular congruence on L.

Using the above we have the following

Theorem 9. In any semi-discrete lattice L, the following conditions hold.

- (i) The intersection of all maximal congruences on L is the weakly modular congruence on L.
- (ii) Any congruence θ on L containing ψ is an intersection of maximal congruences on L.

Proof. There is a natural isomorphism between the lattice of congrunces of L/ψ and congruences on L containing ψ . Thus there is a (1-1) correspondence between all maximal congruences of L/ψ and maximal congruences on L, as any maximal congruence on L contains ψ by theorem 2. But L/ψ is weakly modular by corollary to theorem 8. Hence the intersection of maximal congruences on L/ψ is the null congruence on L/ψ by theorem 4, and so the intersection of all maximal congruences L is ψ .

To prove the second assertion it will suffice to note that L/ψ is weakly modular and hence satisfies (ii) by theorem 4.

My thanks are due to Professor V. S. Krishnan for his constant help during the preparation of this paper.

References

- G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Publ., Vol. 25, revised ed., New York 1948.
- [2] G. Gratzer and E. T. Schmidt, Ideals and congruence relations in lattices, Acta Math. Acad. Sci. Hung. 9 (1958), pp. 137-175.
- [3] Iqbalunnisa, Lattice translates and congruences, Journ. Ind. Math. Soc. 26 (1962), pp. 81-96.

UNIVERSITY OF MADRAS

Reçu par la Rédaction le 29. 11. 1965