observation is valid: X is G_{δ} -dense in \widetilde{X} if and only if X meets each non-void closed G_{δ} subset of \widetilde{X} . - 5.1. Proposition. If X is G_{δ} -dense in \widetilde{X} and Y is G_{δ} -dense in \widetilde{Y} , then $X \times Y$ is G_{δ} -dense in $\widetilde{X} \times \widetilde{Y}$. - 5.2. Theorem. If $X \times Y$ is C^* -embedded in $vX \times vY$, then $X \times Y$ is C-embedded in $vX \times vY$. Proof. According to 1.18 of [3] it suffices to show that each non-void closed G_{δ} subset Z of $vX \times vY$ which misses $X \times Y$ satisfies a certain condition. Since X and Y are G_{δ} -dense in vX and vY respectively, there are by 5.1 no such sets Z. 5.3. THEOREM. Let card Y be nonmeasurable and suppose that either (a) Y is compact; or 12 (b) the projection from $X \times Y$ to X is closed; or (e) $X \times Y$ is C^* -embedded in $X \times \beta Y$. Then $v(X \times Y) = vX \times vY$. Proof. It suffices to deduce the desired conclusion from hypothesis (c), the implication (a) \Rightarrow (b) being well-known and the implication (b) \Rightarrow (c) being given by 3.1. According to 5.2 it is enough to show that each bounded continuous real-valued function on $X \times Y$ extends continuously to $vX \times vY$. By (c) we can extend to $X \times \beta Y$, and 2.8 takes us from there to the space $vX \times \beta Y$, which contains $vX \times vY$. #### References - [1] W. W. Comfort and Kenneth A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math., 16 (1966), pp. 483-496. - [2] Zdeněk Frolik, The topological product of two pseudocompact spaces, Czech. Math. J. 10 (1960), pp. 339-349. - [3] Leonard Gillman and Meyer Jerison, Rings of continuous functions, Princeton, N.J., 1960. - [4] Irving Glicksberg, Stone-Öech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), pp. 369-382. - [5] Edwin Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 64 (1948), pp. 45-99. THE UNIVERSITY OF ROCHESTER THE UNIVERSITY OF MASSACHUSETS THE UNIVERSITY OF INDIANA Recu par la Rédaction le 16, 4, 1965 # On defining well-orderings by ### E. G. K. Lopez-Escobar (Cambridge, Mass.) **0. Introduction.** Let $L_{a\omega}$ be the extension of the finitary first-order predicate logic obtained by allowing conjunctions and disjunctions of μ -sequences of formulas ($\mu < a$). The purpose of this note is to show that even allowing arbitrary many non-logical constants the notion of a well-ordered relation cannot be expressed by a set of sentences of the infinitary first-order language $L_{a\omega}$ (i.e. that for all a, $\mathbf{W} \notin \mathbf{PC}_{\Delta}(L_{a\omega})$ where \mathbf{W} is the class of all non-empty well-orderings) (°). The method used can be summarized as follows: First we determine an upper bound for the Hanf-number of $L_{\alpha\omega}$ (1). Then we show that if for some α , $\mathbf{W} \in \mathbf{PC}_d(L_{\alpha\omega})$, then there would exist cardinals \varkappa , λ , and a sentence Φ of $L_{\varkappa\omega}$ such that (i) Φ does not have arbitrarily large models, and (ii) Φ has a model of cardinality λ and λ is equal to the upper bound previously obtained for the Hanf-number of $L_{\varkappa\omega}$. I. The language $L_{a\omega}$. It is convenient for our purposes to define the language $L_{a\omega}$ in a slightly different (but clearly equivalent) way to that suggested in the introduction. Definition 1.1 (2). (.1) T is a $pseudo-\alpha$ -tree if and only if T is a set of finite sequences of ordinals smaller than α such that (i) $0 \in T$, (ii) if $\langle \mu_0, \ldots, \mu_{n-2}, \mu_{n-1} \rangle \in T$, then $\langle \mu_0, \ldots, \mu_{n-2} \rangle \in T$ and for all $\delta < \mu_{n-1}, \langle \mu_0, \ldots, \mu_{n-2}, \delta \rangle \in T$, and (iii) if $s \in T$, then $|\{\mu: s \land \langle \mu \rangle \in T\}| < \alpha$. ⁽e) This answers a problem raised by Professor Mostowski, namely, whether there existed an α such that $\mathbf{W} \in \mathbf{PC}_d(L_{\alpha\omega})$. ⁽¹⁾ See Definition 4.1. ^(*) Standard set-theoretical terminology will be used. In particular an ordinal is the set of smaller ordinals (small greek letters: μ , δ , ϱ , ξ , shall denote ordinals; ω is the smallest infinite ordinal). $\mu+\delta$ is the ordinal sum of μ and δ . A cardinal is an initial ordinal and if X is a set then |X| is the cardinal of X. A function whose domain is an ordinal will also be called a sequence. If f and g are sequences, then $f^{\frown}g$ is the concatenation of f and g (i.e. the sequence h such if ξ , ξ are the domains of f and g respectively then $h = \{(\mu, f(\mu)): \mu \in \xi\} \cup \{(\xi + \mu, g(\mu)): \mu \in \xi\}$. - (.2) If T is a pseudo-a-tree, $s \in T$, and there does not exist an ordinal μ such that $s \cap \langle \mu \rangle \in T$, then s is an uppermost element of T. - (.3) If T is a pseudo- α -tree, $s \in T$ and $s' = s (\mu) \in T$, then s is an immediate predecessor of s' (in T). - (.4) If T is a pseudo-a-tree, then B is a branch of T just in case that B is a maximal subset of T such that no two (different) elements in B have the same immediate predecessor in T. - (.5) T is an α -tree just in case that T is a pseudo- α -tree in which every branch is finite. The following lemma is immediate (because an α -tree is well-founded). LEMMA 1.2. If T is an α -tree, then to each element $s \in T$ can be associated an ordinal $d_T(s)$, called the depth of s in T, such that - (i) if s is an uppermost element of T, then $d_T(s) = 0$, - (ii) if s is not an uppermost element of T, and $s \cap \langle \mu \rangle \in T$ if and only if $\mu < \delta$, then $d_T(s) = \bigcup \{d_T(s \cap \langle \mu \rangle) + 1: \mu < \delta\}.$ DEFINITION 1.3. Φ is a formula of $L_{a\omega}$ ($\Phi \in L_{a\omega}$) just in case that there exists an α -tree T and a function f whose domain is T and such that - (i) $f(0) = \Phi$, - (ii) if s is an uppermost element of T, then f(s) is an atomic formula (of the usual finitary first-order predicate logic), - (iii) if s is not an uppermost element of T, $s \subset \mu > \epsilon T$ if and only if $\mu < \delta$ ($\delta > 0$), and for each $\mu < \delta$, $f(s \subset \mu >) = \Psi_{\mu}$ then either (a) $f(s) = \bigvee \langle \Psi_0, ..., \Psi_{\mu}, ... \rangle_{\mu < \delta}$ or (b) $f(s) = \bigwedge \langle \Psi_0, ..., \Psi_{\mu}, ... \rangle_{\mu < \delta}$ or (c) $\delta = 1$ and $f(s) = \neg \Psi_0$, or (d) $\delta = 1$ and for some individual variable x either $f(s) = (Ex) \Psi_0$ or $f(s) = (\nabla x) \Psi_0$ (3). It is straightforward to verify that to each formula $\Phi \in L_{a\omega}$ there corresponds a unique α -tree T and a function f satisfying the conditions stated in Definition 1.3, and hence $\langle T, f \rangle$ will be called the *formation* of Φ . Furthermore in order to make the formulas easier to read we shall let $$\bigvee_{\mu < \delta} \Psi_{\mu} = \bigvee \langle \Psi_{\mu} \rangle_{\mu < \delta} \quad \text{and} \quad \bigwedge_{\mu < \delta} \Psi_{\mu} = \bigwedge \langle \Psi_{\mu} \rangle_{\mu < \delta}.$$ The set of subformulas of a formula $\Phi \in L_{aw}$, SF(Φ) can then simply be defined as the range of f where $\langle T, f \rangle$ is the formation of Φ . The set of free variables of a formula Φ , FV(Φ), is defined in the usual way, and a sentence is a formula without free variables. An important, yet trivial, result is that if Φ is a sentence of L_{aw} , then for every subformula Ψ of Φ , For the remaining part of this paper we shall make the Assumption I. a is an infinite regular cardinal (4). A simple consequence of the assumption is that for every formula Φ of $L_{a\omega}$, $|\mathrm{SF}(\Phi)| < \alpha$. We assume that if is known under what conditions a relational system $\mathfrak{A}=\langle A\,,\,R_t\rangle_{i\in I}$ and a sequence s of elements from A satisfy a formula Φ of $L_{a\omega}$; we shall express this condition by $(\mathfrak{A},s)\models\Phi$ (5). If for every sequence s, $(\mathfrak{A},s)\models\Phi$, then \mathfrak{A} is a model of Φ . If $\mathfrak{A}=\langle A\,,\,R_0,\,R_t\rangle_{i\in I}$ and $\mathfrak{B}=\langle A\,,\,R_0\rangle$, then \mathfrak{B} is the reduct of \mathfrak{A} . If K is a class of (similar) relational systems then (i) $K\in\mathbf{EC}(L_{a\omega})$ ($K\in\mathbf{EC}_d(L_{a\omega})$) just in case that K is the class of all models of a sentence of $L_{a\omega}$ (a set of sentences of $L_{a\omega}$), and (ii) $K\in\mathbf{PC}(L_{a\omega})$ ($K\in\mathbf{PC}_d(L_{a\omega})$) if and only if there exists a class K of relational systems such that $K\in\mathbf{PC}(L_{a\omega})$ ($K\in\mathbf{PC}_d(L_{a\omega})$) and K is the class of reducts of K. Finally it can easily be checked that (as a consequence of De Morgan's law) every formula of $L_{a\omega}$ is semantically equivalent to a formula of $L_{a\omega}$ in n.n.f. ### II. α -relational systems. DEFINITION 2.1. A relational system $\mathfrak{A}=\langle A,R_0,R_1,a_{\ell},R_2,...\rangle_{\ell<\alpha}$ is an α -relational system just in case that - (i) for all $\xi \leqslant \alpha$, $\xi \in A$, - (ii) $R_0 = \{\xi \colon \xi \leqslant a\} \subseteq A$, - (iii) $R_1 = \{\langle \mu, \varrho \rangle : \ \mu \leqslant \alpha, \ \varrho \leqslant \alpha \text{ and } \mu < \varrho \},$ - (iv) for each $\xi \leqslant \alpha$, $a_{\xi} = \xi$ (considered as a distinguished element of \mathfrak{A} , not as a unary relation). DEFINITION 2.2. By an α -language we understand a finitary first-order language such that its basic symbols include - (a) a unary relation symbol Λ , - (b) a binary relation symbol ≥, - (c) for each $\xi \leqslant \alpha$ an individual constant symbol k_{ξ} . We shall need to make use of the following result. ^(*) $\bigvee \langle \Psi_{\mu} \rangle_{\mu < \delta}$ is the disjunction of the sequence $\langle \Psi_{\mu} \rangle_{\mu < \delta}$; $\bigwedge \langle \Psi_{\mu} \rangle_{\mu < \delta}$ is the conjunction of the sequence $\langle \Psi_{\mu} \rangle_{\mu < \delta}$. ⁽⁴⁾ A cardinal α is regular just in case there does not exist a function f whose domain is an ordinal $\xi \in \alpha$, whose range is included in α and such that $\alpha = \bigcup_{\mu \in \xi} f(\mu)$ (cf. Bachmann [1]). ⁽⁵⁾ See, for example, Karp [4]. Theorem 2.3 (Helling/Morley). If a set T of α -sentences, $|T| \leq \alpha$, has an α -model (i.e. a model which is isomorphic to an α -relational system) of cardinality $\beth_{(2^{\alpha})^+}$ then T has α -models of arbitrary large cardinalities (§). M. Helling has shown that the above theorem, for the case $\alpha = \omega$, is an immediate consequence of a result of Morley [5] (in the case $\alpha = \omega$, $\mathbf{z}_{(2^{\alpha})^+}$ is replaced by \mathbf{z}_{ω_1}). Since Helling's result has not been published, we give, with Helling's permission, the proof of Theorem 2.3 which is obtained by (essentially) replacing ω by α in his proof. Proof of Theorem 2.3. Let T' be the set of α -sentences obtained by adding to T' all the sentences of the form (7): - (i) $(\nabla xy)(x \prec y \rightarrow \Lambda x \land \Lambda y)$, - (ii) $k_{\mu} \! \sim \! k_{\delta} \text{ for all } \mu < \delta \leqslant \alpha$, - (iii) $(\nabla xy)[x < y \rightarrow \neg (x = y) \land \neg (y < x)],$ - (iv) $(\nabla xy) [\Lambda x \land \Lambda y \to x \prec y \lor x = y \lor y \prec x],$ - $(\nabla xyz)(x \leq y \land y \leq z \rightarrow x \leq z),$ - (vi) $\neg (\mathbf{E}x)(k_{\mu} \prec x \land x \prec k_{\mu+1}) \quad \mu < \alpha$, - (vii) $(\forall x) (Ax \rightarrow k_0 = x \lor k_0 \lt x),$ - (viii) $(\nabla x) (\Lambda x \rightarrow x \leq k_a \vee x = k_a).$ Then let Σ be the following set of α -formulas: $$\Sigma = \{ \Lambda x \land \neg (x = k_{\xi}) \colon \xi \leqslant a \}.$$ Assume then that T has an α -model of cardinality at least $\Xi_{(2^{\alpha})^+}$ and let $\mathfrak A$ be such an α -model. Hence $\mathfrak A$ is a model of T' in which no element satisfies all the formulas in Σ . Hence by Morley's result [5], T' has arbitrary large models $\mathfrak B$ in which no element of $\mathfrak B$ satisfies all the formulas in Σ . But any model of T' in which no element satisfies all the formulas in Σ must be an α -model of T. III. Reduction of $L_{\alpha\omega}$ to an α -language. We shall show in this section that each sentence Φ of $L_{\alpha\omega}$ can be replaced by a set $\mathrm{TR}(\Phi)$ of (finitary) α -sentences such that Φ has a model of cardinality \varkappa ($\varkappa > \alpha$) if and only if $\mathrm{TR}(\Phi)$ has an α -model of cardinality \varkappa . The gist of the method is that a formula $\Phi = \bigvee_{\varkappa < \delta} \Psi_{\mu}$, such that $\mathrm{FV}(\Phi) \subseteq \{x_0, \ldots, x_n\}$ is in the sense mentioned above, equivalent to the following set of formulas (i) $$(\forall x_0, \ldots, x_n)(Pk_{\mu}x_0, \ldots, x_n \leftrightarrow \Psi_{\mu}), \quad \mu < \delta$$, (ii) $$(\mathbf{E}y)(y \prec k_{\delta} \wedge Pyx_0, ..., x_n)$$ (8). LEMMA 3.1. If Φ is a sentence of $L_{a\omega}$ in n.n.f. and $\langle T, f \rangle$ is the formation of Φ , then there exists a function Tr_{Φ} whose domain is T, whose range consists of sequences (of length <a) of formulas of an a-language and such that: - (.1) if f(s) is either an atomic or negation of an atomic formula, then $\operatorname{Tr}_{\Phi}(s) = \langle f(s) \rangle$, - (.2) if $f(s) = C_{\mu < \delta} f(s < \mu)$ (where C is either \vee or \wedge), $\operatorname{Tr}_{\sigma}(s < \mu)$ $= \langle \Psi_{\sigma}^{\mu} \rangle_{\xi < \delta_{\mu}}$, $\varrho = \bigcup_{\mu < \delta} \delta_{\mu}$, $\operatorname{FV}(f(s)) = \{x_0, \dots, x_{n-1}\}$ $(n < \omega)$ then $\operatorname{Tr}_{\sigma}(s)$ is a well-ordering of the set consisting of the following formulas: (i) $$(\forall x_0, \ldots, x_{n-1})(P_{\delta}k_{\mu}k_{\xi}x_0, \ldots, x_{n-1} \leftrightarrow \Psi^{\mu}_{\xi})$$ where $\mu < \delta, \ \xi < \delta_{\mu}$, (ii) $$(\nabla x_0, \ldots, x_{n-1})(P_s k_\mu k_\xi x_0, \ldots, x_{n-1} \leftrightarrow \Psi_0^\mu)$$ and $\mu < \delta, \ \delta_\mu \leqslant \xi < \varrho$, (iii.a) $$(\nabla yz)(y \leq k_{\delta} \land z \leq k_{\varrho} \rightarrow P_{s}yzx_{0}, ..., x_{n-1})$$ in the case when $C = \bigwedge$, (iii.b) $$(Ey)(y \lt k_{\delta} \land (\nabla z)(z \lt k_{\varrho} \rightarrow P_s y z x_0, ..., x_{n-1}))$$ in the case when $C = \bigvee$. (.3) if $f(s) = (Qx_0)f(s^{\circ}(0))$ (where Q is either ∇ of E), $\operatorname{Tr}_{\phi}(s^{\circ}(0)) = \langle \Psi_{\xi} \rangle_{\xi < \delta}$, $\operatorname{FV} \{f(s)^{\circ}(0)\} = \{x_1, \dots, x_{n-1}\}$, then $\operatorname{Tr}_{\phi}(s)$ is a well-ordering of the set consisting of the following formulas: - (i) $(\nabla x_0, \ldots, x_{n-1})(P_{\delta}k_{\delta}x_0, \ldots, x_{n-1} \leftrightarrow \Psi_{\delta})$ where $\xi < \delta$. - (ii.a) $(\nabla x_0 y)(y < k_{\delta} \rightarrow P_s y x_0, ..., x_{n-1})$ in the case $Q = \nabla$. - (ii.b) $(\mathbf{E}x_0)(\nabla y)(y < k_\delta \rightarrow P_s y x_0, ..., x_{n-1})$ in the case $\mathbf{Q} = \mathbf{E}$. Proof. Usual definition by induction on a well-founded relation. From Lemma 3.1 we then obtain (using a proof by induction on the depth of s in T). LEMMA 3.2. If Φ is a sentence of $L_{a\omega}$ in n.n.f. $\langle T, f \rangle$ is the formation of Φ , $s \in T$, $f(s) = \Psi$, Γ is the range of $\operatorname{Tr}_{\Phi}(s)$, where Tr_{Φ} is an in Lemma 3.1, then (.1) given any relation system $\mathfrak{A} = \langle A, R_i \rangle_{i \in I}$ and a sequence h of elements of A such that $(\mathfrak{A}, h) \models \Psi$ then there exists as α -relational system \mathfrak{B} of the form $\mathfrak{B} = \langle A \cup (\alpha+1), (\alpha+1), \epsilon_{\alpha+1}, \xi, N_s, R_i \rangle_{\xi \leqslant \alpha, s \in \mathcal{I}, i \in I}$ such that for all $\Delta \in \Gamma$, $(\mathfrak{B}, h) \models \Delta$, ^(*) \supset_{μ} is the μ -th Beth number and is defined by $\supset_{\mu} = \omega \cup \bigcup_{\xi < \mu} |2^{-\xi}|$. Also if π is a cardinal then π^+ is the least cardinal strictly greater than π . ⁽⁷⁾ \wedge , \vee , \rightarrow and \leftrightarrow are defined as usual in terms of \rightarrow , \wedge and \vee . ^(*) And correspondingly for \wedge . This method of replacing infinite formulas by finite formulas has been used by E. Engeler in [2]. On defining well-orderings (.2) if h is a sequence of elements of the non-empty set A, $(A \cap (\alpha+1)) = 0$) \mathfrak{B} is an α -relational system of the form $\mathfrak{B} = \langle A \cup (\alpha+1), (\alpha+1), \epsilon_{\alpha+1}, \xi, N_s, R_i \rangle_{\xi < \alpha, s \in T, i \in I}$ and for all $\Delta \in \Gamma$, $(\mathfrak{B}, h) \models \Delta$, then $(\mathfrak{A}, h) \models \Psi$ where $\mathfrak{A} = \langle A, R_i \rangle_{i \in I}$. DEFINITION 3.3. If Φ is a sentence of $L_{a\omega}$ in n.n.f., $\langle T, f \rangle$ is the formation of Φ , Tr_{Φ} is as in Lemma 3.1, then $\text{TR}(\Phi)$ is the range of Tr_{Φ} (0). Using Lemma 3.2 we then obtain: THEOREM 3.4. If Φ is a sentence of $L_{a\omega}$ in n.n.f., \varkappa is a cardinal greater than or equal to a, then Φ has a model of cardinality \varkappa if and only if $TR(\Phi)$ has an α -model of cardinality \varkappa . ## IV. Hanf-numbers of $L_{a\omega}$. DEFINITION 4.1. The Hanf-number of $L_{a\omega}$, $H(L_{a\omega})$, is the least cardinal \varkappa such that for every sentence Φ of $L_{a\omega}$, if Φ has a model of cardinality at least \varkappa , then Φ has arbitrary large models. THEOREM 4.2. $$H(L_{a\omega}) \leqslant \beth_{(2^a)^+}$$. Proof. Suppose that Φ is a sentence of $L_{a\omega}$ which has a model of cardinality $\varkappa \geqslant \beth_{(2^{\alpha})^+}$. Hence if Φ^* is a sentence of $L_{a\omega}$ in n.n.f. which is semantically equivalent to Φ , then Φ^* has a model of cardinality \varkappa . Thus by Theorem 3.4 TR(Φ^*) has an α -model of cardinality \varkappa . Thus by Theorem 2.3 TR(Φ^*) has arbitrary large α -models. Hence by Theorem 3.4 Φ^* (and thus also Φ) has arbitrary large models. # V. Non-definability of well-orderings. DEFINITION 5.1. Or, is the formula defined by the recursion $$\operatorname{Or}_{\mu} = \left[\bigwedge_{\xi < \mu} (\mathbf{E}y) \left(y < x \wedge (\mathbf{E}x) \left(x = y \wedge \mathbf{Or}_{\xi} \right) \right) \right] \\ \left[(\nabla y) \left(y < x \rightarrow \bigvee_{\xi < \mu} (\mathbf{E}x) \left(x = y \wedge \mathbf{Or}_{\xi} \right) \right) \right].$$ The following lemma can easily be proved by induction on μ (cf. [6]). Lemma 5.2. (.1) If $\mu < \alpha$, then Or_{μ} is a formula of $L_{\alpha\omega}$. (.2) If $\mathfrak{A} = \langle A, R \rangle$, is a linearly ordered system and $a \in A$, then $(\mathfrak{A}, \langle a \rangle) \models \operatorname{Or}_{\mu}$ if and only if the set of R-predecessors of a has order type μ . DEFINITION 5.3. $$\mathbf{W} = \{ \langle A, R \rangle : A \neq 0 \text{ and } R \text{ well-orders } A \}.$$ Finally we come to the main theorem. THEOREM 5.4. For every a, $\mathbf{W} \notin \mathbf{PC}_{\Delta}(L_{a\omega})$. Proof. Suppose that on the contrary that for some a: (*) $$\mathbf{W} \in \mathbf{PC}_{\Delta}(L_{\alpha \omega})$$. Let then Γ be the set of sentences of $L_{a\omega}$ which relatively characterize the notion of a well-ordering (i.e. such that **W** is the class of reducts of models of Γ). Suppose that in addition to the binary relation symbol <, the non-logical constants occurring in Γ are P_i , $i \in I$. It is clear that we may assume that $I \cap \omega = 0$. Next let $\pi = |\Gamma| \cup \alpha$ and $\beta = \pi^+$. Furthermore let Φ be the conjunction of the sentences in Γ . Then Φ is a sentence of $L_{a\omega}$. Next let P_1 , P_2 , P_3 , P_4 , P_5 be binary relation symbols, P_6 a ternary relation symbol, P_7 a unary relation symbol and k_0 , k_1 , ..., k_6 be individual constants (none occurring in Γ). Then we let Ψ be the conjunction of the following sentences of $L_{8\omega}$ (*): $$(1) \quad (\nabla xy) \left(P_1 xy \leftrightarrow x < y \land \neg (\mathbf{E}z) (x < z \land z < y) \right),$$ $$(2) \quad (\nabla x) \left(P_7 x \leftrightarrow k_0 < x \land (\nabla y) \left(y < x \to (\mathbf{E}z) \left(y < z \land z < x \right) \right) \right),$$ $$(3) \quad (\mathbf{E}x)(x=k_0 \wedge \mathbf{Or_0}),$$ $$(4) \quad (\mathbf{E}x)(x=k_1 \wedge \mathbf{Or}_{\boldsymbol{\omega}}),$$ (5) $$(\mathbf{E}x)(x=k_2\wedge \mathbf{Or}_{\pi})$$, (6) $$(\nabla xy)(x < k_3 \land y < k_3 \rightarrow [(\nabla z)(P_2xz \leftrightarrow P_2yz) \rightarrow x = y])$$, $$(7) \quad (\nabla xy) (P_2 xy \rightarrow y < k_2),$$ (8) $$(\nabla xy)(x < k_4 \land y < k_4 \rightarrow [(\nabla z)(P_3xz \leftrightarrow P_3yz) \rightarrow x = y]),$$ $$(9) \quad (\nabla xy) (P_3 xy \rightarrow y < k_3) ,$$ $$(10) \quad (\nabla xy)(x < k_5 \land y < k_5 \rightarrow [(\nabla z)(P_4xz \leftrightarrow P_4yz) \rightarrow x = y]),$$ (11) $$(\nabla xy)(P_4xy \rightarrow y < k_4)$$, $$(12) \quad (\nabla wxy)(x < w \land y < w \rightarrow [(\nabla z)(P_{\mathbf{6}}wxz \leftrightarrow P_{\mathbf{6}}wyz) \rightarrow x = y]),$$ $$(13) \quad (\nabla xyz)(P_5xy \wedge P_5xz \rightarrow y = z),$$ $$(14) \quad (\nabla x) \left(x < k_5 \lor x = k_5 \rightarrow (\mathbf{E}y) (P_5 x y) \right)$$ ^(*) The author is indebted to Hanf [3] for the use of these sentences. In [3] Hanf deals with another type of infinite languages, namely certain infinitary languages in which the notion of a well-ordering can be expressed by a sentence of the language. For those languages Hanf shows that the Hanf-number must be exceedingly large. Reading [3], the author realized that (because the Hanf-numbers for $L_{\alpha\omega}$ are relatively small) the arguments used by Hanf could be used (in the reverse direction) to show that well-orderings could not be characterized (nor relatively characterized) in the languages $L_{\alpha\omega}$. - (15) $(\nabla xy)(P_5xy \to x < k_5 \lor x = k_5)$, - (16) $P_5k_0k_1 \wedge P_5k_5k_6$, - $(17) \quad (\nabla uvwx) \left(P_1 uv \wedge P_5 uw \wedge P_5 vx \rightarrow (\nabla yz) (P_6 xyz \rightarrow z < w) \right),$ - (18) $(\nabla vw)(P_7v \wedge P_5vw \rightarrow (\nabla x)[x < w \rightarrow (Eyz)(y < v \wedge P_5yz \wedge x < z)])$, - (19) $(\nabla x)(x < k_6 \lor x = k_6)$. Next let $\varkappa'' = |2^{\pi}|$, $\varkappa' = |2^{\varkappa'}|$ and $\varkappa = |2^{\varkappa'}|$. Note that from Theorem 4.2 we obtain that: $$(+)$$ $H(L_{eta\omega})\leqslant \exists_{lpha}\,.$ Hence to show that the assumption (*) leads to a contradiction it suffices to show (because $\Phi \wedge \Psi$ is a sentence of $L_{\beta\omega}$) that: - (I) The cardinality of the models of $\Phi \wedge \Psi$ are strictly smaller than \beth_{\varkappa^+} . - (II) There exists a model of $\Phi \wedge \Psi$ of cardinality \beth_{κ} . Concerning (I). Suppose that $\mathfrak A$ is a model of $\Phi \wedge \Psi$. Then because $\mathfrak A$ is then a model of Φ we may assume that for some ordinal ϱ , $\mathfrak A$ is of the form: $$\mathfrak{A} = \langle \varrho, \epsilon_{\varrho}, R_1, ..., R_7, \xi_0, ..., \xi_6, R_i \rangle_{i \in I}.$$ Because of the sentences (3)-(5) we immediately obtain: $$\xi_0=0, \quad \xi_1=\omega, \quad \xi_2=\pi.$$ From (19) we deduce that $\xi_6 + 1 = \varrho$. If we let $$f = \{\langle \mu, X \rangle : \mu < \xi_3 \text{ and } X = \{\zeta : \langle \mu, \zeta \rangle \in R_2\} \},$$ then from (6) and (7) we conclude that f is a (1-1) function whose domain is ζ_3 and whose range is included in the power set of π (= ξ_2). Thus $|\xi_3| \leq |2^{\pi}| = \kappa''$. Similarly using (8)-(11) we obtain that $|\xi_4| \leq \kappa'$ and that $|\xi_5| \leq \kappa$. That is we have shown that: $$\xi_5 < \kappa^+.$$ From sentences (1) and (2) we obtain that $\langle \mu, \delta \rangle \in R_1$ if and only if $\mu+1=\delta$ and that $\mu \in R_7$ if and only if μ is a non-zero limit ordinal. Next let for each μ ($\mu \in \rho$): $$g_{\mu} = \{ \langle \delta, X \rangle \colon \delta < \mu \text{ and } X = \{ \zeta \colon \langle \mu, \delta, \zeta \rangle \in R_6 \} \}.$$ Then from sentence (12) we obtain that for each μ , g_{μ} is a (1-1) function whose domain is μ . Sentences (13)-(16) inform us that R_5 is a function whose domain is ξ_5+1 and such that: (ii) $$R_5(0) = \omega \quad \text{and} \quad R_5(\xi_5) = \xi_6.$$ Sentences (17) and (18) are then use to prove by induction on μ ($\mu \leq \xi_s$) that: $$|R_5(\mu)| \leqslant \exists_{\mu} .$$ Combining (i), (ii) and (iii) we then obtain that $$|\rho| = |R_5(\xi_5)| \leqslant \Im_{\xi_5} < \Im_{\mathbf{x}^+}.$$ Thus (I) is shown. Concerning (II). Let $\delta = \neg_{\mathbf{x}} + 1$. Since Φ relatively characterizes the well-orderings, there must exist relations S_{i} , $i \in I$ such that $\langle \delta, \epsilon_{\delta}, S_{i} \rangle_{i \in I}$ is a model of Φ . Let then: $$\begin{split} \eta_0 &= 0, \ \eta_1 = \omega, \ \eta_2 = \pi, \ \eta_3 = |2^\pi|, \ \eta_4 = |2^{\eta_3}|, \ \eta_5 = |2^{\eta_4}|, \ \eta_6 + 1 = \delta \,. \\ S_1 &= \{ \langle \mu, \mu + 1 \rangle \colon \ \mu \in \delta \} \,, \\ S_5 &= \{ \langle \mu, \epsilon_\mu \rangle \colon \ \mu \leqslant \eta_5 \} \,, \\ S_7 &= \{ \mu \colon \ 0 < \mu < \delta \ \text{and} \ \ \mu \ \text{is a limit ordinal} \} \,. \end{split}$$ Since for each $\mu \leqslant \eta_5$ there exists a (1-1) function f_{μ} mapping the power set of Ξ_{μ} onto $\Xi_{\mu+1}$ relations S_2 , S_3 , S_4 and S_6 can then be found so that $$\langle \delta, \epsilon_{\delta}, S_1, ..., S_7, \eta_0, ..., \eta_6, S_i \rangle_{i \in I}$$ is a model of $\Phi \wedge \Psi$ of cardinality \beth . #### References - [1] H. Bachmann, Transfinite Zahlen, Berlin 1955. - [2] E. Engeler, Unendliche Formeln in der Modelltheorie, Zeits. für math. Logik und Grund. der Math. 7 (1961), pp. 154-160. - [3] W. P. Hanf, Some fundamental problems concerning languages with infinitely long expressions, Doctoral Dissertation, University of California, Berkeley, California. - [4] C. Karp, Languages with expressions of infinite length, Studies in Logic, Amsterdam 1964. - [5] M. Morley, Omitting classes of elements, article in The Theory of Models, Studies in Logic. Amsterdam 1966. - [6] D. Scott, Logic with denumerably long formulas and finite trings of quantifiers, article in The Theory of Models, Studies in Logic, Amsterdam 1966. Recu par la Rédaction le 24.4.1965