12 W. W. Comfort and 8. Negrepontis

observation is valid: X 4s G4-dense in X if and only if X meets each non-
void closed Gy subset of x.

5.1. PROPOSITION. If X is Gy-dense in X and Y is Gy-dense in ¥,
then X xY is Qy-dense in ¥x¥.

5.2. TamorEM. If X XY 48 O*- embcdded in vX xvY, then X XY s
C-embedded in vX XvY.

Proof. According to 1.18 of [3] it suffices to show that each non-
void closed @, subset Z of vX XY which misses X x Y satisfies a certain
condition. Since X and ¥ are G4-dense in vX and »Y respectively, there
are by 5.1 no such sets Z.

5.3. TEEOREM. Lei card Y be nonmeasurable and suppose that either

(a) Y is compact;

or

(b) the projection from X xX ¥ to X is closed;
or

(e) XxY is C*-embedded in X X Y.

Then v(X X Y) =vX xX0Y.

Proof. It suffices to deduce the desired conclusion from hypo-
thesis (c), the implication (a)=-(b) being well-known and the impli-
cation (b)=(c) being given by 3.1. According to 5.2 it iy enough to show
that each bounded continuous real-valued function on X XY extends
continuously to »X XvY. By (¢) we can extend to X X Y, and 2.8 takes
us from there to the space »X x ¥, which contains vX XvY.
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On defining well-orderings
by
E. G. K. Lopez-Escobar (Cambridge, Mass.)

0. Introduction. Let L,, be the extension of the finitary first-
order predicate logic obtained by allowing conjunctions and disjunctions
of u-sequences of formulas (u < a). The purpose of this note is to show
that even allowing arbitrary many non-logical constants the notion of a well-
ordered relation cannot be expressed by a set of sentences of the infinitary
first-order language Ly, (i.e. that for all a, W ¢ PCy(L,,) where W is the
class of all non-empty well-orderings) (°).

The method used can be summarized as follows: First we determine
an upper bound for the Hanf-number of Ly, (*). Then we show that if
for some a, W ¢PC,(L,,), then there would exist cardinals x, i, and
a sentence @ of L,, such that (i) @ does not have arbitrarily large
models, and (i) @ has a model of cardinality 4 and 2 is equal to the
upper bound previously obtained for the Hanf-number of L.

I. The language L,,. It is convenient for our purposes to define
the language Ly, in a slightly different (but clearly equivalent) way to
that suggested in the introduction.

DermNiTION 1.1 (%).

(1) T is a pseudo-a-tree if and only if 7' is a set of finite sequences
of ordinals smaller than « such that (i) 0 e T, (i) if <ug, ..y tu—z; pn—1> €T,
then <upy ooy pin—2p € I and for all 6 < fipe1, {Hoy-ory tin—2, 6> € T, and
(iii) if seX, then [{u: s <udeT}H < a.

(®) This answers a problem raised by Professor Mostowski, namely, whether there
existed an « such that W e PCa(Lyp)-

(1) See Definition 4.1.

(*) Standard set-theoretical terminology will be used. In particular an ordinal
iy the set of smaller ordinals (small greek letters: u, 6, ¢, £ shall denote ordinals;
w is the smallest infinite ordinal). u+ & is the ordinal sum of x and 6. A cardinal is
an initial ordinal and if X is a set then |X| is the eardinal of X. A function whose
domain is an ordinal will also be called a sequence. If f and g are sequences, then f7g
is the concatenation of 7 and g (i.e. the sequence h such if £, { are the domains of f
and g respectively then h = {(u,f(u): we&} v {(E+n,g(w): & L},
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(:2) It T is a pseudo-a-tree, s ¢ T, and there does not exist an ordinal
u such that s~<u) e T, then s is an uppermost element of T'.

(.3) If T is a pseudo-a-tree, s ¢ 7 and 8’ = 8 uy e T, then s is an
immediate predecessor of s’ (in T).

(4) If T is a pseudo-a-tree, then B is a branch of T just in case
that B is & maximal subset of T such that no two (different) elements
in B have the same immediate predecessor in 7.

(.5) T is an a-tree just in case that 7' is a pseudo-a-tree in which
every branch is finite.

The following lemma is immediate (because an o-tree is well-
founded).

Lemua 1.2. If T is an a-iree, then to each element s ¢ T' can be asso-
ciated an ordinal dr(s), called the depth of s in T, such that

(i) if s is an uppermost element of T, then dp(s) =0,

(i) if s 48 mot an uppermost element of Ty and s~ <ud € T' if and only
if u< 8, then dr(s) = \J {do(s™Cu)+1: u < 8}

DeFINITION 1.3. @ is a formula of Ly, (P e L,,) just in case that
there exists an a-tree T and a function f whose domain is 7' and
gueh that

(i) 71(0) =2,

(ii) if s is an uppermost element of 7, then f(s) is an atomic for-
mula (of the usual finitary first-order predicate logic),

(iii) if s is not an uppermost element of T, s~ (ude T if and only if
pu<é (6>0), and for each u <9, f(s” (ud) = ¥, then either (a) f(s)
= V<®y ey Puy o ducs OF (D) F(8) = APy ey Py -oDu<s O (€) 6 =1
and f(s) = 7%, or (d) 6 =1 and for some individual variable x either
f(8) = (Bx) ¥, or f(s) = (Vo) ¥, (*).

It is straightforward to verify that to each formula @ eL,, there
corresponds a unique a-tree T and a function f satisfying the conditions
stated in Definition 1.3, and hence <7, f> will be called the formation
of @. Furthermore in order to make the formulas easier to read we

shall let
\//A<d Tp = V <gfy>u<d and /\y<d ]I]y = /\<g:/y>n<d .

The set of subformulas of a formula D e L,,, SF(P) can then simply
be defined as the range of f where <7, f> is the formation of @. The set
of free variables of a formula @, FV (D), is defined in the usual way, and
a sentence is a formula without free variables. An important, yet trivial,
result is that if D is a sentence of L,,, then for every subformula ¥ of &,

(®) V<¥udu<s is the disjunction of the sequence (¥udu<s; A (Wudu<s is the con-
junction of the sequence {Wudu<s.

icm
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FV(¥) is finite. By a formula in negation normal form, n.n.f., we under-
stand a formula @ of L,, such that ¥ is an atomic formula whenever
—Y¥ is a subformula of @.

For the remaining part of this paper we shall make the

ASSUMPTION I. « is an infinite regular cardinal (%).

A simple consequence of the assumption is that for every formula
@ of Ly, ISF(P)| < a.

We assume that if is known under what conditions a relational system
A = (4, Ridier and a sequence s of elements from 4 satisfy a formula
& of L,,; we shall express this condition by (%, s)|=9 (5). If for every
sequence s, (U, s)|=P, then A is a model of @. If A = (4, Ry, Ridier and
B = (4, Ry, then B 45 the reduct of A. If K is a class of (similar) re-
lational systems then (i) K ¢ EC(Ly,) (K e ECy(Lg,)) just in case that
X is the class of all models of a sentence of L, (a set of sentences of
Lgo), and (ii) KePC(L,,) (K e PCy(Ly,,)) if and only if there exists
a class M of relational systems such that M e EC(Lg,) (M e EC4(Lgy))
and K is the class of reducts of M.

Finally it can easily be checked that (as a consequence of De Mor-
gan’s law) every formula of L, is semantically equivalent to a formula
of Ly, in n.nf.

II. a-relational systems.

DEFINITION 2.1. A relational system U = (4, Ry, Ry, t¢, Ry,
is an a-relational system just in case that

(i) for all £ <o, £c4,
(i) Ro= (& E<a}CA4,
(iii) R, = {Kpyerr w<o, e<aand p<el

(iv) for each & < a, a;=£ (considered as a distinguished element
of A, not as a unary relation).

e Ye<a

DrrINITION 2.2. By an o-language we understand a finitary first-
order language such that its basic symbols include

() a unary relation symbol 4,

(b) a binary relation symbol <3,

(¢) for each & < a an individual constant symbol Z;.
We shall need to make use of the following result.

(f) A cardinal o is regular just in case there does not exist a function f whose
domain is an ordinal & e @, whose range is included in' a and such that & = Uues f(4)
(¢f. Bachmann [17).

(5) See, for example, Karp [4].
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THEOREM 2.3 (Helling/Morley). If a set I of a-sentences, |7 < a
has an a-model (i.e. a model which is isomorphic o an a-relational
system) of cardinality 2ga+ then T has a-models of arbitrary large car-
dimalities (8).

M. Helling has shown that the above theorem, for the case o= w,
is an immediate consequence of a result of Morley [5] (in the case a = w,
S@e is replaced by 3.,). Sinee Helling’s result has not been published,
we give, with Felling’s permission, the proof of Theorem 2.3 which is
obtained by (essentially) replacing o by a in his proof.

Proof of Theorem 2.3. Let 7" be the set of a-sentences obtained
by adding to 7' all the sentences of the form (7):

(i) (Vay)z <y—Az A Ay),

(id) T, <o for all u<é < a,

(i) (Vay)lo<y—>=(@=y) A =(H<a),
(iv) (Vay)[doe A dy—-s<yve=yVvy<<a],
(v) (Vays) o<y ny <z—>z<]2),

(vi) =By oy <0 A 3<Fup1) p<a,

(vil) (Vo) (Ao~ =0V ky<2),

(vili) (Vo) (Ao -2 <kg Vo =1y .

Then let £ be the following set of a-formulas:
C={don —=(@="FK) £<a}.

Assume then that 7' has an a-model of cardinality at least (o
and let & be such an a-model. Hence U is a model of 7" in which no
element satisfies all the formulas in Z. Hence by Morley’s result [5],
T has arbitrary large models B in which no element of B satisfies all
the formulas in Z. But any model of 7" in which no element satisfies
all the formulas in X must be an a-model of 7'

III. Reduction of L,, to an a-language. We shall show in this
section that each sentence @ of L,, can be replaced by a set TR(P) of
(finitary) a-sentences such that @ has a model of cardinality » (x> a)
if and only if TR(®) has an «-model of cardinality » The gist of the
method is that a formula @ = \/,<s¥,, such that FV (D) C {z,, ..., o}

(%) 2, iz the u-th Beth number and is defined by 2, = uUE<,,|Z:E|. Also if = is
a cardinal then s+ is the least cardinal strictly greater than =.
() A, vV, = and <> are defined as usual in terms of —, A and V.
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is in the sense mentioned above, equivalent to the following set of
formulas

(1) (Vg «vvs Ba) (Phyy,y vy 8= Py),
(ii) (By)y <ks 1 Py, .y ) (5) .

Imyva 3.1. If @ is a sentence of Ly, in nntf. and (T, f> is the for-
mation of @, then there ewists a function Try whose domain is T, whose
ramge consists of sequences (of length <<a) of formulas of an a-language
and such that: ’

(1) 4f f(s) is either an atomic or negation of an atomic formula, then
Trofs) = <f(s)7

(.2) if F(8) = Cpucsf(s™¢m)) (where C is either \/ or A), Tre(s™ {ud)
= {Fe<s,s 0= Un<sbyu, FV({(5) = @y ey Bua} (0 < ) then Try(s) is
a well-ordering of the set consisting of the following formulas:

n<é,

(i) (VZgy vovy Bp—s) (Pskyks®y, <oy &ny > Pe) where p <6, &<y,

- (if) (VByy vy Bp—1) (Pskuke®yy oy Bpa P8 and p <9, 6, <E< 0,

(Vyz) (y <ks A 2k, >Psyfey, ..., Tn—y) in the case when C= A,

(itib) (By)(y<ks A (V2)(2bty—>Psyy, ..., &n—1)) in the case when C=\ .

(.3) if F(s) = (Qme)f(sTK0>) (where Q is either V of B), Try(s™{0))
= (Fedecsy BV (1(s)7K00) = {@1; ooy Bps}y then Trels) is a well-ordering
of the set consisting of the following formulas:

{i) (Vg <oy Zn—1) (Pskeoy ey Tny > Fy) where & <6.
(i.a) (Vo) (y <lks—>Psy@y, ..., Tu_z) in the case Q =V .
(b)) (Bag) (V) (y <bks—>PsYy, ..., Tn—y) i the case @ =E.

Proof. Usual definition by induction on a well-founded relation.

From Lemma . 3.1 we then obtain (using a proof by induction on
the depth of s in 7).

LEMMA . 3.2. If @ is @ sentence of Ly, in nnt. (T, f is the formation
of @, s e T, {(s) = W, I'is the range of Tre(s), where Trq is an in Lemma 3.1,
then -

(1) given any relation system W = {4, Riyier ond a sequence b of
elements of A such that (U, h) =" then there exists as a-relational system
B of the form B = (A v (a+1), (a+1), cat1s & Nsy Ridecaserier Such that
for all Ael', (B,h)|=4,

(%) And correspondingly for A. This method of replacing infinite formulas by
finite formulas has heen used by E. Eng{efl,g_z:gx’x&[?,].
Fundamenta Mathematicae, T. LIX 2
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(.2) if h is a sequence of elements of the non-empty set A, (A (a+1)
=0) B is an a-relational system of the form B = {4 v (a+1), (a+1),
sty & Ns, Bidecaser,ier nd for all AeT', (B,h)=4, then (A, h)=¥
where W = (A, Bi)ier-

DrrFNITION 3.3. If @ is a sentence of Ly in nnd., <T,f) is the
formation of @, Tre is as in Lemma 3.1, then TR(P) is the range of
Tre (0).

Using Lemma 3.2 we then obtain:

TaroREM 3.4. If @ is a sentence of Lgw n nani., = is a cardinel
greater than or equal to a, then & has a model of cardinality x if and only
if TR(®) has an a-model of cardinality w.

IV. Hanf-numbers of L.y.

DerrNioN 4.1. The Hanf-number of Loy H{Lao) is the least
cardinal » such that for every sentence @ of Lgy, if @ has a model of
cardinality at least », then @ has arbitrary large models.

THEOREM 4.2.

H(Lyo) < e+ -

Proof. Suppose that @ is a sentence of Lg, which has a model of
cardinality » >> ge+. Hence if @* is a sentence of Ly in nnf. which
is semantically equivalent to @, then ©* has a model of cardinality .
Thus by Theorem 3.4 TR(9*) has an a-model of cardinality ». Thus
by Theorem 2.3 TR(P*) has arbitrary large a-models. Hence by Theo-
rem 3.4 @* (and thus also @) has arbitrary large models.

V. Non-definability of well-orderings.
DEFINITION 5.1, Or, is the formula defined by the recursion

Or, = [Ae<u(By) [y < @ A (Bo) (@ =y AOry)]
[(V9) ly < 2~V s<u(Ea) (@ =y A Org))] -

The following lemma can easily be proved by induction on w (cf. [6]).

LeMMA 5.2

(1) If u<a, then Or, is a formuls of Lgg.

(2) If W=<A,R>, 18 a linearly ordered system and a €A, then
(W, (a)) |=Or, if and only if the set of R- predecessors of a has order ype u.

DEFINITION 5.3.

W ={¢4,R): A #0 and R well-orders 4}.
Finally we come to the main theorem.
THEOREM 5.4. For every a, W ¢ PCy(Lgy)-
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Proof. Suppose that on the contrary that for some a:
(*) W €PCA(Law) .

Let then I’ be the set of sentences of Ly, which relatively characterize
the notion of a well-ordering (i.e. such that W is the class of reducts
of models of I'). Suppose that in addition to the binary relation sym-
bol <, the non-logical constants occurring in I' are Py, ¢ e I. It is clear
that we may assume that I ~ o = 0. Next let % = |I'| v a and f =zt
Furthermore let @ be the conjunction of the sentences in I. Then & is
a sentence of Lg,. '

Next let Py, P,, P;, P, P; be binary relation symbols, P a ternary
relation symbol, P, a unary relation symbol and %, %, ..., ks be indi-
vidual constants (nome occurring in I'). Then we let ¥ be the con-
junction of the following sentences of Lgy (°):

1) (Vay)(Proye—z<y A 7(E)@<zA2<y),

(2) (Vo) [Prw ko <o A (V) [y < o—>(Be)(y <2z A 2<4a))),

(3) (Ba)(z =k, A Orp),

(4) (Ba)(w =k, A Ory),

(5)  (Ba)(

(6) (Vay)

(1) (Vay)

8) (Vay)
(Vay)
(

=

ﬁ) = 7‘72 A Orn) 2

@r
(2 < T A y < B—>L(V2)(Pymz o Py2)—z = 4]} ,

<4

(Pazy—y < k),
(@ <Fy Ay < Ty—>[(V2) (Pywe > Pyyz) —a = y])
(

4

9 zy) (Pyzy —y < Ks) ,
(10)  (Vay) (o < ks A ¥ < ks—[(V2) (Pywz < Pyyz) >a = 9],
(WD) (Vaoy) (Pewy—y <Fi),
12) (Vway) (o <w Ay < w->[(V2)(Pewsz > Pywyz) >z =y},
(13) (Vayz)(Psay A Psaz—~>y = 2),
(14) (Va)(z <5V = = ks—(By) (Psay)) ,

(*) The author is indebted to Hanf [3] for the use of these sentences. In [3] Hanf
deals with another type of infinite languages, namely certain infinitary languages in
which the notion of a well-ordering can be expressed by a sentence of the language.
For those languages Hanf shows that the Hanf-number must be exceedingly large.
Reading [3], the author realized that (because the Hanf-numbers for L,, are relatively

small) the arguments nsed by Hanf could be used (in the reverse direction) to show
that well-orderings could not be characterized (mor relatively characterized) in the

languages L.
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15} (Vo) (Psoy—a < K5 V @ =ks)

(16)  Pskoky A Psksks,

(A7) (Vuvwa) (Pyuv A Pguw A Pyoo—(Vye) (Peayz—2 <w)),

(18)  (Vow)(Pyv A Psvw—(Va)[z < w—(By2) (y <o A Psyz A 2 <2)]),
(19) (Va)(@<TyV o =Fy).

Next let # = |27, « = 2| and « = |2¥]. Note that from Theo-
rem 4.2 we obtain that:
() H(Lpo) € 2%
Hence to show that the assumption (*) leads to a contradiction it suf-
fices to show (because @ A ¥ is a sentence of Ig,) that:
(48] The cardinality of the models of @ A ¥ are stricily smaller than 2.+,
(II) There emists a model of ® A ¥ of cardinality ..

Concerning (I). Suppose that U is a model of @ A ¥. Then be-
canse 9 is then & model of ® we may assume that for some ordinal ¢,
A is of the form:

W = {0, €3 Byy ey Ry, &gy ves by Bidier -
Because of the sentences (3)-(5) we immediately obtain:
& =0, =0, &=mn.

From (19) we deduce that &1 = p.
If we let

f={<u Xy p< & and X = {&: {py O e Ba},

then from (6) and (7) we conclude that j is a (1-1) function whose do-

main is &, and whose range is included in the power set of = (= &).
Thus |&| < |27] = »”. Similarly using (8)-(11) we obtain that [&] < #'
and that || < x. That is we have shown that:

1) £y < wt.

From sentences (1) and (2) we obtain that (u,d) ¢ R, if and ounly if
u+1 =0 and that e R, if and only if x is a non-zero limit ordinal.
Next let for each u (uep):

gﬂ={(6,X>: d<puand X = {&: <p, b, C>€-Rn}} .

Then from sentence (12) we obtain that for each g, g, is a (1-1) function
whose domain is p.
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Sentences (13)-(16) inform us that Ry is a function whose domain
is &+1 and such that:
(if) By(0) =0 and Ry&) = &.

Sentences (17) and (18) are then use to prove by induction on
p (g < &) that:
(iid) [Bs(p)] <324
Combining (i), (ii) and (iii) we then obtain that

. lo| = |Rs(&5)] <2 < 2t -
Thus (I) is shown.

Concerning (II). Let 6 = o,41. Since @ relatively characterizes

the well-orderings, there must exist relations 8;, ¢eI such that
{8, €5y St>ser is a model of @. Let then:

=0, m =0, gp=m, 7= |27, n, =27}, ns=|2"], ne+1 =34.
8y = {Kpy u+1): pedy,
8 = {<py ewdt p <},
S; ={u: 0 <pu<6 and p is a limit ordinal}.

Since for each u < #; there exists a (1-1) function f, mapping the
power set of =, onto 2,4, relations 8, S;, S, and S; ean then be found
so that

{0, €5y B1,y ey Sz, Ny -ey Moy SiDier
is a model of @ A ¥ of cardinality 2,.
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