The Brown-McCoy radical in categories
by

A. Sulinski (Warszawa)

Contents
Introduction
§ 1. Fundamental concepts
§ 2. Direct products and subdirect embeddings
§ 3. General theory of radicals
§ 4. Brown-McCoy radical
§ 5. Subdirect products of simple objects

Introduction. The purpose of this paper is to present an expo-
sition of the theory of the Brown-McCoy radical in categories. This
exposition is based on [5] and [9]. In § 1 we shortly recall the funda-
mental concepts which we shall need later. For details, see [5] and [9].
In § 2 we introduce the subdirect embedding of an object into a direct
product of objects, and in § 3 we present an exposition of the general
theory of radicals (especially upper radicals) based on [4]. In §4 we
construct the Brown-McCoy radical as the upper radical defined by
some class of simple objects. For the radical thus defined we prove facts
analogous to those which are known in the category of rings. Finally
in § 5 we consider the subdirect products of semi-simple objects.

§ 1. Fundamental concepts., Let ¥ be a class of elements. The
elements of J will be called objects and will be denoted by small Latin
letters. Let us assume that to each ordered pair (a, b) of objects of ¥
corresponds a set H(a, b). The elements of the set H(a, b) will be called
maps of the object a into the object & and will be denoted by small
Greek letters. For convenience, instead of a € H(a,b) we shall write
a: a->b. The class X is said to be a category if the following conditions
are satisfied

(C) If ai a—b and B: b—e, then there is a uniquely defined map
af: a—c which is called the product of the maps a and B;

(Co) If a: a—>b, B: b—ec, y: ¢c—>d then
(ap)y = a(By);
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(Cs) For each object a of ¥ there is such a map ot a—~a that for any
a: b—>a and B: a—>¢ we have ate = a, &af = B.

The map s, will be called the identity map of the object a. It is easy
0 see that & is uniquely defined for a given object a.

In this paper we shall consider categories satisfying some additional
requirements, which will be introduced successively after the notions
necessary to formulate them have been explained.

Two objects & and b are said to be equivalent if there are such maps
E: a—sb and £ b-a that & = & and & = &. This fact will be
denoted by a~b (&, 7).

A map u: a—b is said to be a monomorphism if for any maps
a: ¢—a, P ¢c—>a from op = Pu it follows that == B I py: a—b,
pot b—>¢ are monomorphisms, then ups: ¢—¢ ig also a monomorphism.
Moreover, if x is a monomorphism and g = od, then o is & nmonomor-
phism.

Let a be an objeet of Jo. Let us consider all pairs of the form (b, u),
where u: b—a is a monomorphism. We shall say that (b, u) < (0", 4')
if there is such a p: b—b’ that g’ = u. Two pairs (b, u) and (b, u') are
said to be equivalent if (b, u) < (b, w') and (b', p') < (b, p). The equiva-
lence classes of the relation thus defined will be called the subobjects
of the object a. For convenience the equivalence clags determined by
the pair (b, u) will also be denoted by (b, u). We ghall say that o sub-
object (by, w) s contained in a subobject (by, ) if for the pairs (by, py),
(bay po) We have (b1, p) < (B o)

An object 0 of 3 is said to be a zero object if for any object @ of &
each of the sets H(a, 0) and H(0, a) contains only one map. Two zero
objects of X are always equivalent.

We assume that

(C) X possesses zero objects.

We shall say that % is a category with zero maps if for every ordered
pair ob objects &, b there is such a map wa: a-+b that for any a: ¢->a,
B: b-+d we have awey = wgp and wwf = wea. If o category 1 possesses
zero objects, then X is a category with zero maps. Moreover, an object
a of X is a zero object if and only if &, = wue. If there is mo doubt be-
tween which objects the zero map operates, then that zero map will be
shortly denoted by w.

A subobject (%, u) of an object @ of I is said to be a Jernel of the
map a: a—b if: (1) pa = w; (2) for each 8: ¢—a satisfying the condition
da = w there is such &': ¢—~k that &'u=4. If (k,u) is a kernel of
a: a-+D, then the subobject (%, x) of ¢ will be called the ideal of a. Then
we shall write (k, u) = kera.

‘We assume that
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(Cs) Bwery map has a kernel.

A map 7: a—Db with the kernel (k, p) is said to be an epimorphism ()
if for each y: a—c satisfying the condition uy = o there is a unique
y't b—>c¢ such that 7y’ =yp. I 71 a—b is an epimorphism, then from
za = 7§ it follows that a = § for any a: b—g¢, B: b—sc. I 1, ¢ are epi-
morphisms and 1 = go then o is also an epimorphisr. Every equivalence
map £ a—>b—ie. such a map that a~b(§, &) —is simultaneously
a monomorphism and an epimorphism. If a map £: a—b is simultaneously
5 monomorphism and an epimorphism, then a~d(¢, &7Y). The subobject
(a, &) of @ is an ideal of a. A map a: a—b is a zero map if and only if
kera = (@, ). If for a given object a there is an object b such that
@ap: @b is a monomorphism (or wpa: b—a an epimorphism), then a is
zero object.

Tf a map «: a—b can be represented in the form a = tv, where
7t a—1l is an epimorphism and »: I-»b is a monomorphism, then the
triplet (z,1,%) will be called the image of the map a. Then of course
kera = ker 7.

We assume that

(Ce) Buvery map has an image.

A map u: a—b is a monomorphism if and only if kerpy = (0, o).
I (z,1,v) is the image of a map a: a—b, then a is an epimorphism if
and only if (I,%) = (b, &)- .

Let (k, x) be a subobject of an object a and let a: a—b be an epi-
morphism. If (z,7,#) is the image of the map ua: %&b, then the sub-
object (1, v) of b will be called the image of (%, w) by the epimorphism a.

(C,) An image of am ideal by an epimorphism. is always an ideal.

Let a;, i eI, be a family of objects of the category K. An object
g of % is said to be a direct product of the objects ai, i eI, if there are
such maps m: g—ai, %< I, (called the projections of g onto a@;) that for
each object h of ¥ and for any system of maps e;: h—ai, i eI, there
is & unique map y: h—g such that ym = a for all ¢ e I. This direct prod-
uet g [will be denoted by g= ”I a; (). The projections m; are epimor-

i€
phisms. Moreover, for each 7 eI there is a uniquely defined monomor-
phism g4 a;—g such that eim = & and gy = for ¢ == §. Therefore
the direct product g will sometimes be denoted by g = HI a; (73 01) OFr,
1€

(*) A more suitable term would be a normal epimorphism as used in [5], where
epimorphism means a notion dual to that of monomorphism. Every normal epimor-
phism is of course an epimorphism. The converse statement is not true (for a cor-
responding example, see [5]), although in the category of groups or of rings every
epimorphism is normal. In this paper we shall consider only normal epimorphisms,
which for convenience will shortly be called epimorphisms.


GUEST


26 A, Sulineki

in the case of two summands, by ¢ = ay X @ (%1, 7; 01, ¢:)- In this case,
(ay, o) = kerm, and (g, g2) = kerm,. Moreover, if I~g (&, &) then
1= ay X a5 (€my, ém,).

It is easy to formulate a definition dual to that of the direct prod-
uct. This leads to the concept of free product.

We assume that

(Cq) Evéry family of objects has o direct product and a free product.
(Cy) The class of all subobjects of amy object is a set.

Under these assumptions every family (ki, us), ¢ €I, of subobjects
of an object @ of X has a union (k, ), i.e. (k, u) = (ki, w) for ¢ eI and
each subobject (I, ) of a containing all (%, us) is contained in (%, u).
This means that the set L, of all subobject of a is a complete lattice.

We assume that

(Cy) For each object a of X the set of all ideals of a is a complete sub-
lattice of the lattice L.

Let a: a—b be an epimorphism and let (m, y) be an ideal of b.
If (p,0) is an ideal of a such that (p, ¢) > (k, u) = kera, and (m, g)
is the image of (p, o) by «, then the ideal (p, o) will be called the com-
plete counterimage of (m, x) by a. We shall need the following facts
proved in [9].

THEOREM 1.1. Let a: a—b be an epimorphism and let (m, ) be an

ideal of b. Then there emists a unique (up to an equivalence) complete
counterimage of (m,y) by a.

TEEOREM 1.2. Let (ky, py), (kay pz) be two ideals of am object a, let
a2 a.a—>b be such an epimorphism that (ky, ) = kerey, and let (m, y) be
the image of (ky, p,) by ay. Then the umion (ky, ;) © (kyy py) 45 the com-
plete counterimage of (m, x) by «.

] TEEOREM 1.3. If a: a—b, B: b—c are epimorphisms, then af: a—c¢
s also an epimorphism.
TEEOREM 1.4. Let a: a—b be an epimorphism and let (may 24)

i=1,2, be t'wo_ ideals of b. If (my, 1) < (Mg, z5) then (py, @) < (Pey 00)
where (pi, g1), © =1,2, is the complete counterimage of (mi, i) by a.

’
?

§ 2. Direct products and subdirect embeddings.

]-?ROPOSIT]EON 2.1. Let (kiy pa), i € I, be a family of ideals of an object a.
Consider the direct product g = ]l s (), where ai: a—~»aq qre epimorphisms

. 1€
such that (ki, us) = keros. If y: a—g is a map such that yoy = a; for 4 eI,
zzhem the ‘ideal (k, u) = kexy is the intersection of all (Fozy pa)y 0 € I, 6. (K, p)
28 contained in all (ki, pi) and for any subobject (1, 8) of a contained in all
(e, i) we have (1, 8) < (k, ). '
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Proof. For each ieI there is such a us: k-—k¢ that mip: = p since
uas = pym = omg = o and (%, pi) = kera;. Therefore (¥, u) is contained
in all (ki, pe).

Suppose that (I, 8) is contained in all (k:, ps). Then for each iel
there is such 8;: 1—>%k: that dus = 0. Hence (dy)ms = 8(ym) = das = Sipacs
— dw = o. But on the other hand w=n; = w. Therefore by the uniqueness
of 8y: g we get dy = ». Hence there is such a z:1-%k that ap =96
since (&, u) = kery. Therefore (I, 8) < (%, u).

DEFINITION 2.2. An object a is said to be subdirectly embedded into
the direct product g = IT @i () it there is such a monomorphism

iel
y: a—>g that all maps a; = ymi: a—aq, I, are epimorphisms.

THEOREM 2.3. An object a can be subdirectly embedded into the direct

product g = [] ai () if and only if there is such a family of ideals (ks, pi),
iel

iel, of a that (ki pi) = kerai, where air a-—>a; are epimorphisms, and

(k, gy = (0, ), where (k, p) is the intersection of all (ks, ps), iel.

Proof. Let a be subdirectly embedded into ¢ by a monomorphism
y: a->g. It (ki, pe) = keryn; and (K, p) is the intersection of all (Bs, ps),
i eI, then, by Proposition 2.1, (k, u) = kery. Therefore By p) = (0, w)
since y is a monomorphism. Conversely, let (ki, us) be such a family
of ideals of a that (k¢, us) = kera;, where a;: a—a; are epimorphisms
and the intersection (%, u) = (0, ). Then there is such a y: a—g that
ymi = o; for i eI. Applying Proposition 2.1 again, we get kery = (k, u)
= (0, w). Therefore y is a monomorphism.

An object is said to .be subdirectly drreducible if the intersection of
all its non-zero ideals is a mnon-zero ideal. The author does not know
whether every object of a category satisfying (Cy)-(Cy) can be sub-
directly embedded into a direct product of subdirectly irreducible ob-
jects. Such a theorem for universal algebras was proved in [1].

PropoSITION 2.4 (Sulgeifer [10]). Let (by, #1), (bay vo) e two ideals of
an object a and let (F, p) = (by, »1) ~ (boy wy). If pat k—bi, po k—b, are
such monomorphisms that v, = pyvy = p, then (k, u) = kervya;, where
a: a—ay i8 the epimorphism with the kernel (by, »).

Proof. We have pyvo = v o = mo = o. Let g j—b, be such
a map that gv,0, = w. Let us denote by a,: a—day the epimorphism with
the kernel (b, »,) and let us consider the direct product g = a, X o7ty y Ta)s
Then there is such a y: a—g that ym = o, ym = ay. We have ¢@vym,
=guyo, = @ and @u.ym, = gr0, = go = o. But, on the other hand,
wjm, = © and wg7m = o. Hence by the uniqueness of gyyy: f—g we
have gv,y = o. Then there is such a ¢': f >k that ¢ u = gv, since, by
Proposition 2.1, (k, u) = kery. Therefore v, = ¢'p = @ e, Whence
@ = @', since v, is a monomorphism. :
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THEOREM 2.5. Let (ky, py); (Kay o) be such ideals of a that (ky, ) ~
A (g 1) = (0, ©) and (ky, ) v (B, o) = (8, &a). If aii a—>ai; ©=1,2,
is such am epimorphism that (ke, ui) = keray, then ay~k, (£, 5_1), y~T,
(n,77Y) and the object a is a direct product of ay and a,.

Proof. If we take g = a;X a, (m, m; 01, @), then there exists
a unique y: a->g such that ym = a for ¢ =1, 2. By Proposition 2.1,
kery = (ky, tn)  (%igy us) = (0, ©). Therefore y is a monomorphism.

The map gyoy: ky—ay is a monomorphism since by Proposition 2.4
keruya; = (0, ). We shall show that u, o is also an epimorphism. Indeed
by (Cg) We have pyo; = v, where r: k,—1 is an epimorphism and »: l-»a,,
a monomorphism. By (Cp), (I,») is an ideal of a,. But, on the other
hand, by Theorem 1.2, the ideal (%, py) v (K, pia) = (@, €a) 18 a complete
counterimage of (I,») by the epimorphism o,. Then (I, %) = (ay, &),
i.e. upoy is an epimorphism. Therefore we have proved that %, ~ay(§, &,
where £ = u,a;. In an analogous way one can prove that ky ~as (n, 77,
where 7 = uya,.

Let us consider the following maps: w: ky—a,, & ky—a,. There is
a unique map J: k,—¢ such that én, = o and émy = & But, on the other
hand, (pyy) 7 = a0y = © and (u,y)m = wea; = £ Moreover, (§o,) 7 = £w
= @ and (£g,)m = &z = & Therefore by the uniqueness of §: ky—g we
have &= pyy = £o;, L. (kg poy) < (4, 02)- Moreover, E7(pyy) = £ 0
= g, whence (ky, poy) > (a4, 0;). Therefore the subobjects (k,, pyy) and

(a1, 01) ave equivalent, hence (kg pyy) is an ideal of g since (ay, 0,) is an -

ideal of ¢g. In an analogous way one can prove that (&, uyy) is an ideal
of g equivalent to (a,, o). But, on the other hand, ¢;m = &,, whence
(ay, €ay) is the image of the ideal (a;, ¢;) by the epimorphism z;: g-+a,.
Applying Theorem 1.2 and taking into account that (as, gs) = kerm,
we have (a;, ;) v (a4, 05) = (g, &). Moreover,

(@, 9) 2 (Bey my) = (Gay @25 (@3 ¥) = (ks p2¥) = (ay, 01) -

By (Cy) the subobject (a,y) of g contains the ideal (ay, g;) v (¢, 0s)
= (g, &). Therefore aryg (y,y "), ie. & = a,X a, (ym,, y7,).

§ 3. General theory of radicals. Let S be a property of objects
of X. An object a possessing the property S will be called an S-object.
We assume that if ¢ is an S-object and a~b (£,£7"), then b is also an
8-object. An ideal (I, §) of an object a will be called an S-ideal if 1 is
an S-object. If there exists an S-ideal (ag, og) of an object a which
contains all S-ideals of @, then (ag, og) will be called the 8-radical of a.
An object containing no non-zero §-ideals will be called 8 -semisimple.

We shall call § a radical property if the following conditions hold:

(a) If a 45 an S-object and a: a—b is an epimorphism, then b 4s also
an S-object;
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(b) For each object a of X there is an S-radical (ag, cs) of a;

(e) If a: a—b is such an epimorphism that (ag, os) = kera, then the
object b is 8-semisimple. :

If § is a radieal property, then S-objects will be called S-radical
objects.

Let S and 8’ be two radical properties. We shall say that § <8’
if each §-radical object is also §'-radical.

Let M be a class of objects of K. We shall say that an object a
6f X satisfies condition (JG) if for each non-zero ideal (k, u) of a there
is such an epimorphism 0: k—k', 6 5 o, that &' e A A class M will
be called regular if each of its objects satisfies condition (AG). An object
o is said to be an U y,-object if there is no epimorphism 6: a—b, 6 5= o,
such that b e A

THEOREM 3.1. If G is a regular class, then Uy, is a radical property.

Proof. Let a be a Uy, -object and let 6: a—b, § = », be an epi-
morphism. If b is not a Uy, -object, then there is such an epimorphism
6': b—c¢, 0’ # w, that ¢ e M. Then by Theorem 1.3 the map 66: a—c,
A0’ #+ o is an epimorphism, which is impossible since & is a Uy -object.
Thus condition (a) is satisfied.

Now let @ be an object of X. By (C;) and (C) there exists a union
(av, ou) of all Uy, -ideals of a. If (av, ov)= (0, w), then the theorem
is proved. Suppose that (av, ov) # (0, ®). We shall show that (av, ov)
is a Uy,-ideal of a. Indeed, let us suppose that there is such an epimor-
phism 6: ag—>by 03 o, that bedt. If (%, u) = kerf, then there is
a Uy,-ideal (I, 8) of o which is not contained in the subobject (%, uov)
of a, since otherwise each U g, -ideal of a would be contained in (%, pov),
whence, by (Cy), (k, gov) = (av, ov), which is impossible because of
6 # w. But, on the other hand, the U y,-ideal (I,0) is contained in
(ay, og), i.e. there is such a g: l--ay that goy = 4. Taking into account
that (I, 8) n (ay, ov) = (I, 6) and applying Proposition 2.4 we find that
(1, 0) is a U y,-ideal of ay. If we denote by (I, ¢') the image of the ideal
(I, 0) by the epimorphism 6: ay-—b, then (I, ¢') # (0, ). since (I, ) is
not contained in (%, poy). By (C;) and eondition (a), (T, o) is a Uy, -ideal
of b, which is impossible since b belongs to the regular class AG. There-
fore (ay, oy) is the Uy, -radical of ¢ and condition (b) is satisfied.

Now let 6: a->b be such an epimorphism that (ay, ov) = ker6 and
let (m,») (0, w) be a Uy,-ideal of b. By Theorem 1.1 there exigts
a unique complete counterimage (p,e) of (m,») by 6. Then o6 =17,
where 7: p—m is an epimorphism. We shall show that (p, ¢) is a Uy~
ideal of a. Indeed, let us suppose that there is such an epimorphism
A p—>q, A+ o, that ge 6 and let (I,8) =kerd I p:ray—>p is such
a monomorphism that we = ov, then taking into account that (au, ay)
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~ (p, 0) = (av, ov) and applying Proposition 2.4 we obtain (av, x)
—=kerpf, whence (ay,u)=kerz. It (I,6)> (ay, p) then 66 =p for
a certain monomorphism 8: ay—l. Then pi = 661 = dw = w, whence
there is sueh a v*: m—>q that 77* = A since 7 is an epimorphism. There-
fore 7* is an epimorphism since v and 1 are epimorphisms. Moreover,
* % o sinee A # . But this is impossible since m is a U .-object and
g belongs to the regular class Jt. If, however, (au, p) is not contained
in (I, 8), then (afy, u') # (0, »), where (afy, ) is the image of the U -
ideal (ay, u) of p by the epimorphism 2. By (C;) and (a), {(ap,y') is
a Uy,-ideal of ¢, which is impossible since ¢ belongs to the regular class JG.
Therefore (p, o) is a U y,-ideal of a, whence (p, o) = (av, oy) and (m,»)
- =(0, @). Thus condition (c) is also satisfied.

© ProPOSITION 3.2. I G is a regular class, then Ugg= Uy, where Jis

the class of all objects of K satisfying condition (A).

Proof. We have J6C M. since the class G is regular. Therefore
each TUjg-object is Uy, -radical,ie. Uz < Uy,. Conversely, let us suppose
that @ is not a Ujg-object. Then there is such an epimorphism 6: a—b,
0 # w, that b belongs to JC. Hence by the definition of & there is such
an epimorphism 8': b—o, 6’ % o that ¢ belongs to 6. By Theorem 1.3,
60": a—c¢ is an epimorphism and @ cannot be a Uy, -object. Therefore
Uy <Ux-

ProPOSITION 3.3. Let 8 be a radical property and let Mo be the class
of all §-semisimple objects of K. Then the class G is regular and Mo = .

Proof. Let @ be an §-semisimple object and let (I, 6) be a non-zero
ideal of a. Sinece (I, 8) cannot be an §-ideal, then by condition (c) there
is such an epimorphism 6: I—c, 8 # w, that ¢ is §-semisimple, i.e. ¢ be-
longs to J. Therefore the class 6 is regular and 6 C G. Now let us
suppose that an object a is not §-semisimple. Then (ag, os) # (0, w)
and by (a) there is no epimorphism 8: ag—>b, 6 # w, where b is §-semi-
simple. Therefore a does not belong to 4, ie. X C S

THEOREM 3.4. Let 8 be a radical property. If an object a camn be sub-
directly embedded into a direct product of S-semisimple objects, then the
object a is also §-semisimple.

Proof. Let ai, 4 eI, be a family of S-semisimple objects and let
an object a be subdirectly embedded into the direct product g z{”} ag (7).

€

Then there is such a monomorphism y: a->g that as = yme a—ai, ¢ el,
are epimorphisms. Let (p, 8) be a non-zero ideal of a. Then there exists
such an 4y eI that das, # w, since otherwise (p, d) would be contained
in the intersection (%, u) of all (k:, u¢), where (k:, ui) = keras. But by
Theorem 2.3, (k, u) = (0, »), whence (p, §) = (0, w), which is impossible.
By (Cq) we have da;, = v, where 7: p—Iis an epimorphism and v Loy

icm

Brown-MeCoy radical in calegories 31

a glonomorphism. By (Cy), (I, ») is a non-zero ideal of the 8 -semisimple
object g Then by Proposition 8.3 there is such an epimorphism 6: I+q
that q. iz §-semisimple. By Theo_I;em 1.3 the map 76: p—gq is an epi-
morphlsm2 whence ¢ belongs to b, where J is the class of all §-semi-
simple objects. Therefore, applying Proposition 3.3 again, we find that
the object a is S-semisimple.

DEFINITION 3.5. If G is a regular class, then the property U A6 Will
be called the upper radical property defined by .

The term upper radical property can be explained by the follow-
ing fact.

PROPOSITION 3.6. Let S be a radical property and let M be a regular
class. If each object from M is 8-semisimple, then 8 < Uy,.

Proqf. Let @ be an §-radical object. Then by condition (a) for each
epimorphism 6: a—b, 6 # o, the object b is S-radical, i.e. b does not
belong to 6. Therefore a is Uy, -radical.

§ 4. Brown-McCoy radical. A non-zero object a will be called
simple if its only ideals are (0, w) and (@, &). Let A6 be a class of simple
objects of . We agsume that if ¢ e M and a~b (&, £7%) then b e Mo
If o is an object of X and a: a—b is such an epimorphism that b e A,
then by Theorem 1.1, (m, um) = kera is a maximal ideal of a. The ideal
(m, um) will be called an M-mazimal ideal of a. By (C,) the class of all
Ao-maximal ideals of @ is a set. This set will be denoted by M, and
will be called the structure M:-space of a. If (m, um) € M, then the epi-
morphism with the kernel (m, unm) will always be denoted by am: @—>am,
am € Mo. If there iy no doubt that we deal with the structure -space
of a, then instead of M, we shall write M. If N C M, then by (kn, pn)
we denote the intersection of all (m, um) ¢ N, and by N we denote the
set of all AG-maximal ideals of a containing the ideal (kx, ux). Moreover,
the diveet product [] am(mm) will always be denoted by gx(stm)-

(m,um) e N

ProrosrTioN 4.1. Let (1,0) be an ideal of an object a. If dam #*
for some (m, um) € My, then Som: d—am is an epimorphism.

Proof. By (Cq), dam = v, where v: l—p is an epimorphism and
v:' p—>apm a monomorphism. By (C,), (p,») is an ideal of an. Therefore,
(Py %) = (@m, &) since an is simple and. dam # o.

DrrinrrioN 4.2. Anfideal (p, 8) of an object a is said to be a retract
of a if there is such a map zn: a—>p that én=s,.

PROPOSITION 4.3, ([6].) If dn = e then = is an epimorphism.

Proof. Applying (Ce) to the map n: a—p we have z = 7%, Where
7t @-—+p, is an epimorphism and »;: p,—p, a monomorphism. Applying
(Ce) to the map 67: p—p, We have Ot = Tp¥,, Where 7,0 p—>p, is an
epimorphism and »,: p,~p;, & monomorphism. Then &, = dn = §(z%)
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= (611) ¥y = (Ta®e) 1, L& Tt PPy is a left inverse map for the mono-
morphism ». We shall show that 7,9, is also a right inverse map for »,.
Tndeed, [#(tyvg)]%, = nl(Tavs)9i] = 916 = 1, Whence vy(7yvs) = & since », is
a monomorphism. Therefore p;~p (v, %1 Y, whence m = 7y», is an epi-
morphism.

DEFmNITION 4.4. Let J6 be a class of simple objeets. An ideal (p, o)
of a will be called a simple M-ideal of a if p € M.

DrrrxiTioN 4.5, A class 6 of simple objects will be called modular
if the following conditions hold:

151 If (p, o) is a simple 6-ideal of a, then (p, o) is a retract of 4,
and there is a unique ideal (m, um) ¢ My such that (p, o) ~ (m, gm)
= (0, w);

i.5.iIA If (1, 6) is an ideal of an object & and (g, o) is an M- maximal
ideal of I, then (g, 0d) is an ideal of a.

A modular class is always regular since it consists of simple objects.
Therefore we can formulate the following definition.

DEFINITION 4.6. The upper radical property Uy, defined by a mod-
ular class A6 will be called the Brown-McCOoy radical property. .

Tn the category of all alternative rings a class ¢ of simple rings
is modular if A6 contains no simple ring without the unity element.
Indeed, let P e A be an ideal of an alternative ring A. If P* is the set
of all # ¢« 4 such that aP = Pz = 0, then 4 = P @ P* gince P contains
the unity element. Therefore P is a retract of A. Now let M be such
an JA6-maximal ideal of A that P~ M =0. Then Pv M = 4 since
M is maximal. Hence A = P @ M. If s« M then 2P, Pe C P~ M =0,
whence 2 € P* i.e. M C P* COonversely, if 4 ¢ P* then # = p--m, where
peP, meM. It ¢ iy the unity element of P, then 0 = e = pe-me
= p-+me. Hence p = —me e P ~n M = 0 gince P and M are ideals of 4.
Therefore # = m e M, whence P* C M. Thus we have proved that con-
dition 4.5.1 is satisfied. »

Now we shall prove 4.5.IL. Let L be an ideal of an alternative ring 4
and let @ be an Ab-maximal ideal of L. By h we denote the natural
homomorphism of L onto L/@. Take any counterimage ¢ ¢ L of the unity
element from L/Q by the homomorphism . We set the map %: A —L/Q
as follows

h(®) = h(iwi) for any wed.
1t is obvious that & thus defined is an additive map. Take any @, y ¢ 4.
Since é(xy)i = (i)(yi) (cf. [3], Lemma 3), we have h(wy) = hli(wy)i]
= h[(iw) (y9)] = h(iw) h(yi) = R (ix) h(5) h(i)h(yi) = h(iwi) hiiys) = k(@) h(y).
Therefore the map A is a homomorphism. It is a homomorphism onto
L/Q since kb coincides with % on the ideal L. Moreover, kerk ~ L = @,
whence @ is an ideal of 4 and condition 4.5.JT is algso satisfied.
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If A6 consists of all simple rings with the unity element, then Uy,
becomes the well-known Brown-McCoy radical ([2] and [8]). Radicals U ,Mi
where A consists of some simple rings with the wnity ;
gidered in [11]. -

In the category of Lie rings a class M of simple complete rings
(a Lie ring is said to be complete if its centre is zero and each of its der-
ivations is an inner derivation), satisfies condition 4.5.1. Indeed, let
P e M be an ideal of a Lie ring 4. By P* we denote the set of all @ e A
such that #P = 0. If ac 4 and beP* then, by the Jacobi identity
(ab)P C (bP)a+(Pa)b. But bP =0 since be P* Moreover, Pa CP’
whence (Pa)b = 0. Therefore (ab)P = 0, i.e. P* is an ideal of A. ﬁov;
take any @€ A and consider the derivation defined as Oa() = xa for
zed. We have 6, P C P gince P is an ideal of 4. From the fact that
P is complete we infer that J; induces an inner derivation on P, i.e. there
is such a po e P that for any peP we have Oa(p) = pa = pp,. We set
b =a—p,. Then pb = p(a—p,) = pa—pp, = 0 for any p e P. Therefore
beP* and @ =b-+p,. Hence 4 = P*|P, Now let ¢ c¢P ~ P* Then
¢p =0 for any p e P. Therefore ¢ belongs to the centre of P, whence
¢=0 since P is complete. Thus we have proved that 4 =P* P P,
ie. P iy a vetract of 4. Now let M be such an 4-maximal ideal of A
that P~ M = 0. Then Pu M == 4, whence 4 =P @ M. If z ¢ M then
oP C M ~ P =0, whence xeP* ie. MCP* Conversely, let ze P*.
Then # = py-+m, where pye P, me M. For any p P we have o0 = ap
= pop+mp. But mp e M ~ P = 0. Then p,p = 0 for any p <P, which
means that p, belongs to the centre of P. Since P is complete, we have
Py = 0. Therefore @ =m ¢ M and P*C M.

The author does not know whether the class A of simple Iie rings
satisfies condition 4.5.IF.

Prorosxtion 4.7. Let (1,8) be an ideal of an object a and let (g, o)
be an So-mazximal ideal of 1. If M is a modular class, then there is a unique
Mo-mawimal “ideal (m, um) € MA\N such that (g, ad) = (m, um) ~ (I, 9),
where N is the set of all M-mazimal ideals of a containing (1, 8) and M N
is the set-theoretical complement of N in M,.

element were con-

Proof. Let 6: 1—+b be such an epimorphism that (g, o) = kerf
and b e 6. By condition 4.5.II, (¢, 08) is an ideal of a. Let A: a—¢ be
such an epimorphism that (g, 0d) = keri. Then odi = w, whence there
is such a 6% b->0 that 64 = 00* gince § is an epimorphism. If (f,¢)
= ker 6* then, by the simplicity of b, we have either (f,¢) = (0, w) or.
(fy @) = (b, &). If (f, ) = (b, &) then A = 86* = 6w = w. Hence there
is such a @t I-»g that God = J since (¢, od) = kerA. Thus go = & since
0 is a monomorphism, i.e. ¢~ (s, ), which leads to a contradiction
since (g, o) is an J46-maximal ideal of 1. Therefore (f, ) = (0, ), i.e. 6%

Fundamenta Mathematicae, T. LIX 3


GUEST


34 A. Sulinski

B¢ is 2 monomorphism. The subobject (b, 0*) of ¢, as the image of the
ideal (I, ) by 4, is a simple J-ideal of ¢ because of.. (Cy). Therefore,
by 4.5 and Proposition 4.3, there is such an epimorphism @: ¢~b that
6*% = e,. Then we have 6= 0sp = 00%z = 8lm. If we take (my, p)
= kerAn, then (my, p) € My since by Theorem 1.3 the map .im: a--b
is an epimorphism and b e 6. Suppose that (i, o) € N. Then oy, = 6
for some 8: l-»my. Hence 6 = 0Am = dugdm = dw = o, which is impossible
since kerf = (g, o) s (I, &1). Therefore (my, o) ¢ M\N. We set (r, o)
= (g, po) ~ (I, 8). Let g2 #—1 be sueh a map that g6 == ¢. Then by
Proposition 2.4 (7, g,) = kerddw = ker 6 = (g, o). 'Therefore (r, o,8)
= (g, 09), Le. (r, o) = (¢, 00). _

Now let us take any (m, um) e M\N. By (Cg) we have umd = w,
where 7: m—m’ is an epimorphism and »: m'—>¢ a monomorphism.
By (C;) and Theorem 1.4, (m/,») is a maximal ideal of ¢. We shall show
that (m’,») is an Jb-maximal ideal of ¢. Indeed, let a: ¢—¢’ be such
an epimorphism that (m/, ») = kera. Then we have umia = va = 10 = w.
Therefore there is such a &: am—¢’ that apé = da since wp: @—-ay s
the epimorphism with the kernel (m, um). The map & is an epimorphism
since amé = Ae and om and, by Theorem 1.3, Ao are epimorphisms. But,
on the other hand, £ # « since otherwise Aa = w and ¢’ , which is
impossible. Then keré = (am, ¢), whence keré = (0, ) since an is simple.
Therefore & is also a monomorphism, ie. ay~e (£, ") and ¢ e M.

Now we shall show that for (m;um)e M\N from (m, um) ~ (I, 6)
= (g, 08) it follows that (m’,») ~ (b, 8*) = (0, w). Indeed, since (b, 0*)
is-a simple ideal of ¢, we have either (m/, ») ~ (b, 0*) = (0, @) or (W', %) ~
~ (b, 0%) = (b, 6*). Let us suppose the second case. Then (b, 0%) < (m/, ).
Since (m, um) = (g, 00) = ker, therefore (m, um) is a complete counter-
image of (m’,») by the epimorphism A. Moreover, (I, d) is a complete
counterimage of (b, 6*) by A. Then applying Theorem 1.4 we get (I, d)
< (m, pm), which is impossible since (m, pgm) € M\XN. L

Now let (my, w), (M2, po) € M\N be such ideals that (my, g) ~ (1, 8)
= (M; o) ~ (1, 8) = (g, 08). Then . (mf, ») ~ (b, 0*) = (mj, ) ~ (b, 0%)
= (0, ), where (mj, ), (m}, ») are the images of (my, g;) and (Mmy, us)
by A Since (m7,v) and (ms,») are Jo-maximal ideals of ¢, we have
(myy v) = (mh, »,) because of 4.5.I. Therefore applying Theorem 1.1 we
get (Myy 1) = (Mg, pg).

TerorEM 4.8. Let Uy, be a Brown-MeCoy radical property amd let
a be an object of K. Then the ideal (kar, uy) is the Uy, -radical of a.

Proof. At first we shall show that (kar, ua) is a U 4 -ideal of a.
Indeed, let us suppose that there is such an epimorphism 68: kb,
0 o, that be M. Then (g, o) = kerf is an Jfo-maximal ideal of ks
Applying Proposition 4.7 we find that there is such an ideal (g, o) € Ma
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that (g, opar) = (Mo, o) ~ (Rar, par),. which is impossible since (Fur, far)
is contained in each (m, uy) e M.

Now let us suppose that there is an U ,-ideal (I, 8) of a which is
not contained in (kar, up). Then there is an (1, pm) € M which does
not contain (I, 8). Therefore day, ®, whence by Proposition 4.1, Say:
I—>am is an epimorphism. But it is impossible since (I, 6) is U 4, -ideal
and am € .

THEOREM 4.9. If Uy, is a Brown-McCoy radical property, then each
U y, -semisimple object can be subdirectly embedded into a direct product
of simple objects from .

Proof. Let a be a Uy, -semisimple object. Consider the direct prod-
nct gu(nm) and the epimorphisms apm: O~>@p, Where (1, un) € M. Then
there is such a map y: a—>gy that ymm = ay for each (m, um) € M. By
Proposition 2.1, (kar, puar) = kery. But, by Theorem 4.8, (kary pr) = (0, o)
sinee @ is U 4, -semisimple. Therefore y is a monomorphism, i.e. the object
a is subdirectly embedded into ga.

. TeEEOREM 4.10. Let U 4, be a Brown-MeCoy radical property. If (I, 8)
is an ideal of an object a, then (ly,5yd) = (I, 8) ~ (ag, ou), where (ay, ov)
is the Uy, -radical of o and (ly, Gu) is the Uy, -radical of the object L.

Proof. By Theorem 4.8, (ly, 5v) is the intersection of all G- maximal
ideals of the object 7. Then applying Proposition 4.7 we have (ly, ovd)
= (I, 8) ~ (a5, pan®), where N is the set of all - maximal ideals of a
containing (7, §). Then taking into account that (I, 8) = (1, 8) ~ (kx, ux)
we get (lu, 5ud) = (1, 6) ~ (k¥, uw) A (kanF, pary) = (I, 8) ~ (Faz, i)
= (I, 6) m (av, ov) since, by Theorem 4.8, (kar, pur) = (av, ov).

CoroLLARY 4.11. Hach ddeal. of a Uy -radical object is U y, -ideal.

Proof. If (I, 6) is an ideal of a U y,-radical object @, then by Theo-
rein 4.10 (ly, ovd) = (I, 6} ~ (av, ov) = (I, d) since- (av, ov) = (@, &).

CorOLLARY 4.12. Each ideal of a U y,-semisimple object 48 also U y -
semisimple. i

Proof. If (I,0) is an ideal of a Uy -semisimple object @, then
(lo, 5y d) = (t, 8) ~ (ay, ov) = (0, w) since (ay,ov) = (0, w).

§ 5. Subdirect products of simple objects, Throughout the
sequel Uy, always denotes a Brown-McCoy radical property defined by
a modular class A We shall consider U y,-semisimple objects, i.e. (by
Theorem 4.9) subdirect products of simple objects from .

ProposrrioN 5.1. If (1, ) is an ideal of a U y,-semisimple object a,
then the object 1 can be subdirectly embedded into the direct product ganF(swm),
where N is the set of all ideals from M, containing (1, 5).

Proof. It we consider the maps am: a->@m, where (m, pm) € M\N,
then there is a unique map y: a—gmx such that ymm = an for each

3*
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(M, pn) € M\N . Moreover, dan = o for (m, Yem) G.M\N sinefe in the Opposi_t_e
case Oam = o the ideal (m, tm) would contain (I, 8), ie. (m, ,u,,.) €N,
which is impossible. Hence by Proposition 4.1, dem: l—>@m are epimor-
phisms. Now let (f,9) = kerdy. We have @pdom = f}’)(?’))ﬂim = Wl = o for
(M, fim) € M\N . Therefore the subobject (f, d) of @ is contained in each
(m, pm) € NN, ie. (f, ) < (banFs ). Bub, on— the mo‘r/her Hha,n‘(},
(f, 98) < (I, 8) < (k, ux). Therefore (f, ¢d) < (N, pan®) N (b5, 1F)
= (0, ®) since a I8 U 4, -semisimple. Hence (f,9) = (0, ), ie. Jdy is
a monomorphism. o

By Proposition 5.1 and Theorem 3.4 we can get another proof of
Corollary 4.12.

DEFINITION 5.2. An ideal (I, 8) of an object o will be called M-re-
presentable if (I, 8) can be represented as the intersection of all A-max-
imal ideals containing it.

DerINITION 5.3. Let (ky, uv), where N C M, be an M- vepresentable
ideal of a U y, - semisimple object a. Then the ideal (k¥ u¥) = (k) pan®)
will be called the annihilator of (kn, uxn) in a.

In the category of associative rings the annihilator 4*, thus de-
fined, of the-ideal 4-of-a U 4 -semisimple ring B consists of such -elements
2 eR that 24 = Az =0 (cf. [12]).

PROPOSITION B.4. Let (my, pg) be an Mo-mawimal ideal of a U y,-semi-
simple object a. Then (m}, u3) # (0, w) if and only if there is such a mono-
morphism cy: Gm,—>6 that

(i) Golmy = Eayy,s '

(ii) ogam = @ for (m, um) €L, where L = M\{(mo, py)}. Moreover, of
(mE, ) # (0, @), then (m3, u}) is a simple Ho-ideal of a.

Proof. Let us assume that the conditions are satisfied. Then o # o
since otherwise &, 7 ©, whence am, =0, which is impossible. Tperefore
(Gmay 0) % (0, ®). The subobject (@m,, 0o) 0f @ is contained in each
(m, um) e L because of (i). Therefore (0, ®) # (@m, 00) < (K, fr)

= (m}, ud). [Conversely, let us assume that (mg, ud) = (0, w). Then
Udam, # o since in the opposite case (m¥, u¥) would be contained in
(mo, ), Whence, by the Uy, -semisimplicity of a, (mf, uf) = (kr, pr)
= (g, pr) ~ (Mg, o) = (Kar, par) = (0, @), which is impossible. Therefore
applying Proposition 4.1 we find that the map pfam,: M§—>am, is an
epimorphism. We shall show that u ay, is also & monomorphism. Indeed,
for each (m, pm) €L there is such a Em: m§—m that umpm = u§. It (f,¢)
= Ker ¥ cm, then gud am = Qpim fim am = Gim © = . MOTEOVEY, Puf s, = O
Then (f, pu¥) < (ka, par) = (0, ). Hence (f,¢) = (0, w), ie. udom, i8
a monomorphism. Therefore m§ ~ay, (£, &™), where & = ulom,. We set
o= ET ¥t Gy —>0. TheD Gytmy = &yl tmy = £ 6= & and opam == &7 Om
= E  impmom = @ for (m, pm) e L.
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The subobjects (m, uf) and (aw,, o,) are equivalent since Eog= u}
and £ = o.

PrOPOSITION 5.5. Let (I, 6) be an ideal of a U y,-semisimple object a.
If (p, ) is a simple Mo-ideal of the object 1, then there is such an ideal
(Mo, o) € MN\N that (p, 08) < (m¥, uf), where N is the set of all ideals
from M containing (1, 6).

Proof. By condition 4.5.I there is such an 46-maximal ideal (g, o)
of I that (¢, 6} ~ (p, ) = (0, ©). Then by Proposition 4.7, there is such
a (Mg, ) € .M\Z_! that (g, m) ~ (1, 8) = (g, 0d). Take any (m, um) € L,
where L = (M\N)\{(m, 1o)}. We seti (v, %) = (m, um) ~ (I, 8). Then 1é=v
for some »: 7-+1. By Propositions 2.4 and 4.1, (r,») is an J6-maximal
ideal of 1. Let us suppose that (r,») ~(p, o) = (0, ®). Then by con-
dition 4.5.I, (r,») = (g, ¢}, whence (r,0) = (g, o8), ie. (ry») = (q, 0d).
Applying Proposition 4.7 we get (m, um) = (m,, py), which is impossible
since (m, um) € L. Therefore (r, )~ (p, o) (0, w), whence (r, ) ~
~(p,0) =(p, ) since (p, ) is a simple ideal of 1. Then (p, o) < (r, »;)
and (p, 00) < (r,7) = (m, pm) ~ (I, 8). Therefore (p, 08) < (m, pm) for
any (m, um) e L. Hence (p,00) < (kz, uz) ~ (1, 8) < (Rzy piz) ~ (B, pw)
= (kLu¥, /"Luﬁ) = (‘Wb:, 1“3‘)'

DEFINITION 5.6. Let a be a Uy -semisimple object and let Dy be
the set of all ideals (m, um) € Mo such that (m*, u3,) + (0, ®). The object
a will be called special if (kp, up) = (0, ). If, however, D, is the empty
set, i.e. if (kp, up) = (a, &), then the object a will be called completely
non-special.

These notions for the category of rings were considered in [7]
and [12]. ‘

Recently Tsalenko [13] introduced the following notion of the special
subdirect sum. An object a is said to be the special subdirect sum of
objects a¢, 4 eI, if

(1) There is such a family of maps oyt ar—a, v: a—>a¢, %€, that

0iT; = gg and o047y = o for § #£§, i,jel;

(2) If ar¢ = fBr; for each iel, where a: b—a, f: b—a then « = B.
This special subdirect sum will be denoted by a = 3} aioy, 7).
ier

TEEOREM 5.7. 4 Uy, -semisimple object a is special if and only 4f
a 18 a special subdirect sum of objects from AG.

Proof. Let a be a special Uy -semisimple object. By Theorem 2.3
the object a can be subdirectly embedded into the direct product gp,(mm)
by a monomorphism y: a->gp. Then ymm = am: a—an and (m, u)
= keran. Let a: b—>a, B: b—>a be such maps that aam = fan for each
(m, um) € D. Then aymm = Bymm, whence by the uniqueness of ay we
have ay = By; therefore a = § since y is a monomorphism. But, on the
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other hand, by Proposition 5.4, for each (m, um) € D there is such a mono-
morphism ot @m—>a, that omam = ¢ and omem = © 0T (M, um) £ (M, ).

Therefore a = m (Gmy om). Conversely, let @ = 3 a; (0, 71), where
(myum) €D i€l

ai ¢ M. Consider the direct product ¢ = [] a; () and the maps 74: a--a
i€l

Then there is a unique map y: a—>g such that ym = 7; for < e I. If we
set (%, p) = kery, then wws = pym = wm = o. Bub, on the other hand,
w7; = o for 7 € I. Therefore applying condition (2) we get u = w, ie. y is
a monomorphism. Moreover, by Proposition 4.3 each of the maps ; is
an epimorphism since &4 = oy7;. Therefore the object o can be sub-
directly embedded into the direct product ¢, whence, by Theorem 3.4,
a is Uy, -semisimple. The fact that a is special follows immediately from
condition (1) and Proposition 5.4.

THEOREM 5.8. A Uy, -semisimple object is special if and only if each
of its mon-zero Ms-representable ideals contains a simple M-ideal.

Proof. Let a be a special U y,-semisimple object and let (ky, uy)
# (0, o), where N C M,. Then there is an ideal (mq, uo) € Dy which does
not contain (kx, pn) since otherwise (ky, ux) would be contained in each
(M, pm) € Da, i.e. QcN, un) < (kp, up) = (0, w), which. is impossible. There-
fore (my, u,) € M\N, whence N C L, where I = MN\{(my, u)}. Then (0, w)
#= (mg, u8) = (k1, pr) < (kx, py). By Proposition 5.4, (m§, u¥) is a simple
A-ideal of a. Conversely, let us suppose that (kp, up) # (0, w). If the
object kp contains a simple Ab-ideal (p, o), then Dby Proposition 5.5
there is such an ideal (mq, up) € M\D that (0, w) # (p, oun) < (m¥, ud).
Hence (mg, u3) # (0, ), which is impossible since (m,, u) ¢ M\D.

This Theorem for the eategory of rings was proved in [7].

TEROREM 5.9. A Uy, -semisimple object is completely non-special if
and only if it contains no simple Mo-ideal.

Proof. Let a be a completely non-special object and let (p, o) be
a simple A-ideal of a. By Proposition 5.5 applied to the ideal (@, &a)
we find that there is such an ideal (my, u)) e M that (0, w) 5 (p,0)
< (mg, p3). Therefore (m¥, u¥) # (0, w), which is impossible since a is
completely non-special. Conversely, let us assume that an object « is
not completely non-special. Then there is such an ideal (m, ) e M
that (m* un) # (0, ). By Proposition 5.4 (m*, u) is a simple J6-idesl of a.

DeriNiTION 5.10. Let a be a Uy, -semisimple object. The ideal
(kz, pp);, where P = M\D will be called the special part of the object a,
and the ideal (kp, up) will be called the completely non-special part of a.

THEOREM B.11. If (kp, up) is the special part and (kp, up) the com-
pletely non-special part of a U M, -Semisimple object a, then the object kp is
special and the object kp completely non-special.
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Proof. By Corollary 4.12, the objects kp and kp are U 4, -semisimple.

If (r, o) is an Mo-representable non-zero ideal of the object ke, then
by Proposition 4.7 (r, oup) = (kp, pp) ~ (k¥, ux) = (kp ¥, #poW), Where
N is the set of such (m, um) € M\P that (m, um) = (v, oup). Let us sup-
pose that D C Pw N. Then D C P U N. Using the fact that (r, g) # (0, )
we obtain M £« PUN=DuPUNIDDUPUNDDUWP=DuM\D
D D v (M\D) = M, which leads to a contradiction. Therefore there is
such an ideal (mg, go) € D that (myg, ) ¢ P o XN hence LD PUN, where
L = M\{my, pp)}. Then we have (0, 0) % (md, ) = (kz, ur) < (7, our)-
Applying Theorem 5.8 we find that kp is special.

Now let (p, o) be a simple AG-ideal of the object kp. Then by Pro-
position 5.5 there is such an ideal (mqg, p) ¢ MN\D that (0, ) = (p, epp)
< (m§, ug,) which leads to a contradietion. Therefore applying Theo-
rem 5.9 we find that kp is completely non-special.

The author does not know whether the structure A:-space MM, of
an object a is a topological T;-space, i.e. whether ¥; U N, C ¥, v N,
where N}, N, C M,. The converse inclusion and the conditions: {(m, pm)}
= {(m, pm)} for (m,pm)eM; N=DN for N C M; and @ =0, where
@ is the empty set, are obvious.

THEOREM 5.12. Lei us assume that the structure M-space of a Uy~
semisimple object a is a T,-space. Take any M-representable ideal (kx, ux),
N C M, of a. If the object ky is special, then (ky, un) < (kp, up), where
P = M\D; if, however, the object ky is completely non-special, then (kx, pxn)
< (kp, pp)-

Proof. Let us assume that the object & is special. Weset W = D U N.
Suppose that W == I, i.e. (kw, uw) 7 (0, w). We have (kw, uw) < (ky, ux),
whence there is such a u: kw—kxy that uuy = pw. The ideal (kw, uw)
is an JG-representable ideal of the special objeet ky, whence by Theo-
rem 5.8, the object kw contains a simple At-ideal (p, ). Then applying
Proposition 5.5 to the ideal (kw, uw), we find that there is such an ideal
(mo, to) € M\ W that (0, w) # (p, epw) < (mg, u). But this is impossible
since D ~ (M\W)=D ~ (M\D v N)C D~ (M\(D v ) CDn~(M\D)=0.
Therefore W = M. Hence using the fact that the closure operation is
additive we obtain M = W = D w N = D u N. Therefore, P=M\D C N
Le. (ky, un) < (kp, pep)-

Now let us suppose that the object %y is completely non-special.
Let (m, pm) € D. Tf (m, gm) € M\N then L D N, where I = M\{(m, pn)}.
Then (0, ) # (m*, uk) = (kr, pz) < (ky, pn), which is impossible because
of Theorem 5.9 and Proposition 5.4. Therefore DCN, ie. (kw, uxn)
< (kp, pp)-
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DEFINITION 5.13. An object a is said to be strongly U y,-semisimple
if each of its ideals is JMs-representable.

If a is strongly U 4, -semisimple, then a is U 4, -semisimple since the
ideal (0, w) is JG-representable.

THEOREM 5.14. If am object a is strongly U y,-semisimple, then

(kp, /4"1’) e (kﬂy ;U‘D) = (kFx‘Ey HFIE) 3

where P = M\D and FrD = D ~ M\D.

Proof. From the fact that o is strongly Uy, -semisimple we have
(kp, pp) v (kp, pp) = (kn, un), where NC M IE(m, pm) €N’_@9}l (my )
> (ko, up) and (m, u) > (ke, up). Therefore (m, um) € D ~ M\D, ie. N
< FrD. Conversely, if (m, um) e D ~n M\D, then (m, pm) > (kp, pp) and
(m, pm) = (kp, pp). Hence (m, pm) = (Fy, pw) = (kn, po) v (kp, pp), ie.
(m, um) e N. Therefore FrD < N.

COROLLARY 5.15. A strongly U y,-semisimple object is a direct product
of its special and completely non-special part if and only +f FrD, =0,
where @ s the empty set.

Proof. If FrD =@ then (ke,pur) v (kp, up) = (ko, ug) = (@, e).
Therefore by Theorem 2.5 ¢ is a direct product of kr and kp, since
{(kp, up) ~ (kp, up) = (ksr, pa) = (0, w). Conversely, let ¢ be a direct
product of kr and kp. It (m, um) eFrD =D ~ M\D then (m, um)
= (kp, up) v (kp, pp) = (@, &), which is impossible. Therefore FrD = @.
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