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On continuous functions, commuting functions,
and fixed points

by
S. C. Chu (Washington, D.C.) and R.D. Moyer * (University Park, Pa.)

It has been conjectured that if two continuous functions f and g map
the interval [0, 1] into itself and if they commute, ie. f{g(2)) =g(f(®))
for all # in [0,1], then the two functions possess & common fixed
point. The conjecture is trivially verified if ome of the two functions,
say f, has the property that it has a fixed point in any non-empty
closed subset @ (of [0,1]) which is mapped into itself by f, or if f has
the property that the repeated application of f to any point 2 in the
interval produces a convergent sequence. However, these results have
the disadvantage that, in practice, given any particular f, it is difficult
to verify whether f has either of these properties.

The purpose of this paper is to present a theorem which, we feel,
is of interest in itself and in which it is shown that the properties men-
tioned above are equivalent to each other and to several other properties
which are more verifiable.

First, let (@) = f (@) and f¥@) = }(/* (@), k = 2,3,... and 2 ¢[0,1].
‘We then have:

TarorEM 1. Let | be a continuous mapping of the interval [a, b] into
itself. Then the following conditions are equivalent:

(i)-(a) for each mela,b] such that f(x) = z, we have fAx) # x;
(b) for each ®e[a,Db] such that f(z)> =, we have fi(z) > =, and for
each z e[a, b] such that f(x) <, we have fz) < x;
(i) If G is any mnon-empty closed subset of [a,b] mapped into itself

by f, then f has a fized point in G
(ili)-(a) for each = e[a, b] such that f (x) # z, we have Ha) # o fm" every k> 1.

(b) for each zela,b] such that f(z) > %, we hawe I (#) > @ fo'r all

k> 1, and for each = e[a, b] such that f(z) < =, we have fi@) < =
for all k> 1;
(iv) {¥(@))eeq 95 a convergeni sequence for every = in [a, b].
" % The work of the second author was carried out while he was at Bellcomm, Inc.,
Waghington, D. C.
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Proof. We first show that (ifi)-(a) is equivalent to (iii)-(b). Notice
that (iii)-(b) trivially implies (iii)-(a). To show that (iii)-(a) implies (iii)-(b),
let f(#) > = for some . By (iii ) (a), 7¥(@) # « for all k> 1. Assume that
there exists k> 1 such that f*(x) < .

Case L. f(y)>y for all ye[a,s]. Since ]‘ maps [a, b] into [a, b,
(a) > a. But by (iii)-(a) f*(a) # a; hence (@) > a. Therefore, by con-
tinuity of fk on the connected set [a, #], there exists @, € [a, #] such that
7¥(#,) = @5, but f(wp) > z,. This is contrary to (iii)-(a).

Case II. There exists a fixed point of f in [a, #]. Let x, be the
largest fixed point of f in [a, #]. Note that f(y) >y for all y e (1, @).
By the continuity of f, there exists an h; > 0 such that f maps (2g, %+ h,)
into (a,, #). Hence, for y ¢ (@, 7o+ k), 7 (f(%)) = 1*y) > y. We claim that
there exists an Ay such that ¥ y) >y for y e (@, 2+hy), §=1,2,...
We have shown it to be true for § = 1. Assume true for j —1; then there
exists an h; such that f maps (#,, @+ hy) into (@, %+ hj—1). Hence, if
Y € (%o To+hy); then )

) =rlfw) >1w) >y.

By induction this holds for every j. In particular, ) >y for_

Y € (@, T+ hi—1). By assumption, f¥(x) < #. Thus, f* must have a fixed
point in («,, #) which is contrary to (" )-(a) and the choice of x,. A sim-
ilar argument can be made when f(z) < .

By setting k¥ = 2 in the above argument, we immediately have that
(i)-(a) is equivalent to (i)-(b).

Next we show that (i) (in particular (i)-(b)) implies (ii). Assume (i)
to be false. Then there exists a non-empty closed subset G of [a,b]
which is mapped into itself by 7 and is such that f(x) = # for xe@.
In particular, there must exist either a largest # ¢ @ such that f(z) >«
or a smallest ¥ ¢ @ such that f(y) < y. For definiteness assume the former,
and call this largest element #,. (A similar argument can be made for
the other case.)

We first show that
(1) 1+ [0, f (@0)]—>(@y, b]

(and thus the image of [@,, f(x,)] under f is a compact subset of (w,, b]).
Let 2, be the smallest fixed point of f that is greater than x, (which
exists since f(wy) > @, and f(b) < b). Then f(y) > ¥ = w, for all y e [2y, @,].
Thus, if f(m) < %, then (1) is verified. So we assume that f(wm) > %.
Since f is continuous, we must have [ay,f(®,)]C f([®,, #]). Therefore,

f([wu f(%)]) C ([0, #:])
But by (i)-(b) we have, in turn,

1([@o s 1]) C (20, B] .
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(2) 1+ [, f(@o)]— (@6, ],
and (1) holds. We next show, by induction, that
(3) F@o) = oo =420 = @) = o > 2

for all ¥ =1,2,... (Notice that since f(&)C ¢, we have ¥(2o) € @ for
all £ =1,2,...). Inequality (3) is certainly true for % = 1, since f(a,)
> @, by (i)-(b) and f(f(x)) < /() by choice of z,. Assume now that
(3) holds for % = N; then we have

&y <fN+1 () <fN(mo) < fl@o) -

Since =, is ehosen to be the largest z ¢ G such that f(x) > #, we must
have 17 (@) = f (M) <f° (o). On the other hand, f° N4 ) €[ %o, F (o)1,
and by relamon (1), we must have

@y < F (Y ao)) =1~ (o) -

Therefore, the induction is complete and (3) is verified for all k. Hence
the sequence {]"‘(a:)}‘}:’_1 is a monotonic sequence which converges to some
limit point @,. Since @ is closed, @, € @; since f is continuous, f(2.) = @s,
which is contrary to the assumption that f has no fixed points in G.
Part (ii) is now verified.

We now show that (ii) implies (iii) (in particular (iii)-(a)). Assume
that there exists « e[a, b] and k> 1 such that f(x) # =, but (@) = a.
Then the (closed) set {z,f(®), .., * *(#)} is invariant under . By (i),
/ has a fixed point in that set. By the assumptmn that f(x) 7 », there
must exist 1, 1 <1< k—1, such that f(f () = ). We have therefore

o =77 @) = @) =7 (@) =1,

which is contrary to assumption. Part (iif) is verified.
‘We now show that (iii) (in particular (iii)-(b)) implies (iv). Let
zela,b], and let
‘ A% = e (@) > @)}
A7 = ke @) < @)} -

If for some i, /(2 ( = "), then (iv) is verified. Hence we assume that
all the iterates are distinet from their successors, in which case 4% w A~
is the set of all positive integers. Let

o+ = lm {f(@): k e A+}.
k00

Since, by (iii), for any %k e A" and for all 1> &,
@) > (@),
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we must have o+ > 1¥®), ked™. Therefore,

ot > I {f¥w): kedr},
k~»00

implying that #+ is the unique limit of {f(w): ke d™). Similarly, the
sequence {f*(z): ke A} has a unique limit; call it o

Now, either for sufficiently large % one of the sets 4% or 4~ con-
tains all the successors of %, or there are infinitely many % in each of A<
such that %k--1e¢A¥. The former case implies that the sequence {j’”'(w)}
eventually becomes monotonic and, therefore, converges, verifying (iv).
In the latter case, f(#+) = »~ and f(z~) = a* and, by (iii), we must
have o+ = -, again verifying (iv).

) Finally, we observe that (iv) trivially implies (i)-(a), since if there
exists @ such that f(#) # 2 but /(@) =4, the sequence {fk(m)} cannot
converge.

The proof of Theorem 1 is now complete.

We remark here that although some of the properties trivially
ft.)]low from others, we have listed them all for the sake of interest,
since most of them are seemingly unrelated.

) pEFINITION. Let f be a continuous self-mapping of an interval [a,b]
into itself. If f(x) + » implies f2(x) % @ for all z ¢ [a, b], then f is ealled
non-cyclic.

The .c}-mice' of the term non-cyclic was motivated by the fact that
the condition in the definition is equivalent to condition (iii)-(a) of
Theorem 1.

.As' an ﬂlustration,_ the following two kinds of functions are non-
qvchc if they are continuous self-mappings of some interval [a, b] into
itself: ’

(a) f non-decreasing on [a, b],

(b) fi@)>2 for all  gela, b].

A third example is given by:

(c) fl@) =a —pz,

where § #1 and 0<B<axl.
We are now able to give a sim ificati
v . ple verification of the commutin
funetions conjecture for a special case, and we state it ag: ’
.y 1.;?1;0333&[ 2. Let f and g be two continuous self-mappings of [0, 1)
‘ Y:u;; et f sul,oh that f and g commute on [0,1]. Suppose that there ewists
nterval [a,b] on which one of the functions, say f, is non-cyclic,

and in which g has a fized point. The N
point in [a, 5]C[0,1]. 4 n | and g possess a common fived

xe[0,1]

4 1y 17 e 1
J ’ A
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Proof. Let @ be the set of all fixed points of ¢ in [a, b]. @ is non-
empty by hypothesis. f(G)C @, since f and g commute. & is closed,
gince g is continuous. Apply Theorem 1.

We remark here that if one attempts to verify the commuting func-
tions conjecture by utilizing the commutivity property only at the fixed
points (what we might call the “invariant subset” approach), then
Theorem 1 suggests that the non-cyelic assumption, restrictive though
it might be, is one of the most general possible.

Finally, we wish to compare our results with those of Cohen [2]
who has verified the conjecture for the case of full functions, where
a function is full if the interval [0,1] can be partitioned into a finite
number of subintervals each of which is mapped homeomorphically
onto [0,1]. (See also Baxter and Joichi [1].) Theorem 2 above gives
a verification of the conjecture for a class of funections which in general
are not full. In fact, the only functions which are both full and non-
cyelic on [0,1] are those which are monotonically increasing, and are
zero at the origin and one at # = 1. Hence, in a sense, Theorem 2 is
complementary to the result of Cohen, but by no means exhausts all
the remaining possibilities.

As an illustration, we give the following two examples:

2o—1+(3)¢ 1-Fi<z<1—-1i(),
(d) flz)= 18—V —2r 1-—-1(})<z<1-3F)y*,
1 =1,
for 1 =0,1,2, ..
3z 0<z <4,
) 283z i<zr<i,
(e @ =131 1<w<3,
3—3z 2<w<l.

Example (d) gives a function which is “nowhere full”, but since
it belongs to the class of functions in example (b) above, it is non-cyclic
on [0,1]. On the other hand, (e) exhibits a function which is neither
full nor non-cyclie.

We are indebted to Dr. M. J. Norris for some helpful comments,
and in particular, for the proof of Theorem 1, part (iv).
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