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et cette série converge uniformément dans toub intervalle fermé [0, ,].
La série précédente converge uniformément dans tout intervalle [0, zy/w].
Mais elle converge aussi pour toub |A| < w|iy|.
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On integrals of functions
with values in a complete linear metric space
by

D. PRZEWORSKA-ROLEWICZ and 8. ROLEWICZ (Warszawa)

In paper [5] S. Mazur and W. Orlicz gave a definition of a Riemann
integral of a function xz(f) determined on a set in a Euclidean space with
values in a complete linear metric space X (F-space in Banach’s termi-
nology [3]). In that paper it was shown that the space X is locally
convex if and only if each continuous funection x(?) is integrable.

In this note some conditions of the existence of a Riemann integral
will be given. This will permit us to extend the integral method of Banach
algebras (4], [5] to the theory of locally bounded algebras [11], [12].
As a particular case, the existence of analytic functions of many elements
will be proved.

At the end of the paper we will show what difficulties arise concern-
ing the definition of the Lebesgue-Bochner integral in the case where X
is not a locally convex space.

1. Let L be a set in the n-dimensional Euclidean space E". And
let |-] be some measure determined on L. We will assume that the
measure of the whole I is finite.

By a partition 4 we shall mean a decomposition of the set I into

a union of closed sets L = U L; such that [L; ~ Lyl = 0 for i #j. We

will write 4 = (I, .. ,L,,) We say that the sequence of partitions
= (L, ..., I}) is normal if the largest diameter of I} tends to 0:

Iim sup suplt—¢| =0.
Tosoo i<y LbeT]

Let X be a complete linear metric space. Let x(f) be a function
determined on I with values in X. Let 4’ = (I, ..., L;,) be a normal
sequence of partitions. Let #ieIi. We write

Zw AT 7B

1=l

8@, 4, t) =
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If for each normal sequence of partitions A4’ and each choice of
points # there is a lmit of §(z, 47, ), then this limit is called a Riemann
integral of the function x(t) on L. We will denote it by

[a()dt.
L

In the same way as in the classical considerations we can prove
that the integral is independent of the choice of a normal sequence of
partitions and of the choice of points t).

A function x(?) is called iniegrable if the integral [u(f)di exists.

z

A function #(tf) which is not integrable will be called non-integrable.

The Riemann integral possesses the same arithmetic properties as
the Riemann integral of real-valued funections. In particular case, if z(t)
is a simple function, i. e.

n
o(t) = > oz,

i=
where 7;¢X, yz, are characteristic functions of sets I; whose boundaries

are of measure 0, then #(f) iy integrable.

TEEOREM 1. Let X be a linear metric space with norm || || (*). Let a(t)
be a function determined on L with values in X. If for each & > O there is
an integrable function x,(t) such that

”S(ma 4, f'n)-s(wn A? tn)“ = IIS(w—m,, Ai tn)” <e

for an arbitrary partition A and for an arbitrary choice of t;, them x(t) is
integrable.

Proof. Let 4° = (ILf, -y L) be a norma.lysequence of partitions.
Let #eL;. The function o,(t) is integrable, whence there is an 4, such
that for 7,5 > 4,

I8(2,, 4% 15)—8(x,, &, 8)] < e.
Therefore

I8(@, 4%, 1) — 8z, 4, &) < |IS(2, 4, fi)— 8 (a,, 4°, )]+
F18 (s, 45 15)— 8@,y &, )|+ 18 (@, 4, )~ 8(a, 4, £)] < 3e.
Hence, the fact that ¢ i3 arbitrary implies that #(¢) is integrable.

.(.1) By the norm we mean a non-negative function [l l| satisfying the following
conditions: 1) [lo]| = 0 if » = 0; 2) lz4+yll < ll=ll+ |ly] (see [3], ch. III).
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COROLLARY. Let X be a complete linear metric space with monotonic
norm, ©. e. such that the function |zl is not decreasing for t > 0. Let

ao(t) = D' filt)m,
=1
where f;(t) are scalar functions wniformly bounded, |fi(t)l < M, and =z,
are elements of X. If

Dl < +o0,
i=1
then the function x(f) is integrable.
Proof. Without loss of generality we can assume that M is an in-
teger. Let ¢ be an arbitrary positive number. There is an n, such thab

S el < 5

=g+l

Let
z,(t) = th(t)i”i-
=

Obviously x(f) as a finite sum of integrable functions is integrable.
On the other hand, for an arbitrary partition 4 = (I, ..., I,) and for
a system of %, t;eL;

I8(@—a,, 4,811 = || 8 3 fioa, 4, ta

isﬂ‘+1

< 3 I8t 4t < Y IMal <M D) al <,

g1 T+l =41
q.e.d.

2. Let X be a locally bounded space with a p-homogenous norm,
0 < p <1, i e suchanorm || || that {[tz]] = [¢#|° |zl (see [1], [8]). We say
that a function x(f) is analytic in a domain £ contained in the n-dimen-
sional real (or complex) Euclidean space if for each point f,eQ there is
a neighbourhood U < Q such that #(f) possesses an expansion in the
series

00
o) = D (a—1)1 ... (ta—tp)rop, g,
sty =0
convergent in U, a;, ; are elements of X, #=(fy,...,%), =

= (#},...,13). Obviously an analytic function of » complex variables
can be considered as an analytic function of 2n real variables.
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ProposITION 1. Let X be a locally bounded space with P-homogenous
norm || |. Let Q2 be a domain of the n-dimensional real (or complew) Bucli-
dean space. Let x(t) be an analytic function in Q. Let T be defined as in
section 1 and compact, L = Q. Then there exists an integral j! () dt.

Proof. Let the series

o0

D (=B (f— 1)y,

iy, S0
converge at the point t = (#,...,1,). Then

z(t) =

......

-]

2 ”yil,...,in” < +oo,

Threenlpy=0
where

Y 1. ’ 1
Yiyoty = (L— )00 (B — 3)i”mmil,,,_,in-

Moreover, if |t,—1] < ¥[t;—13|, then
1) o(t) =
™

where

n
_ [T o et
fil....,‘in(t) = n2 EW and Iftl _____ 1n| <1.
Km1

Hence for each point #, there is a neighbourhood U in which a;(t)'
can be represented in the form given in Corollary 1 and

o

Z [9s,,...4,)l < +oo.

Tenaslp =0

Ifn i@ < 1,

Corollary 1 implies that there exists an integral U] a(t)dt. But L is
AL

compact and we can cover L by a finite system of neighbourhoods U,

1(;i =11, 2,...,1) satisfying the property described above. Then the in-
egTa;

1

. \ 1
wa(t)dt =)

=1 LA UANT;—y)

o(t)dt

exists, q.e. d.

Let X be a locally bounded commutative algebra over the field of
complex numbers. We will denote the unit of this algebra by e. A linear
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funectional f is called mulitplicative-linear if f(wy) = f(#)f(y). The seb of
all multiplicative-linear non-zero functionals is denoted by M.

The following set of complex numbers is called the spectrum of an.
element 2:

o(@) = {f(@):feM}.

If A¢o(), then there exists an (w—Ae)™'. A radical of the algebra X
(rad X) is the set

rad X = {weX: o(@) = {O}} (see [107, [117).
The radical is & closed ideal as the intersection of maximal ideals.
The set

a(z, 1-' g @) = {(f(ml)’ e ’f(mn)) :f‘?c-m}

contained in the n-dimensional Euclidean space is called the joint spec-
trum of elements zy, ..., ®,.

The main method of investigations of Banach algebras are Riemann
integrals of some analytic functions. So far the locally bounded algebras
have been investigated by other methods [10], [11], [12], [13]. Propo-
sition 1 permits us to return to the integral method. As a particular case,
we will show the existence of analytic functions of many elements. It has
not been known hitherto (see [14]).

Let ®(#,...,%,) be an analytic function of n-variables determined
on some domain Q > o (2, ..., @,). If there is such an element y that

f@) = o(f@), ..., f(yn))

for each feM, then we say that y is a value of the analytic function @ on .
the points 2, ..., z, and we write

Y= BBy o0, Tn).

The element y is uniquely determined only with respect to an
element; of the radical. Indeed, if rerad X, then f(y-+7) = f(y) for feM
and, conversely, if f(y) =f(y,) for all feM, then f(y—vy,) =0 and
r = y—1y,erad X.

THEOREM 2. Let @, , ..., %, be elements of a locally bounded algebra X.
Let D(2y,...,2,) be an analytic function determined on domain U contain-
ing the spectrum o(®y, ..., ®,). Then there exists a D (g, ..., By).

Proof. The proof is the same as for Banach algebras (Arens, Cal-
deron [2], Walbroeck [9]). At the beginning we consider the case where
@1y ..y &, are generators of the algebra X. We show that there is a domain
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of Weil W, i. e. a domain

W={C = (Cu--an):[Pi(Cl)'-'yc'n)[ <1; i=1727'--3N}

b

where P;(ly, ..., {y) are polynomials, such that o(@y,...,2,) =« W e 0. -

By the Weil formula each analytic function f(Zy, ..., ,) determined
in W can be represented on (2, ..., #,) by the formula

z ) . 1 y -Dil,_..,i,,,f(Cu ery Zn)d51---dcn
AR (7 27t Y | d, K )
(2mi) (Bpseenstn) 84, i, .,171 [P, L1y . eny L) =P (15 ooy Ta)]

ey ..

where the summation is extended on all systems of 1 =4, < ... < i, = N

Biy i =Q1 {62 1Py (8ay enny L)l = 1}

with some determined orientation, D;,,...,, are some polynomials of

815 +vvy Lo With coefficients which are polynomials of =, .
Let
@) D@y, ..., m)
- 1 Z f -D’ll....,iﬂq;(cl: ooy Lu)dly. . ag,
(2me)" L 2 '
(tgoe i) Bz, ,,,”Il [—Pi,,(fl, teey Cn)e—Pi,,(wli ey )]

vy Ty-

We will prove that the integrals presented on the right side exist.
We fix a choice 4,,...,4,. We consider the integral

[ (g ... dg,.
Sianiin
_ For each ¢ the spectrum of the element Py (®1y ..., 2,) i3 a unit
dise. Therefore by Zelazko’s theorem [10] the series

S (P,-,(ml, m.,))k
fromry ‘P’i,(C]J TRrRaY)

is absolutely convergent for all (fi,..., tu)eSs, i, But P; is poly-

nomial and P, (3, ..., ¢3) =1 for each point £° = (&2, ..., L) el ;.
Hence the expression e

-t
P‘i,(cly “eey Cn)

Dossesses an absolutely convergent expansion in the neighbourhood of £°.
Therefore for each £° there is such a neighbourhood U that the expression

[Pi,(cu vy Cn)—-Pi',(wlz sy mn)]—l
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possesses an analytic expansion in U. The expression
‘Dil,....’iﬂ,({l—' Cn) @(Cly ceey Cn)
n
1__11 [-P'L,(Cl’ ceey Cn)“‘Pi,(wla LR ] "”n)]

analytic on 8 ;..

Hence Proposition 1 implies that the integrals on the right side of
formula (2) exist. Further considerations are identical to those in the
case of a Banach algebra, q.e. d.

It is easy to check that

Remark. Theorem 2 can be extended to complete algebras in which
a topology is given by a sequence of submultiplicative p-homogeneous
pseudonorms.

For n =1 Theorem 2 wasg proved by an other method by Zelazko
[11], [12]. In general the assumption of analyticity cannot be replaced
by the assumption of differentiability. This follows from

ProPOSITION 2. There is a function x(t, 8) determined on the square
[0, 11X [0, 1] with values on I” (0 < p < }) which is non-integrable and
possesses both partial derivatives equal to zero.

Proof. If a function (¢, ) satisfies the Lipschitz inequality, then
both partial derivatives are equal to zero. Indeed,

Ytth =yt 9) | _ b

- < = BP0,
y(t78+h)~y(t78) <1__h1__p_>0
b S )

Henee it is enough to construct a non-integrable function satisfying -
the Lipschitz inequality.

We determine a function w,(Z,8) in the following way. We divide
the square into n® squares dividing each gide into » equal segments. We
order all small squares. In the i-th small square 1 < ¢ < n? we determine
a function 2,(¢, 8) as follows:

n\MP i—1 i 2
@ (8 8) = 3] esbar G = by = ry ——;max(lt-%i], [8—84l),
where (t;, 8;) is the centre of the ¢-th square.
The function =,(¢, s) satisfies the Lipschitz inequality with con-
stant 1, i e.

fieen (25 8)— @ (B0, 80)l| < mAX(E—12], |8—84]).
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Indeed, if (¢,s) and (%, $,) are in the same 4-th square, then

(,n)llp
ry Xt 2 i 2
2 {;@ =y mex(li-t, 8=841), = — 5 max(lfg—ty so_sﬂ)]

ll22n (25 8)— @a(tos s)ll <

|

if (¢, 8) is in the ¢-th square and (%y, s ) is in the k-th square (i # k), then

”wn(ti ‘9) ~wn(t0’ ‘90)”

n 2
< 5+ max(fi—to], ls—sl);

SR,
Si\g) Hesta P x[%, n%—%maxuto_tk], I“o—"kl)] ‘
n n
< ) Z[o, %ei(iﬁ)] + 5{ 2o, —:-ak(i.!)] < max([t—1to|, [s—8|)

(by ou(f, s) we denote the distance of the point (¢, 8) from the boundary

of the ¢-th square). .

) Ea.c.h function @, (¢, s} is integrable. We do not prove this, because

if there is a non-integrable w,(t, s), then this =, (t, 8) satisfies the theorem.
Let 4™ be a partition of the square [0,1]x [0, 1] into n® squares

obtained by a division of the sides into n equal segments. Let (12, s7)

be the centres of these squares; then v

1\
S(-”m 4%, (b 8 )) = (E) n(l/p_z)x[o,l].

Hence if n — oo, then ||8(w,, 4", (&, s;))| - oo.
We choose a subsequence 7; such that
(). “S(wnk, A%, (7%, $TR)|| > 4% || S(@n,_,, 4E D), 1=1,2,...,

and 7/nz_, is an even integer. This is possible because z, is i
. [4 -
grable. Let lf ) 38 nte

o 1
0ty 8) = ' an,(t, ).
k=1
The function #(t, s) satisfies the Lipschitz inequality. Indeed,
oty )= atte 80 < 3 (5] Honytt, 91—yt 01
k=1

<(> () ) maxte—sd, b=sap.

k=1
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Therefore #(t, s) has both partial derivatives equal to zero. On the
other hand,

“S(m; A", (8%, 3«?")) “
k—1
1|8 g 4™ (%, 570) | — || S( 3 gy 47, (828, s29)) | —
F=1

< k—1
=[5 ( X e a5 %, 529) (= 4"(1— 5 )>2",
=kt .

ag follows from () and the fact that am, (%, i) =0 for j>%
(ng/ne_; is an even integer).

Hence x(t, 8) is not integrable, q.e. d.

We do not know whether it is possible to construct such an example
for a function determined on a segment with values in L. Neither do
we know if there exists a non-integrable function satisfying the Lipschitz
inequality on a square with values in a space P 12<p <1,

3. In the preceding considerations we considered the Riemann in-
tegrals of function with values in a complete linear metric space X. Now
we will show why there are difficulties regarding the definition of the
Lebesgue integral if X is not a locally convex space.

In a locally convex linear metric spaces we may consider the so
called Bochner integral. It is an analogue of the Lebesgue integral.

A countable-valued function

y(t) = D yiam, (1),

i=1
where F; are disjoint measurable sets, is called Bochner-integrable (Hille
[6], p. 79) if the series ) y;|H;| is convergent. The sum of this series is
i=1
called the Bochner integral of function y(#) and denoted by (B) g y(t)dt.

A function z(f) is called Bochner-integrable if it is the limit of an
almost uniformly convergent (%) sequence of countable-valued Bochzer-
integrable function w,(t) such that llea (8) ]| < g{t), Where g(?) is a measur-
able function. Then there is a limit

lim [, ()d
im0

and we will call it the Bochner integral of the funetion x(t) and we will
denote it by (B) [w(t)dt.
z
(2) We say that the sequence zn(f) is almost uniformly convergent to x(t) if for

an arbitrary ¢ > 0.and an arbitrary neighbourhood U of zero there is a.set L, |Ls| < &,
such that @,(t) — (t)e U for t¢L..

Studia Mathematica XXV z. 2 9
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The unigueness of the Bochner integral of function x(¢) follows from
the faet that if a sequence a,(¢) tends almost uniformly to 0 and s, ||
< g(t), where g(f) is an integrable function, then

lim (B) [ @,(#)dt = 0.
Nn—»00 A

If the space X is not locally convex, then this is not true, as is shown
by the following trivial
_ Prorosrrion 3. If the linear metric space X is mot locally comves, then
there is a sequence of finite-valued functions ,(t) uniformly tending to 0
and such that the sequence f @, (t)dt is mot convergent to 0.
L

Let «,(t) tend almost uniformly to 0. Suppose that there is a limit
lim fw,,(t)dt =y.

‘!HwL
If f is a linear continuous functional, then

E{lof(wn(t))dt = f(y).

But [f(z.(8)] < @) |Ifll and f(z,()) tends to 0 almost uniformly.
Therefore f(y) = 0. If in the space X there is a total family of functionals,
then y = 0.

If there are no linear functionals on X, then the situation may be
different. For example, let X = L?[0,1], 0 < p < 1. Let

k-1 k
— <t\_y

k=1,2,..
n V(2

@, (1) =%l[k—_1,£] if oy

For each t, |lw,(s)| = »"~'; hence x,(f) tends uniformly to 0. On
the other hand,

1 n
1
(B)Bfw,,(t)dt = ;;;;1 nx["%l-f;] = X0,
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