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1 s’ensuit que
0

w(0) = > [¢"(s)dz(s).
joJ —oo
Lapplication de l'opérateur U, donmne la représentation en question.
COROLLAIRE. x{f) élant un processus stationnaire régulier & paramétre
continu et continu en moyenne quadratique, on @
i

bit;z) = D' [7(t+-9)az")

JeJ —~o00

()

avee Verrewr de prédiction
ot = o(t+1)—&(t; DI = D) [lgD(s)lds.
7T

On obtient la décomposition de Wold en introduisant la mesure
spectrale Z”(a,b) par rapport au processus #(f) lui-méme. Alors x(s)e
L(Z%;t), ¢ <1, et enfin [2]

i
o) = [gt—s)az"(s), g(w)eL,.
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Pointwise convergence of distribution expansions
by

G. WALTER (Milwaukee, Wise.)

The behaviour of Fourier series of distributions with respect to global
properties has been extensively studied ([6], [5], [2]). The same is true
for other orthonormal systems ([3], [7]). However, the introduction of
the concept of value of distribution ([4], [8], [6]) has raised the question
of how the orthonormal expansion of a distribution behaves locally. To
this question and related ones for other orthonormal systems we address
ourselves.

1. The theorems giving local criteria for pointwise convergence of
expansions of functions with respect to Fourier series are well known.
Algo it is well known that Fourier series of distributions converge in the
sense of distributions. It is clear (from the example of the § distribution)
that a distribution can be very well behaved locally and still not have
its Fourier series convergent at any point. It is also clear (from the same
example) that at some points the Fourier series of some distributions are
(C, 1) summable. Thus the question we pose first in this section is: which
ones at which points?

First we need a few remarks. Throughout we use the Ky(t,) to
denote the (C,k) kernel with respect to the orthonormal system {p,}
on the finite interval [a, b]. We use the ‘concept of value of a distribution
at a point in the form characterized by [4]. A distribution is integrable
over the interval [a, b] if its antiderivative has values at ¢ and b. This
differs with the definition in [5], but agrees with that used in [7].

TarOREM. Let {p,} be a constant preserving orthomormal sysiem on
[a, b] in class O°~' which for some we(a,b) is uniformly bounded and in
some neighborhood of = satisfies

()] < Eon®?

and whose (0, k) kernel satisfies

M
K17k
D R (t, #) < m

(te(a, b), t #x; n=1,2,...; k=1,...,0).
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where K (t, ) is a 0* function on the set [a,2—5] w [4+4, b], the hypo-
thesis about the order of the distribution could have been dropped.

The hypothesis is satisfied by the trigonometric system for any
integer a > 0 (see Zygmund II [10], p. 60). Moreover, from this we see
that the inequality also holds for certain eigenfunction expansions (see
Titchmarsh I [7], p. 16.)

In fact, let [y,] be the set of normalized eigenfunctions of a regular
Sturm-Liouville problem on [a, b], which has 0 as an eigenvalue. Then
we get the

COROLLARY. Let f be o distribution integrable over [a, b] with o value
at @oe(a, b). Then the Sturm-Liouville expansion of f is O-summable at @,
to y.

The expression “C-summable” in this case means (C, a)-summable
for some a > 0.

In the case of the trigonometric system, since each periodic distri-
bution, using a slightly difference notion of integration, can be shown
to be integrable (see [8] or [5]), the statement is much simplified :

Let f be a distribution of period 2n with & value y at z,. Then the trigono-
metric Fourier series of f is C-summable at x, to V.

Many of the classical results in the theory of trigonometric series
may be modified slightly to give ws statements about Fourier series of
distributions. The extension of the statement above to one sided values
does not follow, however. A simple counterexample is the § distribution
which has both left and right hand values at 0 but whose Fourier series
diverges to oo at 0 and hence iz not ¢-summable. However we may add
another hypothesis to get:

Let o distribution f of period 2n have left and right hand values at x,
and be bounded, at ©,. Then the trigonometric Fourier series of f is C-summable
at @y, o the average of the left and right values.

The boundedness of F at x, refers to the statement that flzo+Ax)
be bounded in the sense of distribution ag A — 0. See Zielezny [9] for the
consequences of this definition.

The converse of the above theorems doesn’t hold as is shown in both
cases by the example of &' whose expansion is C-summable at each point
but which does not have a value at 0. A number of partial converses
are possible, however. One is:

4 trigonometric series which is C-summable on a set of positive measure
is the Fourier series of a periodic distribution.

This follows from the fact (Zygmund I [10], p. 316) that such geries
have coefficients O(n*).

Another is:

icm

Distribution expansions 147

A trigonometric series which, together with its conjug'ate smjies, 8
O-summable at a point m, is the Fourier series of a distribution which has
a value at x,. .

We suppose the point to be #, = 0 and suppose both > A4,(z) and its
conjugate are C-summable to 0 there. Then

Z A () = 2 a, 00802+ by, 8inne

n=0 =1
is such that both a, and b, are C-summable to 0. We may assume both

are (O, k) summable, % even. Then, since a, = o(n*) and b, = o(n*), the
function ¥ given by

- @y, COS NE +- by, Sinnw

=1

is a continuous function such that D*+2F = f the distribution of VV.hiGh
Y A,(») is the Fourier series. Then summing by parts %--1 times

we get

X @, CO8 Nt + by, Sinnw
n

COBNX ~ sinne
s \E+2 § k 1k+1 | .S- 8Ic 1k+1
( ) ( 8n (’“9)7:4-.2 n ("T})k-}-ﬁ
n n

)2v—k»—2

*j2
= ot 3 sk 3 -y B0 —

»=0

(k-+1)/2 (nw)m’* k_s .
Sk Akl v +2p
+an4 Z (—1y —-—-———(2v_1)!)+w (@)
k41
= 2a,w’+w"+’R(m).

y=0

(Note that s& and 8¢ are o(x*).) Since it may be shown that R(z) — 0 ag
2 — 0 (see Zygmund IT [10], p. 67), the continuous function

k41

F(@)— Y a,0" = F(a)

r=0
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satisties F(2)/z"* >0 as x>0, and we see that f has a value
at 0.

The converse of this converse is also false since there are functions
which are continuous whose conjugate Fourier series diverge to oo (see
Zygmund I [10], p. 263).

2. Classical pointwise convergence theorems can usually be extended
to those orthonormal systems other than the trigonometric which have
the sum

n
Eu(t,0) = D o (D), (@)
y=0
given by an expression similar to that for the trigonometric system. For
example in the case of orthogonal polynomials one has the Christoffel-
-Darboux formula. Alexits [1] considers orthogonal systems of polynomial
type for which

4

2 ?’s:}fk Pnpi(8) Prys (),

Jeep

Kaltya) = ) Fu(t, @)
k=1 1
where

1
Fy(t, ) = O’(t—;_a:) ag { -2 and 75.% = 0(1) a8 n > co.

The natural extension of such systems is to systems whose (0, 1)
kernely Ka(t,2) are of the form

»
D) Ppnsilt o (@) +
if=—p

1 m
1 — —
(2'1) Kn(t) w) - n+1 k-§1 Fk(t7 :I})

n
* + ) Bstnss s (@,
v=0
where Fy(t, ») = O,(1/({—=)%); D,F, is continuous for ¢ #a and
DFy(t, @) = Og(L)(t—0)); ¥k = O(1) a8 n—oco; and ff)x = 0(v
a8 v — co,
We shall expect the derivatives of the g, to behave like the deri-
vatives of Jacobi polynomials, namely

q
onlt) = D) 80s(t)pnss (1),

fm—g

(2.2)

where o) is continuous in (a, b) and ¢ = O(n).
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We observe that (2.1) is satisfied by a number of systems. Indeed,
for an arbitrary orthonormal system of polynomials [p,], for example,
we have

= [ o )
K"(t, w) == m (—t-;‘m—)z {22 [( a’+2) P pv+1(w)pv+l (t)+

ye=(

i 2
+ e e — 7 [0 (@) P (D Do ()2, (5] 2 (53) Po(@)Do(B)+ -
=0 v 1
Qn Qp i1 : A,
+ _,_pn(w)Pn-x-z(t)_'z( ) Pus1(®) Prga(B)+ Dus2(2)Pa (B,
Ont2 Ony2 iz

where a, is the leading coefficient of p, and y. is determined by the
recurrence relation (see [1], p. 25)

o [
= ~ 1.'Pn-1($)-

Oy,

(#— Yn) P (@) Pas1(@)+

+1

If the a, and y, behave as they do in the case of the Legendre
polynomials, e. g., (anfonsy = nfVn—3Va+1, po=0) K;' is of the
form (2.1).

We will call the system one of ,nice polynomial type” if it satisfies
(2.1) and (2.2) and in addition

D ¢i(@) = O(n)

uniformly in interior intervals of (4, b). We have the

TawoREM. Let {p,} be a constani-preserving orthonormal system of
nice polynomial type with respect to the weight function o >0 in (a, b),
oe0'[a,b). Then the expansion of a distribution f which 4s the global
deriwvative of an L* function F and whose support lies in (a,d) s (C, 2)-
summable to its value at each point in (a,b) where f has a value given by
the local derivative F'(z).

The proof involves integrating by parts the integral expression for
the difference between o2 (x) and the value y of f at #. Then the theory
of singular integrals is used to show that the integral

[ (F% _y) (t— o) Di{3 (1, @) o(8)) dt

a+td t
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converges to 0 as # — oo, Here ¢ is a number such that [a+6 b—4)
contains the support of f. '
The singular integral considered will be the one with kernel
t—aw
XDy K (t, ) = D,(t, #). We need show that (t=o)x
(i) j[di,,(t, #)e(8)d —~ 0 as n — co where J = [a, f]—[w—1, @--7]

where [a, f] is an arbitrary subinterval of [a-+ 8, b—0] = I,
z+n
(i) [ Pult,@)o@)dt—1 as % — oo,
TN
(iii) @, is uniformly bounded in I—[z—7, z+7],
(iv) 1{ |Da(t, #)] o (t)dt is bounded.

The form taken by ®,(t,x) is dictated by (2.1
bo e w(y ¥ (2.1) and (2.2) and may

1 e+, .
s ;‘ ) (= O DL, 0,

where D, Ea(t, #) is given by the expression

m v q

6{n+€)

(2.3) g Fy(t, o) . Z 12 Py ik () Pnpisr(t) @y (@) +
= ifm—p l=—g¢

6(lv+i)
+ ) a0 1019y () +EAG a:)Oa,( : L )
—&

prmr: n—++1

We first observe that (iii) is satisfied by virtue of the condition

2, #i(@) = 0(n)

Puz()

which implies that

D 1) DEN¢, @) = 0(n?)  for f—a| > 9.

=0

We observe also that (ii) follows from (i), th ‘ in
! , the constant preserving
przoperty of [¢,], the integration by parts formula and the fact that
Ky(t, @) >0 a8 n— oo for ¢ = .
‘We next show that (iv) holds. We denote b igti
/ ) . y P(t, «) the characteristic
function of the set on which ®, is positive and by N (¢, #) that of the

iifilgn which it is not positive. We then break the integral in (iv) up into
J and the integral over the set [a+6, x—1L/n] v [#+1/n, b—6].

zZ1yn
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From the first integral we have

z+ln

2
P(t, 0) (- 0) DA, @) e (9t
T-1yn

¢  @+lyn )

o Ans
P(t,0)(t—) D) 57" 80 as()pnus () (@) e ()

f=m—g T-1N
g @+l

<(2a+1) D)

j=ew—g 10

[P (¢, 2)(t—@) o (1)]* 0 (8) dt X
b n

X o
I

<@e+1) D) 0.(67) D 06N (@)

Jem—g =0

2

o(t)ds

An
4

T P (1) (#)

n

< (2¢4+1)"04(n~*) 0’0 (n) = 0x(1)-

The same procedure holds for N (t,z) and thus the first inftegral is
bounded. To show the other integral bounded we denote by H the function

H{(i, ) = P(t, m)(t— o) Fr(t, @) 2n(t) 4 (2),

where g, is the characteristic function of I—[#—1/n, --1/n]. Then that
part of the integral contributed by the first line of (2.3) is given by

) 6£v+i)

n b
1 r41 R )
(2.4 ,Zum; — j JEC ST ¢v+1+z<t)¢,+f<m)e(t>dt’

AN K A -
< Zn_{.z {Za[n—l—l ‘l’i},ktp.ﬂ-(a;)]} %

1,9,k,0 =

n b

X {2 [f H(, W)¢v+i+1(t)9(t)dt]2}ll2

=0 a

n
1 1/2
= 3 g 0wt Y de)
7,1 =0
where the ¢, (x) are the expansion coefficients of H. By Bessel’s inequality
we have
n b
D d(@) < [ H*(t, w)e(t)dt = Oa(n)

vl a
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whence if follows that that part of the integral is bounded. The bound-
edness of that part given by the other lines follows similarly. Hence we
get (iv).

We can get (i) by the simple expedient of taking y to be the cha-
racteristic function of I— [#—1#, #-+7] and repeating the last argument
for the function

H(t, @) = (t—2) Fp(t, ¥)1(8) 5 (2).
‘We then use the fact that ¢,(z) — 0 a8 » — co to deduce that

D, Grina(@) = ou(m).

you 0

We now may invoke a singular integral theorem (see [1], p. 257)
to deduce that

b—s

F () .
f ((t—m) —V) (t—x) DKL (t, #)o(t)dt

ats

converges to 0 as n — oo and, by a repetition of the argument, to show
the same holds for the integral with ¢ replaced by o’. Then another inte-
gration by parts leads us to the conclusion of the theorem.

The extension to values of higher order simply involves an extension
to higher orders of complexity.

3. Classical convergence problems may often be phrased in terms
of 8 sequences, i. e. sequences of functions converging to the & distri-
bution. It is well known that the Dirichlet kernel and the Fejer kernel
used in trigonometric Fourier series both form é-sequences. These kernels
are respectively the partial sums of the expansion of é(z—¢) and the
(C,1) means of these partial sums. Therefore it might be expected that
some statement about pointwise convergence of distribution expansions
could be phrased in terms of the behaviour of the partial sums of the
expansion of & and its derivatives. The following theorem is one such
statement:

TemoREM. Let {p,} be an orthonormal system on [a, b), in class C*
such that for some ze(a,bd), there is an o such that

(1) 8ay 8z, .oey 05 has an ewpamsion with respect to {p,} dominately
(C, &) summable to 0 on intervals [4, B] not containing w;

(i) {1} has an empansion (0, a) summable at z to z.

(iti) |(o— "' DIRE(t, 2)) < M on subintervals J < [a, b] for some
J=—ky...,0,1,... '

e ©
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Then the expansion of a distribution f of order k—1 integrable from a
to b whose jth derivative or anti-derivative has a value y at & of order b— 3~ j
i8 (C, a)-summable to .

The (C, ) means of the expansion of f are given by

1
oa(e) = [F() Ealt, @) dt.
a
We may integrate this expression by parts k times to get
b
(—1)* [ f=9(0) DIEL (S, @) dt+
a

+ (=1 D) DF RS (2, @)+ .. VD (e, )6

The integrated terms converge to 0 as n — oo since they constitute
linear combinations of the (C, a) means of the expansion of ¢ and its
first k—1 derivatives evaluated at ¢ and b. By the hypothesis, there is
a continuous function F such that D*F =f and, by changing F by
adding a polynomial of degree k—1 if necessary, we can suppose that

7() y
Sndh AN S— : .
t—af™ ~ E+))! e
Hence we may write the integral as
: X—sy Z+ey b
[PODIEMG, )it = [ + [ +
¢ o L—Ey @tay

where &, and &, are to be determined. It is clear that the first and last
integral converge to 0 as n — co. We may write the middle integral as

I-!:lz

(Tf—:))w (t— o) "DEKL(t, o) dt
a:--sl
T+89
= F(t) 4 ki k e
_w_f,, ((ﬂ-@"”) Gy G o DG, @y di+
y T+ g9
= | (—2DFE;, @) di.

Using (iii) of the hypothesis, it is clear that the first integral can
be made small by taking ¢ and £, small enough. The theorem will be
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proved if

L2 (1— m)’”’i

mD{‘Kﬁ(t,m)dt—+1 as

k — oco.

L2y

Again integrating by parts & times we find that

289 '
t—
f( w)Kﬁ(t,m)dt->1 as

j' n — oo,

T8y

which it does by hypothesis (iii).
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Nicht verbesserbare Strukturbedingungen

LASZLO LEINDLER (Szeged)

Einleitung. Das Haarsche System ist im Intervall [0, 1] folgender-
weise definiert: ¥ (2) = L und fir n = 0,1,...und k =1,2,...,2"

. o%—2 2W—1
1/2 fiir ZTe '2n+1 ) Tgn+T ’

2k—1 2k

(k) = o
wEO=N_VF

0 sonst.
‘Wir setzen

W@ = (@) wd @) = gm(@),

wobei m = 2" +k (n =0,1,...; k=1,2,...,2") ist.
Sei f(x) eine L[0,1]-integrierbare Funktion mit der folgenden
Entwicklung

f@)~ D omim(®).
m=1
Kiirzlich haben Ciesielski und Musielak [1], Uljanov [4] und Golu-
bov [2] u. a. fiir die Konvergenz der Reihen von der Form

(1) D leatm® (8> 0)

M=l

1
hinreichende Strukturbedingungen und fiir Y |¢,|"m’ in verschiedenen
m=k

Spezialfidllen Grofenordnungen gegeben.

In dieser Arbeit geben wir zuerst fiir die Konvergenz der Reihe
J'lem|’4(m) eine hinreichende Strukturbedingung, woraus fast alle be-
kannten Ergebnisse, die sich auf die Behauptungen beziiglich der Reihen
von der Form (1) beziehen, als Korollare folgen. Unsere Behauptungen
leiten wir aus dem allgemeinen Hilfssatz II ab, den wir durch Anwen-
dung der Ergebnisse von Golubov [2] beweisen.
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