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STUDIA MATHEMATICA, T. XXVL (1966)

Extensions of sequentially continuous linear functionals
in inductive sequences of (F)-spaces
par

W. SLOWIKOWSKI (Warszawa)

1. Introduction (1). These investigations was inspired a long time
ago by a problem communicated to the author by L. Ehrenpreis. The
problem concerned extensibility of sequentially continuous linear func-
tionals defined on subspaces of Schwartz’s spaces 2(R) of infinitely
differentiable functions with compact carriers contained in a fixed
domain Q (cf. [3]). It can be easily verified that distributions from the
domain of a partial differential operator on 2'(£2) can always be considered
as extensions of sequentially continuous functionals defined on the range
of the adjoint differential operator acting on Z(f2). Hence, it becomes
apparent that a necessary and sufficient condition for existence of such
extensions must be closely connected with any set of conditions that are
necessary and sufficient for the operator to map onto 2'(L2). For con-
volution operators, including as a particular case differential operators
with constant coefficients, such a set of conditions was given by Hérman-
der in [2].

Going one step further in generality, call (#%)-sequence any sequence
X of (#)-spaces such that every linear space from % is a subspace of the
subsequent linear space from the sequence and that the identical in-
jection of every (&)-space from X into the following one is comntinuous
(cf. [12]). :

Situation that necessitates using such a notion arises, for instance,
when we discuss factor spaces of the Schwartz’s (2, 7g) space. Such factor
spaces need not be (#F)-spaces any more though they always naturally
decompose into (FF)-sequences. .

Let X denote the union of linear spaces from an (£F)-sequence %.
A linear functional defined on a linear subspace of X is called sequentially
continuous if it is continuous in every (#)-space from X. We formulate
the general problem of extension as follows.

Given an (f%)-sequence X find a natural condition for a linear
subspace X, of X defined above which is necessary and sufficient

(1) A substantial part of the results presented here was obtained when the author
was at the Institute for.Advanced Study in Princeton on the NSF Grant G-14600.
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for every linear sequentially continuous functional on X, to admit
an extension to a sequentially continuous functional defined on the
whole X. '

First results of such sort were published by Ehrenpreis [1] who
proved bornologicity of the relative topologies of some special subspaces
of @. This is very close to the way in which Theorem 2.1’ of this paper
treats the problem of extension.

Conditions presented in this paper use some topological properties
to describe subspaces with the extension property by means of so called
good location in the whole space. Some preliminary results concerning good
location (though the name was not yet introduced) was already repor-
ted in [4, 5, 6].

This paper does not use the standard notions and methods of the
general theory of linear locally convex topological spaces and this is
because the author does not know about any way of expressing the con-
dition for good location given here in terms of that theory.

Hovewer, there are some statemerits in this paper, suitable for trans-
lation on the language of locally convex spaces. Such statements are
Theorems 2.1 and 4.1 and their translations, mere techniealities, are
Theorems 2.1’ and 4.1’ respectively. It seems that not much more can be
done in this direction. ‘

To make the paper more comprehensible we start with the particular
case describing the general results in the case of Schwartz’s spaces 2.
These are Theorems 2.1, 2.2 and 2.1' of this paper which has been
announced in [1]. As the next comes an example which provides the
reader with an intuition in regard to the good location and question of.
extensibility of linear functionals. This are Propositions 3.1 and 3.2 of
this paper which have been announcéd in [8].

The example given here is not the first one to that effect. The already
mentioned paper of Hormander [2] yields a full spectrum of functionals
not extensible to distributions. To produce such functionals, it iy suffi-
cient to take a distribution 8 with compact carrier and any §-convex
pair of domains (2,, 2,) which is not strongly S-convex. Then, the image
8*'2(Q,) admits sequentially continuous functionals with no extensions
to the whole 2(Q,).

In the next step, Theorems 2.1, 2.2 and 2.1’ are expressed for arbi-
trary strict (SF)-sequences as Theorems 4.1, 4.2 and 4.1’. The announce-
ment of this stage of the theory was given in [9]. The final step gives
the most general form of the extengion theorem in the case of arbitrary
(##)-sequences. This is Theorem 5.3 in this paper. To provide the
pnissing links between Theorems 4.1 and 4.2 and Theorem 5.3 there
15 proved Theorem 5.1 which brings some facts verifiable probably
only in the (£%) case as they. were proved. All of it was announ-
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ced in [10]. It is [13] where some of
important applications.

Finally, the importance of the out-of-theory facts used here should
not be neglected. Thege are some statements taken from [11] and [12].
Actually, the temptation for independent discussion of these facts in
[11,12] caused a considerable delay in the final publication of the results
exposed in this paper. Being more precise, Proposition 5.6 of this paper
supporting all kind of necessery conditions for existence of extensions is
verified here by use of a version of the open-mapping theorem introduced
in [12]. It would be interesting to find whether a parallel necessary con-
dition follows from the Pték’s version of the open-mapping theorem [14].
In the following, the proof of Proposition 5.2 of this paper is derived from
Proposition 12 of [11] which is nothing but another version of the well-
known Banach reasoning that leads from nearly open to open mappings.

I wish to express my sincere gratitude to Dr A. Wiweger who was
g0 kind as to read ‘the manuscript and point out several inaccuracies
to the author.

2. Extensions of sequentially continuous linear functionals to
distributions. Consider the N-dimensional Euclidean space Ry . To any
subset @ of Ry assign the linear space #(G) of all continuous complex-
valued functions defined on ¢. By D;, i =1,2,..., N, we denote the
operations of partial derivation and for p = (pi,...,pn), Where p; are
non-negative integers, we write D® for D{1 D32 ... DEV¥, i.e. the super-
position of the partial differentiation. The number |p| = pi+...+Px
denotes as usvally the rank of differentiation. For open G we write

& (@) £ {fe%(@): D°f exists and is in #(G) for every p}.

results obtained here will find

Compact subsets of Ry with the closure of the interior identical with
the original subset will be called compact domains. For a compact
domain K < Ry we write

E(K) = {fe¥(K): (D”f)(f) exists and is uniformly continuous

for teIntK and every p with |p| < n}.

Further, let

Iflle = sup{|f(H)]:teK},
for fe¥(K) and
I = > 107l

1Pi<n
for fe¥"(K), where D”f denotes the extension of (D®f)(t), telntX,
over the whole K.
Every (¢"(K), ||*lx) is a Banach space.
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Fix an open subset 2 of Ry. A sequence & = {K,} of subsets of Q
is said to be a special cover of @ iff {K,} i is locally finite and the sequence
{IntK,} is a cover of Q.

Denote by supp f the carrier of the function f. Let

D= {fes(0):supp f is compact}.

Further, for a fixed special cover K =
compact domains, we write

{K,} of Q, where all K, are

n
= {fe2: supp f <« U K}
=1
Clearly,
=]
2= 9,.

n=1
Denote by v, the topology of 2, (topology of uniform convergence
with all derivatives). This convergence is induced by pseudonorms
I 1< h< o0, 1 <4 <m}.
It is obvious that every (2,, v,) is an (#)-space. The sequence

D={2

ny Tu)}

will be called a decomposing sequence of (D, ©p), where o denotes the '

usnal (ZLF)-topology of & (ef. [3]).

Denote by 4" the family of all increasing sequences of natural num-
bers. For ¥, Det”, £ = {k.}, b = {h,}, we write § < ¥ whenever h, <k,
for every mn. Let for b = {h, }et" (2)

= {f<0(2

Here fiz denotes the restriction of f to K. Further

P E > e,

n=1

): supp f is compact, fix, ¢¥™(K,) for every n).

for fe %" In view of the local finiteness of ® the sum on the right-hand
side is always finite.

We define
If1P

n
={fe2": suppf =« U K} and
el

for fe 2y,

If1 = D) I, =
[25Y

(*) Small gotic letters are used here to denote elements of .4 which in [4][11]
were bold faced.
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This way, with every De.#" there is associated a sequence of Banach
spaces

D = (25, [0}

To complete the list of objects necessary for presentation of the
results concerning existence and behaviour of extensions to the whole 2
of linear functionals defined on subspaces of &, it is necessary to add one
more type of space to the already defined collection.

Put )

m
¢ (- UK

i=1

" = {fs@b: f m
9= U %

and
D" = {fe 2™ suppf < inKi}.
We provide each 2L™ with the topology 4™ of the uniform con--
vergence with all derivatives on Q—QK,- and the convergence with the

norm ||-|’ simultaneously.
The sequences of (&)-spaces

o L g ghm ™),

are called moderations of D by DN

Consider a linear subspace 2, of 2. We say that 2, is good located
in 2 iff the following condition holds:

To every fe 4 there correspond He A with £ <
there correspond m such that

m=1,2,...

b sach that to every %

2} ~ Closure, (T, ~ D) < Closure,( D, ~ D)

for every p, where the first closure is taken in (9},", r%k) and the
second in (2%, |I-[L).

PROPOSITION 2.1. The definition of the good location of subspace in 2
does not depend on the choice of the special cover & of Q.

This Proposition is an immediate consequence of the coming Theo-
rem 2.1.

Consider the sequence . A gequence {f,} = 2 is said to be conver-
gent to fe? in D iff {f,—f} is contamed in some 2,, and tends to zero
in (D, Tm)-

A linear funetional ¥ defined on a subspace 2, of Z is said to be
sequentially comtinuous iff {Ff,} tends to zero for every {f,} = %, which
is convergent to zero in D.

Aceording to the generally accepted terminology every sequentially
continnous functional defined on the whole .2 is called a distribution.
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The space 2’ of such functionals coincide with the space of distributions
over  in the sense of Schwartz.

TemoreM 2.1(%). Consider a subspace D, of 2. Every sequentially
continuous linear functional defined on D, admits am extension to a distri-
bution if and only if 9D, is good located in 2.

TEEOREM 2.2. If every sequemtially continuous functional defined on
a subspace D, of D admits an extension to a distribution, then to every
tet" there correspond Dest”, D =¥, and to every n there correspond m
and 1 > 0 (depending on k) such that every sequentially continuous functional
defined on D, with the restriction to Do ~ D, having the ||-|[5, -norm smaller
than 7, admits an extension to a distribution which has the restriction to 2,
having the |- [, -norm smaller than omne.

Proof of Proposition 2.1. The good location of & 2, = 2 i, by
virtue of Theorem 2.1, equivalent to the fact that every sequentially con-
tinuous functional on 2, admits an extension to a distribution. Since
this last fact does not depend on the choice of the cover R, the same
must be true about the good location which proves the Proposition.

The proofs of Theorems 2.1 and 2.2 will be derived later from more
general Theorems 4.1 and 4.2.

We can provide Theorem 2.1 with a certain equivalent formulation
based on the notion of relative topology.

TeROREM 2.1". A subspace D, of D is good located in 2 if and only if
every sequentially continuous functional defined on D, is continuous in the
relative topology of 2 induced by the usual (ZF)-topology v9 of 2.

To establish the equivalence of Theorems 2.1 and 2.1’ we notice two
following facts. First, if a functional defined on 9, is continuous in the
relative topology of 2,, the existence of the extension of the functional
to a distribution is merely an application of the Hahn-Banach Theorem
and, secondly, if it is known that a functional admits an extension to a
distribution, it must be necessarily continuous in the relative topology
of 2,. '

Once these facts are noticed, it becomes apparent that Theorem 2.1
and Theorem 2.1' are just only different formulations of the same fact.

3. An example. Before starting with a general theory of extensions
consider a simple but iluminating example.

Let © be the open interval (—1, 1), To every & we assign a function
ghe€"(R) with suppgl < (27%*,27"% guch that the %-1-th derivative
of g% does not exist.

Take g2 (R), ¢ >0, suppp = [—1,1] and [p(f)d =1 and put
?:(t) = s~ ¢ (¢/e). Then, for & — 0, p,*g} tends to g} uniformly with deri-

(%) This is an improved version of Proposition 1 of [6].
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0
vatives up to the order k. Let &, — 0, monotone, be such that supp gkm
c (2%, 27%), where g & 9., * ke D(R). For any fixed k we define
the scalar product

k

(g, W = D, [Dlg() Dh(5)ds  for

i=1

g, he®*(R)

with compact carriers. o .
Let {hin} Dbe the Hilbert-Schmidt orthonormalization of {gxm:
m=1,2,.. } Since the uniform convergence with deﬁv&twesdiup to tlllle
2

order %k is stronger than the |-|-convergence, where [lgll = (95 9)&

we find that there exists a sequence {f},} such that

[~
D 1fhml® < o0

M=]
and that
o
g(l'c = th,mh?c,m
m=1
in the topology of {-|[x. Dropping some ghm if necessary, we can have
% # 0 for every k and m. )

" Now, to every (k, m) we assign a function fR.<2Z(R) sueh' that
SUppfom c (1—27% 2% ™1 1_9=F 1 927%™} and that the carrier of
fim is non-void.

" There always exists a sequence {8xm}, sxm > 0, such t'ha,t .for every p,
sup {|f%mlls /8km: m =1, 2,...} is finite. Hence, substituting if necessary
in (8 y Bhyms 1) fom[Sem TOT fim, it can always be made .

Toie = SUD{|fmlp/thmis 18 = 0,15 m =1,2,..} < o0
for every p.

Let % consists of all elements of the completion of (%" (R), ||~[]k)
which have carriers contained in (—1,1). Define

Hrip=(hedti b= DYtnhin, D) lteml® < 00}

Ma=l Mzl
and
[ oo
Hope = hedly: b= Dtynfims D [trml® < oo},

mm=l M=l

where frm = (fom—fom_1)/fhm for m = 1,2, ... and ﬁ;,_u = i);c_l »
The carriers of the elements of 5#; 5 are all conta,me;cd in (2 ) 27%) and
those of the elements of 2, are contained in (1—27",1—27"""). Hence,
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1y and #,, are orthogonal in (#%,|[-|.). We have

Ztkmfkm == Z(tkm/tkm“tkm+1/tk,m+l)ﬁm

m=1 M=1
and then

o0 " o0

| X il = 3 Ml trmsa (B a2 [l
Me=] Mm=1
(=]

< D Itkml+|tkm+l|)
M=l
<2 2 ([l + 272 thkmlltk,m+1| < 1y thkmﬁ
M=l M==1 Ms=1

Hence, we have proved the following statement:

0o
Levma 3.1. For every f = 3 tymfumefaor we have
M=l

U1 < 45 D) loml™

M=l

From Lemma 3.1 it follows that every f e,y is infinitely differen-
tiable (4).

Congider an operator F, from ) into #,; defined as follows

Fkh = Zikmfkm

M=

0
where h = Ztk,mh%,me'”l,k‘

M=1

Lemma 3.2. The mapping F) is continuous from (#ypy |lk) into

(o Tog)y where =y demotes the - topology of uwniform convergence with
all derivatives.

Proof. If ||h,— k| tends to zero, then ' ltﬁ,m——tk,mlz tends to zero
| =1 :

for n tending to infinity, where &, = Z thmPim. The estimation of

Lemma 3.1 gives |F:h ,L-—If’,,h||,,—>0 for 'n—~> o0, for every p, and the
Lemma follows. :

(*) It is well known that in spacés P(K), K being a compact. domain, simulta- *

neous convergence with pseudonorms

Y D%, n = 1, 2,..., is the same for every
1l<n .

L"-norm |- fl» for 1 < 7 < oo.
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Define
Hop = {h+Frhety: hedly ).

It is clear that the carriers of elements of 5#,; are all contained in
L= (27%% 27%) U (1—27F, 1—27%").

LEMMA 3.3. The space (#op, |- lIx) i complete, i. e. is a Hilbert space.

Proof. Indeed, if {h,+Fihy} satisfies the Cauchy condition, then,
in view of Lemmas 3.1 and 3.2 the sequence {Fyh,} must tend to Fyph
for b = limh, in (s, [|*ll) which concludes the proof.

LeMmA 3.4. If for some geify; the intersection (suppg) (1—2-"
1—g7k-t ) 4s wvoid, then for some 1, there is ty,m = t.,tkm, where ¢ =
h+Fph and

o
b= Ztk,mhloc,mef-%l,m
m=1

Proof. The intersection (suppg) ~ (1—27% 1—27%~ is void iff

b = gedtyp, i e. iff Fyh = Fig = 0. Then, it must be

o
2 tk,‘mfk'm = 0
m=1
which gives
(=]
2 (rmtlm— Yeme 1 M1 ) o = O
Ma=1

and this holds only for tim/thm = timii/thmii=7% for m =1, 2,...
The proof is finished.

For a subset U of a linear space X, [U] denotes the subspace of X
spanned by U. Elements of 2(£2) will be identified here with elements
of 2(R) with carriers in Q.

Define

H = [k@lm_k], Dy =H D).

PRrOPOSITION 3.1. The subspace 2, of D(82) is not good located in D (£2).

Proof. Consider an interval K; = [—1/2,2/3] and let {K,:n =2,
3, ...} be a sequence of compaet subsets of (—1,1) such that & = {K,}
is a special cover of (—1, 1). Fix any fe 4. To contradict the good location
of 2, in 2 it is sufficient to show that no matter how great is a natural
number m and no matter what an § > ¥, b = {h,}e./, is taken, there
always exists gn,e2) which is the limit in +}’-topology with properly
adjusted . p of a sequence of elements of 2,, such that there iz no
sequence in 2, that tends to g, in (2L, -l ).
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m .
Take k, such that (1—2 "m, 12~y | J K, is void and that
i=1

the |[|-|lx,,-convergence implies the uniform convergence with derivatives
up to the order h,. Pub g, = gi . Then,

Im = DB (Bl T )
Neal
and the convergence on K, must be uniform with derivatives up to the

order h,.
m
It remains to prove that no sequence from 2, with carriers in UK;

can be convergent to g, in (D, ||| k). Indeed, if {gpmn:n =1, 2, t_1} c

< Dy A D5, converges in (DY, |- [5) to g, then it must tend to Om in the

pointwise sense on (2-*m~1 9-%m), Hence, almost all gp,, 7 =1, 2, veey

do not vanish identically on (2~"m~% 2~%m) and by virtue of Lemma 3.4

the set (SUPDgman) A (1—27"m 1—27"»~1) must be non-void. Hence,
m

having (1—27"m, 1—2*~1) digjoint with |J K;, we find that almost
=1

mn
all g, n = 1,2, ..., have carriers not contained in U K; which finishes
the proof. =

PROPOSITION 3.2. The subspace D, is closed in the usual (LF )-topology
of 2(—1,1). .

Proof. Take f, from the closure of 9, in the (£#)-topology of

2(—1,1). Since f, admits a eompact carrier in (—1,1), there must be %,
such that suppf, « (—14-27",1—2-%). Furthermore, f, must be the
poil}twise Limit of a net of elements of 2,. Since every element of 2,
vanishes on (—1,0), so must do f, and the inclusion for the carrier of fo
strengthens as follows: supp f, < [0,1—2 %],
) As the element of the closure of 9y, fo must be the (LF)-topology
limit of & net of elements of 2,. Then, having every |||l continuous in
the (£#)-topology of 2(-1,1), we can pick s subsequence {f,} of the
net, tending to f, with respect to all norms Nlley #=1,2,...

Ag it was done before, put

=@ 27 0 1—27% 19751
and write for any h defined on R
h(t) for tely,
for teR—1I;.

Since {f.} tends to f, with respect to every |||l and fupuy e, for
every k, we have fywes#,, for k=1,2,... Since the simultaneous

by () =
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Il lx-convergence is uniform with all derivatives, every fome2(—1,1)
and

ko
Zfo(i)fgo-
=1
Consider
ko
fl =fo— Zfo(i)-
=1
Having

ko
2 f o) € 907
i=1

it is sufficient to show that f;, = 0. The carrier of f, is disjoint with
(1/2,1) and ||f;—gnllk — O for every k, where

ko
In = fn"‘ Zfo(i)
==l

and then figes#,s for ¥ =1,2,... Thus, by virtue of Lemma 3.4 and
the fact that Fifiw = 0 and fig 5 gk, we obtain fi = 0 for every k.
Hence, finally, f, = 0 and the Proposition follows.

In the case of the presented example of not good located subspace
D, of 2(Q) it is easy to construct directly a sequentially continuous fune-
tional on 2, which does not admit any extension to a distribution.

The identical imbeddings of (5, [|-llks1) into (Fug, || [k)  are
continuous but not bicontinuous so we can produce functionals ¢, defined
on P(R) A #yy, continuous in (2D(B) ~ #yx, || lkys) and not conti-
nuous in (@(R) Ay |[-||k) respectively. Define ¢ over 2, setting

p(h) = Y oulhe),

k=1
where

b= ) (+Fuhs), ety for k=1,2,..
k=1

and almost all h; vanish identieally. If {h,} = 9, tends to some limit
in 2, in the sense of the convergence in 2 (L), then there exists %, such
that supph, < (27%,1—2"%) for all » and then limg(h,) = p(limh,)
which means that ¢ is sequentially continuous.

Suppose that ¢ admits a continuous extension ¢ to the whole 2(2).
In [0,1/2] the distribution g must be of the finite order, i. e. there exists &,
such that ¢ is continuous with respect to ||-|i, on

[gaﬁ,k] A~ (D).
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Suppose that {h,} = #ip, ~ D(R2) is {I*llx,-convergent to zero and
that simultaneously {gy ()} is not bounded. We have

lpng (Ba)l = 19 (bn+Fry )| < (@ ()| + 1@ (Fy )| < M iy +- |5 (B o)

Now, since {i,} is |- |lx,-convergent to zero, it follows from Lemma 3.2
that {F,Co by} tends to zero uniformly with all derivatives and then
limey, (k) = 0 in spite of the unboundedness of this sequence. Hence the
functional ¢ can not be extended over the whole 2(R2) to a digtribution.

4. Extensions in (#%)-spaces. In this paper it is often written
briefly space, subspace, functional, while it always means linear space,
lLinear subspace and linear functional. In particular, spaces of functionals
are always considered provided with pointwise operations. Linear topo-
logical spaces are written as pairs (U, v), where U is the space and r is the
topology. If U is provided with a pseudonorm |[|-|| that induces the topo-
logy of U, then we write (U, ||-||) for this linear topological space calling
it a pseudonormed space.

It (U, ) is a linear topological space, in particular a pseudonormed
space, |(U, 7)’| denotes the linear gpace adjoint to (U, z), i. e. the space
of all continuous linear functionals defined on (T, 7).

Following [11] we write (Uy, v;) = (U,, 7,) iff U, is a subspace of U,
and the identical injection of (Uy, v,) into (U,, v,) it continuous.

We shall accept a certain special notation for sequences of linear
. topological spaces. If & = {(U,, 7,)} is a sequence of linear topological
gpaces, then we write for every n

dat
Tum = Tn-

s, £ o,

_ It in particular (U,, 7,) are psendonormed spaces, the pseudonorm
ducing the topology 7, is denoted by ||- [ for n =1,2,... respectively.
Hence, for sequences of pseudonormed spaces ${ we have the double
notation — ;, for the topologies and [I*llun for the pseudonorms that
induce the topologies wy, respectively.

Agin [12] an inductive sequence & is a sequence of linear topological
spaces such that (|, 7yu) > (|Ulnyys Tume) for every n. We write

s £ U [l

A.n inductive sequence &l ig called strict iff for every n the identical
mapping of (||, 7y,) into (|$,,,, Tune1) 18 bicontinuous; & is called
complete (Banach, reflexive Banach) sequence iff all (|&l],, vy,) are
complete (Banach, reflexive Banach) spaces. The relation

U<(U,7)

between an inductive sequence & and a linear topological space (U, 1)
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means that (|8, m,) < (U, 7) for at least one #. For inductive sequences
we write

U <,
iff &y < (|¥y]ny Tn,z) for every m.

It 8, < ¥, and U, < ¥,, then sequences ¥, and &, are called equi-
valent. ‘

Consider an inductive sequence %. A sequence {z,} < |%| is said to
be convergent-to we|X| iff {w,—a} < |%|, for some fixed m and {w,— 2}
tends to zero in (|X|m, Tgm). A functional 2’ defined on a subspace X,
of |¥X| is said to be sequeniially continuous on X, iff for every {z,} = X,
which is convergent to zero, {z’'z,} tends to zero too.

The adjoint space to X is the space of all sequentially continuous
functionals defined on the whole |%|.

An inductive sequence of (&)-spaces is called an (S£F)-sequence;
a strict (S F)-sequence is called an (FLF)-sequence.

If ¥ is an inductive sequence and X, is a subspace of ||, then we de-
fine the inductive sequence X, ~ X setting: .

1Xy A %l Z Xy A [Elns

T, XnEn £ the topology induced on Xy ~ %|, bY Tga-

Similarly, we define the inductive sequence X, = % setting:

|X~%El, < the closure of Xy A [Fln i (Flny Ta);

Tx ~zn = the topology induced on |X, = Xls bY Tza-.

Consider a linear space X. An inductive sequence of pseudonormed
spaces 3 is called a covering of X iff X is a subspace of 3 and X = 3
< 3. Since always 3 << X~ 3, the sequences X ~ 3 and 3 are equi-
valent. If X is an (S%)-sequence, then 3 is called a covering of X iff 3.
is a covering of |%X| and % > 3.

Consider a pseudonormed space (U, ||-||). To every functional »’
defined on a linear space V for which the intersection U ~ V is uniquelly
defined we assign a number |[v'[* called the polar pseudonorm of v’ induced
by (U, li-]l), setting

[W'f* = sup{|v'z}: zeTU ~ V, &} < 1}.

Here ||-|* may assume the value 4 oo.

Though |i-{|* is a function of the pseudonormed space (U, |-|) as
variable, its value depends on the way of forming the intersection U ~ V.
Hence, before |[v’[* is considered, both U and V¥V must be placed within
the same linear space as subspaces. If 3 is a sequence of pseudonormed
spaces, then |-|3, denotes the polar pseudonorm induced by (|3,
I-llg) Tespectively. If 3 is a covering of an (& )-sequence %, we produce
a polar 3* of 3 setting '

13, £ (@' X' [0 l50 < oo}, |
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where X’ denotes the adjoint to %. Clearly, 3* is an (&)-sequence (cf. [11],
Example IIT).

Congider an (4% )-sequence X. A family & of coverings of ¥ is said
to be a basis of coverings of X iff the following conditions hold:

1. To every covering 3 of X there correspond a covering Se& such
that |%] ~ S > 3.

2. To every 3y, 3,¢5 there corresponds 3;e5 such that 3; < 3,
for 1 =1,2. : :

The definition of basis as given above is a lititle too strong to
cover some interesting situations that can arise in the theory outlined
in this paper. However, such situations can be met only in the non-
(LF)-case. Since discussion of (£F)-sequences in what we are here
mainly interested in, the subtlety of the alternate definition of basis is
left over to another publication.

There is a simple construction that will be of use in the further
investigations. Consider a linear space V and linear topological spaces
(U w)y, ¢ =1,2,...,n, where all U; are subspaces of V. Define the
]jnegur topological space

(Uy7) = (U, t)A.A (Uny ™)

as follows. Let U = Ui+...+ U,. Purther, consider the product space
(UyX...X Uy, 1,X...X1,) and a subspace

L ={(u, ..., un) e UrXeo. X Uyt Uy+... 44, = 0}.

Identify U;X...X U,/L with U,+...4+ U, by the one-to-one isomor-
phism I, where I((ul,...,u,,)/L) x Uy +...4Uy. Denote by 7;A...AT,
the topology of U,+...+U, induced by the topology 7, X...X7,[L of
UyX...X Uy/L using the above defined identification. We set 7 = TIA
-+« ATy Which completes the definition of (U, 7). In the cage, when topo-
logies 7, up to 7, are all given by means of pseudonorms |||y «vvy [|*]ln
respectively, it is convenient to have 7, A ...A7, induced by a pseudo-
norm. Here we shall always take as such pseudonorm the pseudonorm
I-'=1Mlha...Al“l. equal to the quotient pseudonorm |-|| £ -1/

with (1, ., )| 2 Jifly .+ [t

PROPOSITION 4.1, If (U, 1,) is a linear topological Hausdorff space
and (Usyw), £ =1,2,...,n, are (F)-spaces such that (U,, 7,) < (Uy, )
for i=1,...,n, then (U,7) £ (TUiy t)Aee e A(Uny ) 18 an (F)-space
and for any locally convex space (X, o), if (X, 0) < (Ui w) for 4 =1,
2,y m then (X, 0) < (U, 1) as well. ! .

Proof. The subspace L introduced in the definition of (U, 1), is
closed. Indeed, if {(wimy...,Unm): m =1,2,...} ¢ L tends to some

- ©
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(Hyyooey Un)eUrX... XU, for m — oo, then every {u;,} tends to u, in
(Ugy 7o) for ¢=1,2,...,n and having ;m+...4Uymn = 0, We obtain
Uyt U, =0 and then (uy,...,u,)eLl. The product (U;X...x U,
71 X...X7,) 18 an (F)-space and then, the quotient space (U, ) must
also be an (#)-space. To prove the second part of the Proposition it is
gufficient to notice that the continuity of a pseudonorm in every (U, ;)
amounts to ity continuity in (U, 7). This way the Proposition is fully
proved.

Take an (£F)-sequence X and a psendonormed space (8, ||]). If
for every n the space (8, |-|) A (|%[n, T5.) is well defined, then we write

(85 - DA% = {68, 1) A(Elny T2a)}-

Take a covering & of X. We define the inductive sequence ¥Xg,
setting
Fon = (ISl Il lea) A -

Here the operation A is well defined in view of the inclusion
(X|z v 1©)) = |S] that holds for every % and 4.

A sequence {%,} of inductive sequences is called a sequence of mode-
rations of X by © iff for some {m,} there is Xom, <%y and %, < Xgp
for n=1,2,...

Suppose now that we are provided with two coverings 3 and & of %
and a subspace X, of |%|. Assume that 3 < S.

The triplet (X,,3,S) admits the Accessibility Property, briefly
the (40C)-Property, iff the following condition holds:

(ACC) There exists a sequence {X,} of moderations of X by & such
that to every » there correspond m for which the inclusion

1Bl ~ [ Xe R Knlp = | Xy~ Slm
holds for every p =1, 2,...
Notice, that in Condition (ACC) there can always be substituted
the special sequence of moderations, namely {¥g, }, and it will not alter

the condition. Indeed, if X m, < %, and %, < %en, then for some {k,}
and every p and n

Ieln ~n|X, A %n|p < lelm,, n|X, R (xé.mﬂlkp
and

[Sln ~ | X ~ Kemln < lelm,, N~ Xy~ mn[kp-

Hence, Condition (ACC) expressed with {%g,}, applied to the
first inclusion produces (ACC) expressed with {%,}. Similarily, (ACO)
with {%,} applied to the second inclusion produces (ACC) with {Xgn}.
Therefore, we have proved the following result:
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PROPOSITION 4.2. The validity of (ACC) for a given triplet (X,, 3, &)
does mot depend on the choice of a sequence of moderations of % by S.

As to the meaning of the Accessibility Property, Condition (ACC)
amounts to the fact that the elements of ||, belonging at the same
time to the closure of X~ (|%lp+[Cl) In (18lay [I*llem) A (1Flp, 72p)
are accessible within the closure of X, n |3, in (|3, |- |gm), Where m
is assigned to » and stays the same no matter how great is p.

Let % be an (S#)-sequence, £ — a basis of coverings of X and X, —
a subspace of [%X|. Assume that to every 3e¢Z there correspond {pa}
with |3}, ~ [¥| [%lp, for n =1,2, ..

The subspace X, is said to be well located in [%| with respect to =
iff the following condition holds:

To every 3e¢Z there correspond SeZ, & > 3, such that (X,, 3, S)
admits the Accessibility Property.

A basis & of coverings of ¥ is said to admit reflevive majorizations
itf to every 3eZ there correspond a reflexive Banach covering & such
that 3 < &.

TueoREM 4.1 (%), Consider an (ZF)-sequence X and a basis 5 of cover-
ings of X. Let in the following X, be a subspace of |X|.

In order that every sequentially conmtinuous functional defined on ’Xo
admit an extension to a sequentially continuwous functional defined on the
whole |X| it is necessary that X, be good located in |%| with respect to 5.

If, in addition, E admits reflexive majorigations, then the good loca-
tion of X, in [X| with respect to 5 4s sufficient for every sequentially
continuous functional defined on X, to admit an extension to a sequentially
continuous functional defined on the whole |%|.

TrBOREM 4.2. Consider an (SF)-sequence % and o subspace X, of |%|.
If every sequentially continuous functional defined on X, admiis an
extension to o sequentially continuous functional defined on the whole |X|,
then to every covering 3 of % there corresponds a covering & of %, S > 3,
such that the following condition holds.

To every m there correspond m and u > 0 such that for every sequen-
tally continuous w, defined on X, if ]|w{,||§,m < n, then there exists a sequen-
tially continuous extension @' of m, to the whole |%| such that o' li§n < 1.

We shall postpone the proofs of Theorems 4.1 and 4.2 to the end of
the paper when they easily follow from other results of the theory.
However, it is only natural to show at once why Theorems 2.1 and 2.2
are particular cases of Theorems 4.1 and 4.2 respectively.

Proof of Theorem 2.1. It is clear that D = {(Zy, 7,)} is an (LF)-
sequence. Consider the following four statements:

(°) This is an improved version of Proposition 2 of [4].
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a) The family £ = {D: beA}, where D E 9= DV, form a basis
of coverings in D.

b) To every D there corresponds o reflewive inductive Banach sequence
3 such that 3 > DV,

= =pm O

c) For every Det the sequence {D¥™}, where D¥™ = F = D™,
presents moderations of D by DV

d) In the definition of the good location of a subspace 2, of 9D, used
in the Theorem 2.1, it can be substituted 23 for DY and the closures 1 and 2
can be taken in (DY, 13%) and (D, |- |h) instead of (D", %F) cfmil
(Do, W) respectively which leads to an equivalent condition. Here D%

4 ~ ate o
= 1B, and D, = D'l

Theorem 2.1 will trivially follow from Theorem 4.1 if we only notice
that by virtue of statements a, ¢ and d, the definition of good location of
9, in 2 used in Theorem 2.1 is a particular case of the general definition
of good location of 2, in 2 with respect to a basis of coverings, in this
cagse the basis {fj)” : e}, and, that in view of the statement b the requi-
rements of Theorem 4.1 are fulfilled. Now, we turn’ to proving the sta-
tements a-d. Fix a special cover & = {K,} of 2, where K, are compact
domains.

Ad a. Let {e,} = @ be a partition of unit that correspond to the

o0
cover &, i.e. let suppe, < Int K, and ) e, = 1. Take any covering 3
n=1

of D. Without loss of generality we may a.s_sume that |3|, = .@£ and that
lI-lgms2 coincide with |j-]lgn on 2,. Hence, we can pub Ifl = !|f1|3,n for
feDn, n=1,2,..., and the pseudonorm || is continuous in every
(Dn, 7). Therefore, there are sequences ) = {h,}e#" and {M,} such that
Il < M,,][f[]l"g; for fe 2 with supp f contained in IntK,. Further, we have

f=Def
N=1
and then, assuming that {M,} is monotone non-decreasing, we have
n
1Al < Mo D) e,
i=1

forfe.%,n=hl.,2,... . .
Since |lesfi, gNiﬂﬂlg for every ¢ =1,2,..., where N; depends
on e;, we have

Ifl < MW, DA, = Mo N.IiflR
i=1

Studia Mathematica XXVI z, 2 14
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Ilrovided {¥.} is taken monotone non-decreasing. This proves that
D > 3.
Ad b. Define

(fs 9)x = Kf fWg@dt,  |lifllle = (f, HH

and  [[Ifllle = > [I1D%lllx,
|p|<n
where K is a compact domain contained in .
It is well known that for sufficiently great » the space (e™(;), ||l |l1Z)
can be completed within % (K). Let (#™(K), |||- H|§f;) be such a completion.

Furthermore, it is known that to every n there corres
it pond m, such that
(™), ||]]]|R") = (€™(K), |Ik). Setting

at .
#® = {fe%(Q): suppf is compact, fix, ¢ #"(K,) for all n},

ar n
#h = {fe": suppf < 'LJIKi},
N 1=

e £ lelflll'&i-

tor feat",

WA = 3111711, = 11711
d=1
for fe s, and finally

we conclude that to every fe.#” one can assign be.#" such that D! < H.
This proves b.

Ad c. Put 2} LD, and write briefly DY for Dgp,,. Since
|DE™, = D+ D, we have | D™, o |DE™,. To prove that V"<
< DY™ it iz sufficient to show that convergence in (|D¥™,, 7 Dm\)
Implies the convergence in (Z4™, %™). Taking {f,} = |DE™,,, rm; mm—
convergent to zero, we can find {g, } < 2, and {h,} < 2%, both cogr)f;réﬁ-
gent to zero in (9, 7,) and (25, |- (1%) respectively such that f, = g, h,
fgfn every . Eence, both {g,} and {h,} are convergent to zero in (25™,
3 ) and so is {fn}.~To show that to every m there correspond k,, > m
such that D¥m < DW™ we proceed as follows. We take k,, such that

) m
{teQ: 1= Y e;(t)} > UK.
J=1

i=1
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If fe]@“'"‘],,, then there exists {f,} = Dy, ||[fa—7l tending to zero for n
tending to infinity, such that fg e&(Gn), Where Gy = Q-—QK“ and
{fue,; tends with respect to = uniformly with all derivatives to ,{Lgm.
Let b = ef, hy = er, and g = (L—e)f, gn= (1—e)fn, Where ¢ = ié: 1.

n
Since supp(l—e) and |J K; are disjoint, we have ge 2, Further, {h.} =
i=1

Dy, Ih—hll, -0 and then hej, . Hence, f= g+ he Dyt DY, =
|Db*n|, and we have |D¥™, < [D¥*m|, for every p.

To show that the inclusion provides a continuous imbedding, take
{fu} = 15)"""],, y {fu} tending to zero in ™ topology. By the same argu-
ment as above we show that {ef,} = 9} . Since {ef,} tends in (2},
||-|[2m) to zero and {(L—e)f,} tends to zero in (2,, 7p) we conclude that
Dy > Dlekm,

Ad @). To verify d, it is sufficient to prove that for every k the
inclusion

Y ~ Closure, (Do ~ D) = DYy ~ Closure, (D, ~ 2y)

holds for some %’ > %, where the Closure,, is taken in (2%, ©%*). This,
however, is rather obvious. If f belongs to 2} ~ 01081]1‘61(90;\ 9,), then

there exists {f,} = @ tending in (24", ") to f. Put ¢ = Y e;. If we
&
fix ¥’ to have '

k
N {te: e(t) =1} > {=LJ1 K,

then {¢fn} = Zi and {ef,} tends to f in (2}, [|-|k,). Hence fe 2, and d

" follows. This way Theorem 2.1 is fully proved.

Similarly as in the case.of distributions it is possible to develop, in
connection with Theorem 4.1, the background that led us to Theorem 2.1’
as another formulation of Theorem 2.1.

Let X be an (F#%)-sequence. The topology 7y of |%| is the finest
locally convex topology of [¥X| with all the identical imbeddings of
(|%|p, Tz0) into (|%|, vz) continuous, i. e., the finest locally convex topo-
logy of |%| such that (|%|, vza) = (%], 7z) for every n. The space
(I%], 7) is usually called the inductive limit of the sequence .

It is obvious that the adjoint to % coincides with the adjoint to
(I1%], 7z). As it is always true in the case of strict (SF)-sequences,
assume that the topology vy is such that every bounded sequence in
(%1, 7,) is contained and bounded in (|%{,, 75, ) for at least one n. Under
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this a,ss,umption for any linear subspace X, of %] to say that a fune-
Flona.l % defined on X, is 7z-bounded (i. e. maps Tg-bounded subsets of X
11.1to bounded sets), is the same as to say that a, is sequentially con?
tinuous. Furthermore, for any functional @y defined on X, the existence
of. an extensmp of z, to stl)me @' from the adjoint to (I%], 75) is equivalent
with t.he continuity of w, on X, with respect to the relative topology
of X, induced by the topology =; of |%].

.Then, a.sguming the existence of a bagis of coverings of % which
admits reflexive majorizations, there can be introduced an equivalent
formulation of Theorem 3 which runs as follows:

y TreorEM 4.1'. Consider an (LF)-sequence X provided with o basis
of coverings E that admits reflemive magjorizations. Let im th i
be a subspace of |X|. e Jollowing X,
' {he subspace {Yo 18 good located in |%| with respect 1o the basis of cover-
mng g if .a};nd only if every vy-bounded functional defined on X, is continuous
on A, with respect to the relative topology of X, ind
o pology of X, induced by the topology =,
.Theor(-.sm 4.1" permits to define well location of g subspace for an
a;b;rary linear locally convex topological space (X, 7). A subspace X,
o is said to be good located in X iff every r-bounded li i
- - ! ne: y
defined on X, is 7-continuouns. o fmetionad

The auth?r knows no deseription of such a notion done by use

of the topological properties of the space (X, T).

5. T!le genexjal thq.aory. We start with some additional definitions,
Oons@er an inductive sequence S and a subspace U of |&|. Let in
thg following «’ be a functional defined on U. Take a fixed n. If there
slzlzlsts m 2 n such that w' iy continuous in (U A~ Bl I llom) and that
e closure of U ~ |&],, in (1Sl I llom) contains |Gy, then we put
2 ’ EE 7
ben = Rf@’nEiUF@lmR@hnu ’
where fqr any space V the symbol Ry denotes the operation of restriction
of fui(.zmonaéls to the intersection of their domaing with V and By — the
operation of extension of continuous functional
of V over the pon ! als from dense subspaces
depezilnce ?his illilductix;e, it follows that the definition of Ug, does not
on the choice of m. In the cag =UR '
e e dholeo. e when & = U = &, we can always
Uen = Bie, Rigy, v

In the following, consider an (S F)
-sequence %, two coverings 3
i;lc}x S (af % an«; a subsPa'ce X, of |%|. Denote by X’ the adjoint space
an by X, 1fhe. adjoint space of Xy~ % Finally, let R denote the
operation of restriction of functionals from their domaing to the inter-
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sections of these domains with X,, whenever such intersection is
uniquelly defined.

Below there are given four different properties of the triplet
(X5, 3,S) and some mutual relations among these properties and the
Accessibility Property are thoroughly investigated.

It is said that the triplet (X,, 3, S) admits the Property (-) iff the
corresponding condition (-) among those listed below is satisfied, where
one of the letters A,, A, B,, and E will appear in the parentheses. These
letters are understood as shortenings for the following full terms:
A, — weak approximation, A — approximation, B, — weak extension,
B — extension (¢).

(Ay) To every m there corresponds m such that (|G|, ||*|len)
> (1l [I-lgm) and that to every 2'c|(Slm, |- lgm)’] With ||B2|§m = 0,
every p and e>0 there correspond #’'eX’ such that wg, exists,
“m’@,n_‘zlg,n“g,n < ¢ and “—Rm’“g,p <e.

(A) To every n there corresponds m such that (|S|,, || llgn) = (|Blm,
Illgm) and that to every 2" e|(13m, Illgm)'| with HRz'IE,m =0, a’,nd
every &> 0 there corresponds #'«X’ vanishing on X, such that =g,
exists and |Te.—26alln < e

(B,) To every = there corresponds m such that for every @y e Xy with
ll2gllzm << oo, every &> 0 and p there corresponds @'« X’ with o' l§n < oo
such that [[Re’—ml5, < &

(B) To every n there correspond m and # > 0 such that for every
wyeX, with [@ql5m < 1 there corresponds #'eX’ with |jo'll5, < 1 such
that Rz’ = ;.

Fix an (FF)-sequence %, coverings © and 3 of X, © > 3, and a sub-
gpace X, of |%|.

PROPOSITION B.1. If the triplet (X,, 3, S) admits the Property (-,
where in the parentheses there appears one of the letters ACC, A, By, A
or B, then for every covering T = 3 with |X| ~ T > S the iriplet (X,,
3, ) admits the property (-) with the same letier in the parentheses.

Proof. The Proposition easily follows after completing a few simple
calculations.

COROLLARY 5.1. Let A be a family of equivalent coverings of X and
denote by (-) one of the conditions (Ay), (A), (B,) and (B). The itriple
(Xo, 3, ©) admits () with a fived S taken from A with © = 3 if and only
if (Xgy 3, ) admits (+) with every Sed. Here we assume additionally that
for at least one Sed there is © = 3.

(8) An example communicated to the author by I. L. Glicksberg, indicating non-
triviality of the question of producing extensions of functionals vanishing on subspaces
fixed in advance, was of a great assistance in establishing properties (A) and (A,) crucial
for the whole theory of extensions.
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Proof. This is an immediate consequence of Proposition 5.1.

The Corollary proves that all of the properties (ACC), (A,), (Eq)
and (E) can be expressed for triplets (X,, 3, 4), where 4 denotes a class
gf equivalent coverings of X with 3 < & for at least one (and then every)

ed.

) In view of this last statement we can always substitute for & cover-
ings with © = |¥| A & preserving all the generality.

PROPOSITION B.2. The condition (B) is equivalent to the ome written
below.

. (E), fo every n there correspond m and n such that for every wpe X,
w'Lth, [|wo|,[3;‘m <7 and every p and & > 0 there corresponds #' X' such that
IR’ — g5 < & and 2 < 1.

Proof'. Since.the condition (B) of the Proposition trivially follows
ﬁom_(E), it remains to show the implication (B) — (B). In order to do
that it is necessary to employ a result from [11]. At first we define two
pre-(¥)-sequences (cf. [11]). Let

Bl = {@heXo: ailln < o0}

: ?Dhe first pre-(#)-sequence to consider is B, with Il £ -3
resg;rlcted to |Bly, n=1,2,3,... To define the other pre-(# )-sequenée
pu

V& & eX': Ra' <|B)).
The second pre-(&:; )-sequence to consider is V A &* = {(V ~ |S*,,
. * / 4 U "
I-llgn)}s Where |©*|, = {#'eX’: o], < co}. Let B, 2 the restriction
of B to V.
) Tt is easy to see that B, is a mapping of the pre-(#)-sequence V ~ S*
%nto the pre-(# )-seql}enee B. Moreover, the condition () assures that R,
is nearly-open mapping of ¥V ~ &* into B. Then, to apply Proposition 12
oi‘? ‘[11] and: conc.lufie that R, is open, which means exactly that the con-
fhtmn (E) is satisfied, it is sufticient to prove that R, is complete-closed
in the sense of [11].*T0 prove that, take {@,} = |V ~ &* which is a Cauchy
s;quence in [VAS*]. Clearly, {z,} tends pointwise to some o defined on
[%] and for, every p it can be found m, such that ||o'— a5, < co.
Then, f” eX ) and, Jfl the restrictions of R,a;, tend to some Zoe |, it must
be Bir' = 2, and o'« V. Hence R, is complete-closed and the Proposition
follows.

Ta]_{e an (:f..@' )‘-sequence %. A gubspace X, of [X| admits the
separation prmczple in % iff to every p and every ¢l Xy~ %|, one can
a,smgn,a functional &’ from the adjoint to ¥ in such a way that o' =1
and &' (X, ~ |%[;) = {0}.

Take an (SF)-sequence ¥, two coveri

. verings 3 and © of ¥, 3 <&
and a subspace X, of |%|. As before, B denotes the operation 07f 1'65;?1‘10r
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tion to X, and X' — the adjoint space to %X. Assume that for every =
there is |3, ~ |%| < |¥|, for sufficiently great g.

PROPOSITION 5.3. I. The Accessibility Property of (X,, 3, S) follows
from the Property (A) of the same (X,, 3, S).

IL If in every Xgn, n =1, 2, ..., X, admils the separation principle
and S is reflewive, then the Accessibility Property of (X,, 3, ) implies
the Property (A,) for the same (X,, 3, S).

Proof. Ad 1. Take an arbitrary » and adjust m to suit the require-
ments of (A). Consider any #¢|X, ~ 3|,. There exists a functional
2 €|(|3]my [I*llgm)’| such that 2’z =1 and that 2’ vanishes on [Xy ~ Slm.
Applying (A) we find o'eX’ such that &' vanishes on X, and
“w’@.n_zle,n“é,n < 1/”2”@,%, PTOVided Ze [eln'

The functional &’ restricted to |%|, =+ (|%! ~ |S|,) can be subsequently
extended t0 @ ¢|(|X|p+ Sl T25ATen)| and then, with z¢|S|, A
X, ~ Xoulp We have F'z=0. Hence, 1 = [¢'2| < (/|tlle)lelen =1
which is contradictory. This concludes the proof of the first part of the
Proposition.

Ad TII. Take an arbitrary » and adjust m to have (|G|, |- llen)
2= (I3lm, |I* I3 m) and, simultaneously, to suit the requirements of (ACC).
To prove IT it is sufficient to show that the subspace

U & en: o the adjoint to Xgp, [|BZ||5, = 0}
of [(|Sla, I*lom)’| is weak® dense in the subspace
| V' E on: 2 el(1Blmy I-llgm) 15 1R [3m = 0}
of |(|Sns IIlloa)] 2nd use the reflexivity of (ISlu; [l llen)/In, where

L, i {3¢|S]a: [8llg,n = 0}, to obtain the strong density that implies (Ag).
If U~ denotes the weak* closure of U’, then

U= = {& |(|Sln, Illen)|: for 2¢|Sln, U'z = {0} implies 2’z = 0}.

To prove the weak* density it is sufficient to show that V'« U
which amounts to showing that if v’z 7 0 for some vV’ and 2¢(S|, =
|3|m, then there exists «'eU' such that u'z = 0.

Since v’z 5 0 for v’ eV’ and z¢| 3|, means that z¢|X, = 3|m, applying
the inclusion from (ACC) one can find that 2¢|S,~ [Xo~ Kgalg for
every ¢. But for ze|S|, it must be that 2¢|X, & Xeal, for every ¢ and
applying the separation principle we find #'e X’ with |[#'|lgn < oo such
that @' vanishes on X, ~ |%galq, for go with [Elg, = 13|, and the Propo-
gition follows.

Consider an (SF)-sequence ¥ and coverings 3,S of %, 3 <©G.
Let in the following X, denote a subspace of ¥ and X', X; adjoint spaces
of ¥ and X, ~ X respectively. :

/=y
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PROPOSITION B.4. If (X,, 3,S) admits the properties (Ag) and (B,)
then (X,, 3, ©) admits (E) as. well. ’

Proof. Let the assumptions of the Proposition be fulfilled. To verify
the Proposition it is sufficient to show that (Xy, 3, ©) admits (R) and
then apply Proposition 5.2.

Fix any » and adjust m to suit simultaneously the requirements
of (A,) and (E,) and fulfil at the same time the relation (1Bl II*Ifgm)
< (1Sl || llgn)- Take arbitrary p > m and let N be such that N][a:“ém
= |lellg,» f.or 2|3y, Furtlher, let M be such that @z m < M |2 for
weJQ!,L. Fix n < 4. Taqze xy e X, with, f[moll§,7n <7 and let ¢ be an arbi’tra;ry
positive (numlbgr. By virtue of (E,) there exists #,¢ X’ such that 1]l o <o
and ||[Bz,— aylly,», < min(4/N, ¢/2). Let in the following 216[(13m, “’- llg.m)|
denote an extensionﬂtof 7 restricted to |3, ~ X, such that ”Rw?l)fg

Ik r ’ ’ 4 "rn
= leillgm- Put —&" = a1 —Tigm. Clearly, |B2|[3n = 0 and then, apply-
ing (Ag), we can find z,¢X such that lBwsl|3» < min(e/2, My) and
1522 — 2 nlle,n < min(s/2, My). Put o’ < @ —a,. We have

IRe’ ~aill50 < | Ba— a3+ | oyl < o

Further, e Hla
”mlné,n < ”w;@,n—-zé’anm—}-M”Z'—— m;s,m|I§,1n

< M’? '1'M“21H§,m = My 'I‘M”-Rm;”am .

< Mo+ M |wgl|g 4 M || By — g, < 2Mn+ MN ||Ro;— |3

< 2Myn+MNy|N = 3My < 1.
This proves (B) for (X,, 3,8) and then the Proposition follows.
Let X be an (##)-sequence and denote by X' the adjoint of %.

.A cm.rering 3 of ¥ admits the property (D) iff the following condition
is satisfied:

, (D) To every %y every 2'¢|(|3ln, [I*|lg)| and e > 0 there corresponds
@ X such that [|¢'—ah.l5. < e.
Let in the following 3 and © he two coverings of %, 3 < S, and
X, — a subspace of ¥. Ag usual, denote by R the operation of restriction
from {¥| to X, and by X, — the adjoint of XynX.
PrOPOSITION 8.5. Let 3 admits the 7 ;
! property (D). Then, the triplet
(Xo, 3, @) admits (A) provided it admits (B). , ?
_ é’roof. Take {m,} and {M}, M, >1, such that (]3]%, It llgm,)
s (| .lm [llen) and M, llnllen = lzligm, for zeSl,, n=1,2,... Let,
additionally, m,, anfl 0 < 9, <1 correspond to n according tio the requi-
rem’ex*lts of (). le. n, take any &> 0 and '¢|(|3lm,, [Ilgm )| with
||R2 ”s.mn = 0. Applying (D) we find u’'eX’ such that "

”z,—u,la,m"“,g,mn < ennf2M,.
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Hence, [(2/e)Bu|3m, <7, and applying (B) we find v <X’ with
Ru' = Rv' and |2v'[e]/§. < 1. Setting o' = 4'—" we have

”z, - mé,mn”%m
< e — g om0 on < Mallt’ — tgm I3m, +110' 60 <e/2+2/2 =&

and the Proposition follows.

TEEOREM B.1. If 3 is a covering of a strict (FF)-sequence % such that
for every m there ewists p with (3|, ~ |%| < |%|,, then for every subspace X,
of |X| the triplet (X,, 3, 3) admits the property (B,).

Proof. Take any X, = |¥|, any » and adjust p to have |%|, o |3~
~|3|. Further, take (|%|y, |ls) < (I%ly, 750) such that (|3l ~ %], [I-|ln)

Consider the space

(T, 1) £ (%]~ 131 [ llgn) A (Flp ~ Xoy [-ll0)) A (Flpy 1)
We have
(1%~ 1Bl I llgn) A (Flp ~ Xy [I*1) < (Xon T, [,
(T 111D < UEL A Blas [1°llg)-

The second of this relations follows directly from the definition
of A and the relation (%] ~ [3ln, | llgn) A (1%lp ~ Xo, [Il) < ((1%] ~ 13]a) 4
+(%lp ~ Xo), [I]},) implies the first.

For wyeX, with [mg||5n < oo we fix (|%lp, ||l») to have [zl < co.
Then it must be |w|* < co and «, can be extended to ' e[(T, ][
Hence, |[u[§ < oo and «’ belongs to |(|%ls, 7z5) | Any extension s’
of u' to a sequentially continuous functional over |X| satisfies the requi-
rements of (E,). This way the Proposition has been proved.

Consider an (£%)-sequence X and a subspace X, of |%|. Denote by X,
the adjoint to X, ~ %. A functional z;<X, is said to be X-majorizable iff
there exists a covering 3 of ¥ such that |lz)l|3» < oo for every =.

THEOREM 5.2. If X is strict, then every woeX, is X-majorizable.

Proof. Take |||, defined on |¥|; in such a way that |zl < co.
Put |3]; = %], and ||]lg,2 = |||~ Suppose that it bas been produced
(IBliy I llge) With [aglly; < oo for @=1,2,...,m and (|3 [ llgs) >
(18liy1y I*llg,zyy) for ¢ =1,2,...,n—1. We agsume that 13); = |%|; for
t=1,2,.00yM

Put p =n+1 and take (|%lp, ||-llp) with ([Elp, I:ln) < (1%lp, T20),
(1%l II*llo) = (1%l [I* lgm) and [zl < oo, where ||:||; is the polar pseudo-
norm induced by ([Elp, [ [lp)-
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Ag in the proof of Theorem 5.1 we consider the space

(T 11 = (%l - llgn) A (1%, ~ X, 1)) A (1Kl 11+ 1)
and we verify that
(1Flas I lgm) A (1Flp ~ Xoy I lls) S (Zon T, 1)y (T, 1) < (1%L, I llgm)-

Since |yl < oo, we have |laj|[* < oo, where ||-|[* is the polar pseudo-
norm induced by (U, [I*l). Setting (I3lnss, [llgnss) = (T, |-) we con-
struct the next element of the covering 3 with [lz||}, < oo for avery n.
By virtue of the principle of induction the Theorem follows.

Consider an (##)-sequence X and a subspace X, of |%]. Let X' and b.¢4
be the adjoint spaces of % and X, ~ % respectively. As before B denotes
the operation of restriction of functionals to the intersections of their
domains with X,.

Proposirron 8.6. If RX' = X;, then to every covering 3 of % there
correspond a covering © of X such that (X,, 3, S) admits the property (B).

To prove the Proposition we shall need some additional definitions
and a lemma. Take a covering 3 of ¥, As it was already defined, the polar
3* of 3 is a sequence of pseudonormed spaces defined as follows. We
set [3*, = {2’ eX'|la'|[}n < o0}, Where I~ is the polar pseudonorm
induced by (|%| ~ |3],, [i*ligs)y and for IIllgen We put the mentioned
polar pseudonorm restricted to [3*,, n = 1,2,... It is easy to find that
the polar 3* of any covering % is an (%)-sequence.

According to the Example I of [12] we define a family X* as
follows. Let {|[xn: k=1,2,..}, n = 1,2,..., be pointwise non-
decreasing sequences of pseudonorms induecing topologies Tzn in each
(%], respectively. Denote by Ik the polar pseudonorms induced by
([%ln, II-llsn) respectively and let Xp, & (2 eX : lo'[[f, < oo}.

The double sequence {X3,, |||+ 4}, Where ||||%, is restricted to X3
decomposes a certain o*-family which, according to the notation accepted
in Example I of [12], is written %*. Clearly, X' — |%*|. Denote by .#" the
set of all increasing sequences of natural numbers (2). For fed’, t = {k,},
we put

(K I la) = (1%, 1 lyr) A v A (B [ ) -

It is clear that %, z {(%ln; I'les)} is & covering of ¥. It is easy
to see, that for an arbitrary covering 3 of %X, there always exists te.f
such that %, > 3. :

Lewva 8.1, If |-lin denotes - polar pseudonorms induced by
(1% 1+ llm) respectively and |||t — the polar pseudonorm induced by
(1Zlny I*lem)s then for every w' with the domain containing |%|, we have

'l = max {0 8 =1,.2,...,n}.
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Proof. Take any u' defined on U > |%|,. We have

w'al < | gnlolln < [0 Knllollys  for  @e(®l;, i=1,2,.., .

. 7 ’? s ’ dt , »
Finally, |u'[lg:< [0l or, setting |[|j||| = max {|ju s 6 =1,
2, ...y m}y [[[#]]]) < |wlfn. On the other hand, we have

o] <1y ol < 1Nl lollye  for  wel%ls, i =1, 2, ..., n.

Hence, |w'a| < [[[w/|l|lelky for oel®|n, [/l < |[w]|| and the
Lemma follows.

Proof of Proposition 5.6. Take an arbitrary covering 3 of ¥*.
To define By pub Byl = (&) Xy: [l ul< o0} and ||-llgyn = I I5n
restricted to |B,),, where [~ is the polar pseudonorm induced by
(13lns [ llgn). It is easy to find that QB, is an (#)-sequence. Put ¥
= {#'eX: Ra'¢|3B,]}. By virtue of Lemma 5.1 and Propesitions 1 and 2
of [12] we find that the family {¥;': fe#} of components of X* over-
whelms in %*. Here %; denotes the polar of the covering %, of %', Since,
as it can be easily checked, the mapping R of ¥ onto |B,]| is closed relative
to %*, we ean apply Theorem 1 of [12] and conclude that for some bet
the mapping R is open from [Y~%}] to [B,]. This, however, means that
the triplet (X,, 3, S), where & & %;, admits (B). It is always possible
to choose ¥; >3 and then the Proposition is fully proved.

TrEOREM 5.3 (7). Consider an (SF)-sequence X and o basis & of cover-
ings of X. Let in the following X, be a subspace of |%|, X' the adjoint to X,
Xy the adjoint to Xy ~ % and, finally, denote by R the operation of restric-
tion of functionals from |%| to X,. Assume that |3, ~ 1% < [%lg, for 3e&.

L If RX' = X;, then to every 3eZ there corresponds G e, G = 3,
such that (X,, 3, S) admits (E).

II. Consider the following condition:

(i) To every 3eZ there correspond Sel, S = 3, such that (X, 3, ©)
admiis the (ACC) property and the property (B).

If every covering from E admits the property (D), then in order that
RX' = X, it is necessary that the condition (i) shall be satisfied.

If to every 35 there correspond a reflemive covering S such that S > 3
and that X, admits the separation principle in every moderation Ko,
n=1,2,..., then condition (i) s sufficient for RX' to contain all wyeX,.

Proof. Take any 3e5. According to Proposition 5.6 there exists
a covering ¥ of %, ’

(1Zhny 1) = (1%, 1 lley2) A e A (1 Ry 11 i)
such that (X,, 3, ¥) admits (B). According to the definition of the basis

(") This is an improved version of Proposition 2 of [56].
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of coverings, there exists ©e5, © > 3, such that |¥|~S > ¥ and from
Proposition 5.1 we conclude that (X,, 3, &) admits (B) as well. This
finishes the proof of the first part of the Theorem.

Now, knowing that elements of & admit the Property (D), we find
from Proposition 5.5 that (X,, 3, &) admits the Property (A). Then,
from Proposition 5.3 it follows that (X,, 3, ) admits the (ACC) property.
This shows that the condition (i) is necessary to have RX’ = X.

The only remaining statement of the Theorem that still needs proof
is the one concerning the existence of extensions of functionals from X that
are bounded on elements of coverings of ¥. Take @, e X; and fix 3 to have
a3 < oo for some 7, where 3 is a covering of %. It follows from the
definition of the basis of coverings that we can always have 3¢5. Then,
applying the condition (i) we find Se&, & > 3, such that (X,, 3, S)
admits the properties (ACC) and (E,). It follows easily from the definition
of (ACC) that it holds for (X,,3,<) for € > & provided it holds for
(Xy, 3, ©). Taking ¥ reflexive and such that X, admits the separation
principle in every %g., » =1,2,..., we find from Proposition 5.3,
part II, that (X,, 3, <) admits (A,). Since (B,) for (X,, 3,Z) follows
from (B,) for (X,, 3, S), G < F, we can apply Proposition 5.4 and find
that (X,, 3, ¥) admits (E). Therefore z;, having some ||z} , finite, must
admit an extension »'eX'. This finishes the proof of Theorem 5.3.

Theorems 4.1 and 4.2 follow trivially from Theorem 5.3 and The-
orem b.1, the latter proved for strict (S#)-sequences.

Proof of Theorem 4.1. Since from Theorem 5.1 it follows that
the part concerning the Property (B,) in the condition (i) of Theorem 5.3,
ILis always satisfied for striet (#%)-sequences, the condition (i) in the case
of striet (SF)-sequence amounts to stating that X, is well located in %
with respect to the basis of coverings Z.

Now, for strict X every covering must admit the Property (D) and
every subspace of % admits the separation prineiple in every modera-
tion %, of X. Theorem 5.2 independently shows that for every u;eXj
there exists a covering 3 of ¥ such that all |%oll5,» are finite. AIl these
facts confronted with the part II of Theorem 5.3 prove that for strict X
the part IT of Theorem 5.3 amounts to Theorem 4.1.

Proof of Theorem 4.2. Theorem 4.2 is the fully written version
of the part T of Theorem 5.3.
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