icm

282 II. AdToCcHK

ecTh r-MepHol#t B 0. Orcioma u U8 TeopeMsl 3.2 CIemyeT, YTo
ay (1) 11(#), pe ()1 (@) 41 (), 0a(@) ga(2), ...
€CTh OCHOBHO! IOCTENOBATENbHOCTRIO B O M I0ITOMY
@ (%) 2 (2) ~ Y (D) P () 1 (@) .

ITono6ubiM 06pasoM MOKASEIBAETCH, UTO Y, (%) By () ~ Y (2) @0 (@) 70 ().

Ha ocHOBaHWM TPAHSUTHBHOCTH @y (%) xn (%) ~ 9, (%) By (a); 3TO naer pasen-
ctBO (6.4), 4To M TpeGoBANOCH TOKABATH.

JIuTeparypa

1] II. ArTocuk, Hccaed ii
Matengaiycme o K, He 1pep ynkyuit muozux nepemennsix, Prace
[2] H. Konig, Multiplikation und Variablentrans tion 4 i
Distributionen, Archiv der Mathematik, 1955. ormation . dar Theorio der
[3]1 8. Mazurkiewicz, Podstawy rachunku prawdopodobieristwa, Warszawa 1956
[4] J. Mikusinski, Irregular operation distributi & iea
2 (19011 . 168 aen D 8 on distributions, Studia Mathematica
[61 — Oriteria of the ewistence and of the associativit i
butions, ibidem 21 (1962), p. 253-259. etivity of the produst of dair-
[6] J. Mikusifiski and R. Sikorski, The elementar igtri
. ) 11 J
Rozprawy Matematyczne 12 (1957). o3 haory of disiribations 1,
7] — The ele istributi
(1931)_[ ] elementary theory of distributions II, Rozprawy Matematyczne 25
[8] L. Schwartz, Théorie des distributions I, Paris 1950.
[9] — Théorie des distributions II, Paris 1951.
[10] — Sw l’imp.oss'ibilité de la multiplication des distributions, C.R. 1954
[11] R. Sikorski, Funkcje reeczywiste I, Warszawa 1958. '
[12] — Funkeje rzeczywiste II, Warszawa 1959.
[18] — Integrals of distributions, Studia Mathematica 20 (1961), p. 119-189.

Regu par la Rédaction le 8. 6. 1965

STUDIA MATHEMATICA, T. XXVI. (1966)

On semi-groups of contractions in Hilbert spaces

by
W. MLAK (Krakéw)

Suppose we are given a complex Hilbert space H. Let f,g,h,...
stand for vectors of H and «, §,y, ... for complex scalars. (f, g) is the
inner product of f and g, |f] is the norm of f. By {V| we understand the
norm of the linear bounded operator in H. V* stands for the adjoint
of 7 and I for the identity operator in H. By V|Z we mean the restrie-
tion of the operator ¥ to the subset Z < H. A contraction is a linear
bounded operator V in H such that |[V] < 1.

Tiet @ be an abelian group. The inner group operations in @ are writ-
ten additively. Suppose that the semi-group @, orders G, that is

1) Gy (—64) =4,
(i) Gy~ (—Gy) = {0}
We write £ <7 if n—£eGy and £ <7y if £<n but &+ 7.

A contraction valued function T(&) determined for £e@, is called
a semi-group of contractions (s.g.e. for brevity) if

(i) T(0)=1I, T(+n) =TET(n) for & neby.

Let U,: K — K be a unitary representation of G into the Hilbert
space K and assume that H c K. Write P for the orthogonal projection
of K onto H. We say that U, is a unttary dilation [7] of the s.g.c. T'(§)if

(iv) T(§)f = PUf for feH and §eG.
The minimality condition K = \/ U,H(?) determines U, and K
EeG
uniquely up to a unitary isomorphism. U is called then the minimal
unitary dilation of s.g.c. T(£).
A few examples are now in order.
Exiurie 1. Let T be a contraction and G = N — the additive
group of integers. Then T(n) = T* (I° = I by convention) for n >0
is an s.g.c. @, is the set of non-negative integers.

(1) V8, stands for the closed linear span of the union of 8q.
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ExAMPLE 2. Let ¢ = R the additive group of reals and let ¢ N
stand for the set of all non-negative reals. Any one-parameter semi-group
T(¢&) of contractions such that T'(h) ->1I weakly, may be extended to

D0
a strongly continuous s.g.c. if we put 7(0) = I.

ExAwpLE 3. Leb o4, ..., an be rationally independent real numbers,
B . n

Consider the additive subgroup @ of reals of the form & = S mya, with
kit

integer valued factors n;. We define

Gy = {516 = D ma > 0}.

k(1

Suppose 7" is the n-dimensional torus and let x be a finite, positive
Borel meagure on 7". Let H*(u) be the closed linear I?(u) span of mono-
mials .

n

gREm exp ('I/an akﬂﬂk) 0 <o < 275)
kil -

where feG,. Then the formula (T(&)f)(2) = ¢ f(x) determires
a semi-group of isometries in H2(u).

B.Sz.-Nagy proved in [7] that semi-groups of Example 1 and of
Example 2 do have unitary dilations. These results were extended in [6]
to s.g.e. as considered in the present paper, that is to contraction
valued representations of the semi-group which orders the group in
question. - R

.Assumet now that & is a locally compact group. If the 5.8.c. is weakly
continuous in the topology of @, then there is a unique regular operator
Dositive measure ¥, defined for Borel subsets of the dual group @ and
such that )

(T(@f,0) = [EDAFNS,g), f,geH, £>0.
@ .

4(1)-is the continuous character of é, corresponding to £e@,. In
fact, the measure P is of the form ¥ = PE|H, where B is the spectral
meagure of the minimal unitary dilation of T(&).

Since a non-discrete locally compact ordered group is a direct sum
qf the usufml group of reals and an ordered discrete group (see [9], p. 196),
atvﬁhe ﬁrst step of investigations we restriet ourselves in the study of
weakly continuots 8.g.c. to the continuous cage (Example 2) and séparately
to the discrete one. Qur contribute to the continuous case is section 2
of the present paper. We.prove there a. certain prediction theoretic prop-
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erty of the measure F. The rest of the paper deals with archimedean
ordered (&, not isomorphic to the group of integers. This excludes s.g.c.
of Example 1. Since ¢ is archimedean ordered, it is isomorphic to a dense
additive subgroup of reals. The group & of Example 3 is of this type.

1. Let @ be still an arbitrary abelian ordered group and let U, be
the minimal unitary dilation of s.g.c. T(&). The space H may be decom-
posed uniquely in the form H = H,@H, in such a way that #, and H,
are reducing subspaces for T(£) and the following holds true:

(¥) The function 7', defined by

() if  EeGy,

T*(—¢&) i Ee(—6Gy),

when restricted to H, is a unitary representation of @,
(+x) For every feH,,f+# 0

iI;i ITefl < I1f1 (.

e =

The above decomposition of H and 7'(£) respectively is called a cano-
nical one. The s.g.c. is called completely non-unitary if H, = {0}. H, is
called the completely non-unitary part of the canonical decomposition.
The space H, is characterized by

H, = Q U:H = {f| ITefl = If] for all £eGY.

U, stands as usually for the minimal unitary dilation of Z'(£). We
say that T'(&) is non-unitery if H, 5 {0}.
Let S be an arbitrary linear subset of H and write

Mo(8) =V UgB, R.(8)= () UM, (8).
£>0 §>0

It § is a one-dimensional space spanned by f # 0, we put f in place

of § in the above notation. e
It was proved in [6] that

o R,(H) ~ B_(H) = N U.H.
: X
Assume now additionally that G is locally compact and 7T'(£) is
a weakly continuous semi-group of contractions. Let ¥ stand for the

spectral measure of the minimal unitary dilation U, of T'(&). We will
consider the space M (f)v {f} v M_(f) = M (f). The correspondence

Dlailef— Y ati(h) ‘

(*) For references, see [8], IV.
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may be extended to the unitary equivalence between M (f) and L2(u,)
where (o) = (E(0)f, f). The restriction U,|M(f) is equivalent to multi-
plication by £(A) in L?(uy). The copies of reducing spaces R, (f), R_(f)
in I2(u,) consist of functions vanishing outside suitable measurable sets.
It follows then easily-from the definitions of R, (f) and R_(f) that this
sets differ at most by a set of measure zero. Hence

(1.1) R () =R_(N).
It results now by (1.0) that if feH,, then
(1.2) E.(f) = R_(f) = {0}.

2. Assume now that @ = R — the additive group of reals with usual
topology and usual order. The weakly continuous s.g.c. 7'(£) is that of
Example 2 and satisfies

(2.0) 1'(h) > I strongly.
hes04

An s.g.c. which satisfies (2.0) is called of class (C,). The spectral
measure F of the minimal unitary dilation of s.g.c. of class (C,) is deter-
mined on Borel subsets of E. U, when restricted to M (f) may be regarded
a8 & mean continuous weakly stationary stochastic process with supporting
measure p;(0) = (E(0)f, f). Suppose that fe H,. Then, by (1.2), the remote
past of this process is trivial. In other words, the corresponding process
is purely non-deterministic. It is a classical result of prediction theory
(see [4]) that the supporting measure x of purely non-deterministic process
is absolutely continuous with respect to the linear Lebesgue measure
on line and

——di
_i 1422
is finite. This, when applied t0 u = u; shows that the following theorem

holds true:

THEOREM 1. Let f 5= 0 belong to the completely non-unitary part of the
canonical decomposition corresponding to the one-parameter s.g.c. T(£) of
class (Gy). Suppose B is the speciral measure of the minimal wnitary dila-
tion of T(&). Then
YBA), f)

o da
1422

+e log
di

. . . —oe
8 finite.

. wl}';ema,rk. The above theorem is a continuous version of a result
o R .
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3. Since now we assume that G is an everywhere dense subgroup
of reals, G, is identified with the set of all non-negative reals in &. We
regard, @ as a discrete topological group. We will study s.g.c. for such
groups.

To begin with, we note that zero is an (in ordinary topology) accu-
mulation point of G,. Consider the subset H' of H determined by

H = {fleﬁﬁ (T®f, 1) = (f, N}
&G

It is a simple matter to check that feH’ iff lim [T'(h)f—f|] = 0.
hos0

Congequently, H' is a closed linear subspace of H. Moreover, H' reduces
all of T(£). Since G, is dense in the positive halfline and |T(§)] <1,

Lim T(&)f exists for every & >0 and feH'. It follows that T'(£) |H' may
&>
beoextended uniquely to one parameter s.g.c. of class (Cp). Note that H’

is the largest subspace which does have this property. In order to have
a “purely discrete” case we will assume in the sequel without stating
it explicitely that for every feH,f # 0

lim sup |T'(R)f—f} > 0.
0t

Let U, stand for the minimal unitary dilation of T'(¢) and let K
be the corresponding dilation space. There is no difficulty to show that

K= 5\/0 (UE—T(E))H@H@E\/O(U_E—T*(g))H

and
VUH=Ha® V(U,—T(H, VU H=H®V (U_—T*(8) H.
20 £>0 &0 £>0

The other type decomposition formulae are that of Wold type [4].
We notice first that B, (H) reduces U,. It results from (1.0) that if T'(£)
is non-unitary, then at least one of the spaces R, (H), R_(H) is not the
whole K. Define QF as the orthogonal projection onto M, (H) and con-
sider the subspace D, = (I—Qg)H. Since M, (H) (M_(H)) is invariant
with respect to Us(U_;) for £ >0, we have U.D, | U, D, for £ 1.
We put L, (H) = ?U;Di' Obviously L, (H) ] R, (H). Write now

8, (H) = KSR, (H)®L, (H)).

S, (H) need not rednce to a zero subspace, which is the case for
classical Wold decomposition. This is the result of Helson and Lowdensla-
ger, who constructed in [2], II, a suitable example. Finally we have

(3.0) K = R, (H)@L,(H)®8, (H).
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Let Q; be the projection onto U.M . (H). It was proved in [6] that
(3.1) 0.1 < IT*(E)fl  for &> 0,feH.

Suppose now that £ <9 (&, ne@) and put
o(&,n) = |UTHEf— U, T* ()f ™.

Then
o(&;m) = |T*(E P +1T* () f*— 2Re (U, _¢T*(&)f, PT* (n)f)
= |T*(&)f"— 1 T* (m) 1.
Sinee 5lim]T*(£)f|2 exists, we conclude therefore that
0+
lim U, I*(&E)f  (£eGy)
£0+

exists for every feH. It follows hm U_.T(¢&)f exists for each feH.

o
Note now that I—T(&)T*(& ) I —T(n)T*(n) for &< g (S,nsG+)
Hence, the strong limit

El_iﬁ I-T(&5)T*(8) = 4,

exists. A, is a positive operator and
(3.2) P m TS = (A f, .

0+
The operator A_ is defined by lim (I-T*(&)T(&) = A_.
04

The innovation part L, (H) of (3.0) is characterized by the following
lemma;:

LEMMA 1. For every feH

LG = I UTNS, 0 = Im U TS (6e6):

Proof It is clear that 1(; suff.mes to conmder merely the case of @,
Thus, let feH and write

g = Hm TUT*(&)f.
£0-

Since U T*(&)feM, (H) for £ >0, we have Qg = ¢. Hence

(.313) Af =g = 10— QNP +1Qi f—g* ,

On the other hand, by ( 3.1); 1Qef1? < |T*(£)f" which together -with
formula . IR T
(3.4) WI=TI™()fi = iflz'* IT&)f*
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implies
If—g* <IfF—105 f = [(T— Q)"
It results now from (3.3) and (3.4) that QF f = ¢ as was to be proved.
COROLLARY. Note that
(3.5) ’ If =@ fI* = |4
Consequently, the correspondence f—Qf f « Alff 8 isometric and. may
be extended uniquely to the unitary one between closures of subspaces D,

and APH respectively.
Let &(G,) be the algebra of functlons, generated in the sup norm

by polynomials Z a;é;(2) (n > 0) with & > 0. Suppose m is the normal-
ized Haar measure of & and put
Ay = {u{ueﬂ(G’_,_), fucl'm = 0}.

Consider a non-negative regular measure determined on Borel sets
of & A generalized version of Szegd theorem, proved in.[2], I, is-the
following one: L

(3.6) ﬁ_‘fnf [1—ul2du =migfmf|1—_u]“;wdm = exp Ulogwdm);

w stands here for the Radon-Nikodym derivative of u with respect to
m. If logw is not m summable over é‘, then the right side of (3.6) should
be interpreted as zero and the left sides are in fact zero. Take now us(o)
= (E(0)f,f) where E is the spectral measure of the minimal unitary
dilation of T'(£). We write w, for the Radon-Nikodym derivative of y,
with respect to m.
TEEOREM 2. Suppose that feH. Then, if max((4.f,f), (A_f,f) is
positive,

[logw,dm > log max((4.f, ), (4_f, ).
Proof. The unique continuous extension of the isomorphism
2 2:§(4) & Z o Ugf

establishes the unitary equivalence between M (f) and L2(y,). Under
this equivalence 1 f and UM (f) is interpreted as multiplication by
£(2). It follows that

o = (distance(f, M+
(dlstance (f, N f)))g,

)2 = inf [ [1—ul?dy, = inf [ [1—7[*du
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where inf is taken over wuesZ,. Since M. (f) < M, (H), we have
[(I—Q#F)fl* < ¢ which together with (3.2), (3.4) and (3.6) proves the
assertion of the theorem.

COROLLARY. Using arguments similar to those used in the proof of
theorem 2 one shows that if logw; is not in L'(m), then A, f = A_f = 0.
Hence, if B is singular with respect to m, then A, = A_ = 0.

It is of some interest to point out some consequences of theorem 2.
Suppose that

¢ f* = min(lim |7 (&)f*, Lm 77 (&)FF) < |f*
§=0+ §-0-+

Then ma'x((A+f;7f), ('A'-—if)) =(1
is summable over ¢ and

—¢)|f* and by the theorem logw;

[ logw,dm > log (1—&)If1*).

This gives us the estimation of the contraction coefficient ¢} with
the aid of u;. Unless T(£) is identically zero for £ > 0, no uniform estim-
ates of this type may be given. Indeed, if |T(&)] < ¢ < 1 for some con-
stant ¢ for &>0, then |T'(&,)] = |T(&/m)"] < ¢"-»>0 for a suitable
sequence &, -»>0 (é,,eG+) If zero is not in the spectrum of A, then
B, ) < (ALf ) <IfP—T*(&)f) for feH and & > 0 and some %e(0,1).
It follows that T(¢) = 0 for & > 0. We infer therefore that zero is in the
spectrum of A4, iff it is in that of A_ and each of these inclusions holds
if and only if 7'(£) # 0 for some & > 0.

4. Let A be the union of all open null sets of the spectral measure B
of the minimal unitary dilation U, of the s.g.c. T'( E) The set G—4 is
called the closed support of B and we write s(B) = G—A. If s(H) is not
the whole G, then both operators A, A_ reduce to zero operator. Con-
sequently, the innovation parts L, (H) are trivial ‘We will prove more,
namely that if s (E) G then not only L, = {0} but also 8 (H) = {0}.
In other words, the spectral measure of the minimal unitary dilation
of a non-unitary s.g.c. can not have any gaps. For s.g.c. of example 1
the corresponding property has been proved in [8], IIL. It results easily
from theorem 2 of [5]. The case of s.g.c. of class (C;) may be reduced to
the case of a single contraction, as well we can use theorem 1 of the present
paper. The proof used in [8] exploits a certain approximation theorem
of Runge. We will apply here arguments of similar character.

To begin with we note that =/ (@,) mcludes congtants and separates
the points of . Moreover, «/(G.) is a,ntmymmetnc and thereby essential.
Since the order in & is archimedean, s (@, ) is maximal (see [3]). It results
now from theorems of [1] that the following property holds true:
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(P) If A is a closed proper subset of é‘, then to every complex valued
function v on A, continuous on A, there is a sequence u, e (G.) such that
Uy >0 uniformly on A.

LeMMA 2. Suppose that the closed support s(pu;) of the numerical

measure uy(0) = (E(o)f, f) (feH) is a proper subset of @. Then U_sfe M, (f)
for £>0.

Proof. Since logw, is not in L' (m), we have feM_ (f). Using the func-
tional interpretation involved in the proof of theorem 2 we need only
to show that for & >0

E(A)eM, (u;) = the closed linear span of 5(4),y > 0,in L2{u,).

We know that 1eM, (g;). Since é(—li is continuous and s(u;) is not
the whole space G, we infer by (P) that there is a sequence u, e (G.)
converging uniformly on s(u) to &(1). Hence

f 1£(2)—

2(zy)
which shows that U_.feM  (f), q.e.d.
We are able now to prove the following theorem:
THEOREM 3. The closed support of the spectral measure of the minimal
unitary dilation of a mon-unitary s.g.c. is the whole group é.
Proof. We shall use previous notation. Suppose s(E) is not the

whole &. Let feH. Then s(u;) + @. Consequently, by the lemma, fe UM, (f)
for £ > 0. Hence

(4.0)

1 —nl3ag, ) = ()2 >0

feR (f).

But R.(f) = R_(f) =« B, (H) ~ R_(H) = the unitary part of the
canonical decomposition. It follows that fe (YU .H for each feH which
a

is in contradiction with the assumption.

Remark. Note that if feR,(f) for every feH, then K = R, (H),
which implies that L, (H) = 8, (H) = {0}.
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Spaces between L' and I* and the theorem of Marcinkiewicz*
by

A. P. CALDEROYXN (Chicago)

Introduction. The purpose of this paper is to obtain conditions for
the validity of statements on interpolation between the L' and the L™
of a measure space, and for analogous statements under the hypothesis
of the theorem of Marcinkiewicz. To describe our aim more precisely,
let us discuss briefly some basic notions coneerning interpolation of
linear operations. Given a topological vector space ¥V and two Banach
spaces A, and A, which are contained and continuously embedded in
V, we will call the pair (4,, 4,) an interpolation pair. The space A;+A4,
consisting of elements of V of the form z+y with we4, and yed, with
the norm Jlz+y|l = inf ([l2]l4,+lylly,) is also a Banach space and its em-
bedding in V is continuous. Given two interpolation pairs (4, 4.,) and
(By, Bs), & linear mapping T: 4,+A4; > B,+B, will be called admissible
if it maps 4; continuously into Bj,j =1, 2. The largest of the corres-
ponding norms will be called the norm of the admissible mapping T.
The class of admissible mappings with this norm is a Banach space.
Given two Banach spaces 4 and B contained and continuously embedded
in 4,+4, and B;+B, respectively, we will say that 4 and B are asso-
ciated if every admissible mapping 7 maps 4 into B. It is a consequence
of the closed graph theorem that T' does so continuously. If A; = B,
j =1,2, and 4 is associated with itself, we will say that 4 is intermediate
between 4, and 4,. If in addition every admissible T of norm 1 maps A
into 4 with norm less than or equal to 1, A will be said to be strictly
intermediate between 4, and 4,. Every intermediate space can be renormed
so as to become strictly intermediate. A pair of associated spaces A and
B will be called optimal if whenever A’ and B’ are associated and 4 < 4,
B o B’ it follows that 4 = A’ and B = B’. In other words, if the pair
of associated spaces 4 and B is optimal, the statement that every admis-
sible 7' maps A into B cannot be strengthened by either enlarging A or
making B smaller. According to a result of N. Aronszajn if the pair 4,
B is optimal, then A is intermediate between 4, and 4, and B is inter-
mediate between B, and B,. This result of N. Aronszajn says even more,

* This research was partly supported by the NSF grant GP-.3984.
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