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Spaces between L' and I* and the theorem of Marcinkiewicz*
by

A. P. CALDEROYXN (Chicago)

Introduction. The purpose of this paper is to obtain conditions for
the validity of statements on interpolation between the L' and the L™
of a measure space, and for analogous statements under the hypothesis
of the theorem of Marcinkiewicz. To describe our aim more precisely,
let us discuss briefly some basic notions coneerning interpolation of
linear operations. Given a topological vector space ¥V and two Banach
spaces A, and A, which are contained and continuously embedded in
V, we will call the pair (4,, 4,) an interpolation pair. The space A;+A4,
consisting of elements of V of the form z+y with we4, and yed, with
the norm Jlz+y|l = inf ([l2]l4,+lylly,) is also a Banach space and its em-
bedding in V is continuous. Given two interpolation pairs (4, 4.,) and
(By, Bs), & linear mapping T: 4,+A4; > B,+B, will be called admissible
if it maps 4; continuously into Bj,j =1, 2. The largest of the corres-
ponding norms will be called the norm of the admissible mapping T.
The class of admissible mappings with this norm is a Banach space.
Given two Banach spaces 4 and B contained and continuously embedded
in 4,+4, and B;+B, respectively, we will say that 4 and B are asso-
ciated if every admissible mapping 7 maps 4 into B. It is a consequence
of the closed graph theorem that T' does so continuously. If A; = B,
j =1,2, and 4 is associated with itself, we will say that 4 is intermediate
between 4, and 4,. If in addition every admissible T of norm 1 maps A
into 4 with norm less than or equal to 1, A will be said to be strictly
intermediate between 4, and 4,. Every intermediate space can be renormed
so as to become strictly intermediate. A pair of associated spaces A and
B will be called optimal if whenever A’ and B’ are associated and 4 < 4,
B o B’ it follows that 4 = A’ and B = B’. In other words, if the pair
of associated spaces 4 and B is optimal, the statement that every admis-
sible 7' maps A into B cannot be strengthened by either enlarging A or
making B smaller. According to a result of N. Aronszajn if the pair 4,
B is optimal, then A is intermediate between 4, and 4, and B is inter-
mediate between B, and B,. This result of N. Aronszajn says even more,

* This research was partly supported by the NSF grant GP-.3984.
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namely, if 4 is continuously embedded in A,+4,, then among the g

that are continuously embedded in B,+B, there is a minima] oﬁzeezf
such that 4 and B are associated, and B is intermediate between B
and B, .and conversely, given a B continnously embedded in B -|-]31
there exists a maximal 4 among those spaces which are eontil_mi)u;ﬂ2
embedded in 4,44, such that 4 and B are associated, and A4 is int y
med.iate between 4; and 4,. The theorem of Ma,rcinkiewi,cz in ity ghar e;;
version due to E. M. Stein and G. Weiss (see [8]) consiéiers exceptpin
one extreme case, two interpolation pairs consisting of Lorén’ﬁz Spacel

and ?Js'serts that certain pairs of spaces are associated. Our aim is to OPI;t n
GOI.I.dltl()ns, and in certain cases necessary and sufficient conditions ii)n
pa.lrs' of spaces to be associated, and for associated pairs to be o ti’ma,lr
I.n view of what has been said above, it is clear that one need onlp con.
sider spaces which are intermediate between Lorents spaces aJndy sin .
t]'nese are intermediate between I' and L>, guch spaces are afso interm(:
diate bfstween IL* and L. Thus, our first task will be to characterize th

Spaces intermediate between the I and the L™ of a meagure space. °

1. Spaces intermediate between I! and I*. In

shal_l consider totally o-finite measure spaces 4 and gﬁazpizli;)w; VZ;
equivalence classes of real valued measurable functions on . The equi-
valenge relation here is that of coincidence almost every'wh.ere W%en
speaking about functions we shall not distinguish between eql.liva,lent
ones, so that, strictly speaking all our statements will be about e uiva-
lence classes rather than functions. With the topology of convergegce in
meg,sure 1011 sets of finite measure ¥ becomes a metric vector space in
which L.(./{) and L*(#) are continuously embedded. We shall make
systematic use of the functions f* and f** associated with a measurable
;ung:lllon J. The function f* is defined as follows: given a measurable
/ HEO. t11311e 1;1*0perty* thafa the set where |f| > A has finite measure for A
sutth iently argez 7*@#) is the unique non-negative non-increaging left-
*n nuous function on 0 < ¢ < oo such that the sets where |f| > A and
J* > 4 have the same measure for all A > 0. The funetion f* is wusuall

called. t'he non-inereasing rearrangement of the function f. The folloWiny
properties of the functions f* are readily verified: . ¢

i) if B is the set where Ifl > 2> 0 and s is its meagure, then

Jifldu = [ 1 aya

h 14 is he meas h 8 v 3
o . B et
where t. asure of t] € Space on which ’ 18 deﬁned if 18 any 8

L[mdu §E[Ifld/t = off*(t)dt;
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iy it £l <Ifel, then f <f3;
ii) if [fa] < |f] and f, —f in measure on sets of finite measure, then

fi—f* at all points of continuity of f*.

If the function f is integrable on sets of finite measure, then f* is

integrable on every finite interval and we define

12
1
0 =7 [fwa.

The following properties of the funetions f** are important and
will be used later:

i) <

ii) |fil <|fel implies fi* <f3™;

i) (f+9)™ <f™+4"

iv) if f, — f in meagure on sets of finite measure, then f* < Hmfr*;

v) if f, converges to f with respect to the norm of L*(.#) +L~°°—(./t),
then #f3*(t) — ¢**(z) uniformly on every finite interval.

Properties i) and ii) need no explanation. To see that the remaining
ones are valid, we assume first that the space on which the functions
under consideration are defined is non-atomic. In this case the function
F** can also be defined as

|
@) = 7sngflfldﬂ

where the supremum is taken over all measurable sets in 4 of measure
no larger than i This is not difficult to see and the proof is left to the
reader. With this definition of f**, iii) is immediate, iv) follows from
Fatouw’s lemma and v) follows from the fact that under the given assump-
tions fn = f+ g+ hn where g, >0 in L*(4#) and h, - 0 uniformly. If
the measure space under consideration has atoms, we replace each of
its atoms B by a non-atomic measure space B’ with u(E) = u(¥') and
each function f(z) by » new function f(z) on the measure space thus
obtained, where f(z) = f(z) if # does not belong to any B’ and f(@) =a
if weB’ and f = a almost everywhere in E. Then we clearly have rf=r
for every f and consequently also f** = f**, and the general case is thus
reduced to the non-atomic case.

Tewmwma 1. Let f(t) >0 and g(f) =0 be mon-increasing functions
defined on the set R of positive reals. Suppose that g(t) is simple, integrable
and that f**(t) > g**(t) for all t > 0. Then there exist finitely many measwure
preserving transformations y; of R+ and a convex linear combination T of
the induced linear transformations T; of L*(RT)+L*(R*) such that If > g.
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Proof. It is not difficult to see that under the pi
. o given ass i
there exist & positive ¢ and two functions f and 7 with the Eﬁﬁﬁ;
properties: they are non-increasing, 0 <7 <f, 7 > g, () — ;
ently large 1, y 0SS, 7>, §(t) = 0 for suffi-

t 11
[Hords > [g(s)as, t>o,

and fand 7 are constant on each of the intervals Iy = ((k—1)e ke), & =
=1,2, o Let now # >0 be an integer with the following i)ro ’ert_-
?here exist measure preserving transformations y; of RV permm:inP t}{.
lptervals I and a finite convex linear combination T, of the i g ;
linear transformations of functions such thag T,f = gn for tg:zla u:zg

‘ t
f T.fds > f gds
0 0

for all ¢ It is clear that T,7 is constant on each I x and that 7, >
I,‘LH, for.othe.rw.ise the inequality between the integrals above 7;vo;_lz ;))]:
violated in t;hls~ interval. Suppose now that 7,7 > g for all ¢, then, since
f=fand g <§, we have T, f > g and T, has the properties’requh,*ed b
our lemma. If, on the other hand, T, < § for some ¢ > ne, we let I ’
m > n+1, be the first interval where 7T,,f < g. Let a, b and ’al b; be t;:e;
;:J(};é:s'()f T.f and jon I,,, and I, respectively. Then, since’ glis non-
o 1;nf,(1viez haxf ba =b>b,>a;. Now, let 4, 0 < 1 <1, be such
B e 1;) lclzl ‘—t and w a measure Preserving transformation of
e o Leg - G;J ;nt Erv]ﬁls I,,, and I, a,.nd leaving all other points of
o ¢ Imear transformation of functions induced by v
Trir = [+ (1= 1) T1T,.

ihen; _ew:ident}ly, Topif = T,7 outside the intervals I,,, and I,, and
: n_,_; =gonl,,. Thus wehave T, ., 7 = g for t < (n+1)eand T, f 2§
or ¢t < (m—1)e. On the other hand, we have i

i t
f—Tn+1?d‘g = ande
0 0
for ¢ > me and consequently
t 11
[ Tnifas > [gas
0 0
for t > me. Since Tarf >3 for ¢ < (m—1

holdsifor all ¢ not in I,,. But on I, bo
functions of ¢ and congequently the

- )&, the preceding inequality
1.:h sides of the inequality are linear
inequality holds for all ¢.
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Thus we have shown that if » has the properties postulated above,
so does n+1. Since 0 clearly has these properties, we conlude that the
same is true for every =, n > 0. Now, if m is so large that §(f) = 0 for
t > me, then evidently T,J > g for all ¢ Setting T = Tn, since f>F
and g <g, we have If >g. The lemma is thus established.

LeMMA 2. Let A, and M, be two totally o-finite measure spaces and
f1 and f, be two measurable non-negative functions on M, and H, respectively
such that f¥ = fa, and f, vanishes outside the sel where fy > a = ltim ).

00

Then there exists a positive admissible linear map T of the interpolation
pair (L1(AM,), I°(A,)) into the pair (L (M), L™ (My), of morm 1, such
that Tf, = fs.

Proof. Let u; be the measure on .; and &; the o-field of subsets
of the set where f; > a of the form f;'(E) where B is a Borel subset of
the real line contained in t > a. Then, since the sets where f; > A and
f2 > 4 have the same measure for all >0, it follows that

mlfT (B)] = plfi (B < oo

for every Borel subset E of ¢ > a. Given a set D in &, we associate with
it the set D’ in #,, D' = f{(E) where ¥ is a Borel subset of ¢ > a such
that D = f;(B). The set D’ is defined up to a set of measure 0 for if
D = ffY(B,) =fiY(B,), then also D =fi'(B; ~ F.) and i (B ~ By)
cfr(B),i=1,2, and m(fi (B~ )] = pa(D) = m[fi ' (By)]. Given
a function f in L (s, )+ L°(#,) we define a countably additive set func-
tion » on &, by

(D)= [ fap.. .
3

It py(D) = 0, then (D) =0 and consequently »(D) =0, which
shows that » is absolutely continuous with respect to the restriction
By of ug to F,. Now we define Tf to be the Radon-Nikodym derivative
of » with respect to u, and Tf = 0 outside the set where f, > a. The ope-
rator T just defined is clearly linear and positive. If f > 0 is infegrable,
then Tf >0 and denoting by D, and D, the sets where fi>a and
fa > a respectively, we have

[ Tfdps = [ Tfays = [dv = [fap, < [fim
Dy Dy Dy

where the first integral is taken over .#, and the last over .#y, whence
for general integrable f we have

J1Tfldus < [ Tifidus < [ 1fidp.
Thus T maps L'(#,) into L'(.#,) with norm less than or equal to 1.
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If, on the other hand, [f| < ¢ and D is any set in &, we have
| [ 2| =| [ @] = | [ fiu| < eps(D') = e (D)

which shows that |Tf| < ¢. Thus T maps L*(#,) into L®(.#. i

less than or equal to 1. ' (40 with nerm
Finally, let us show that If, = f,. Let 1 > a, let D and D’ be the sets

Whe}l;e fa> 4 and f; > A respectively, and ¢ their common measure. Then

we have

1 12
JHidws = [Fi0)8s = [ £(6)as = J fad;
this shows that
ffzdﬂzx: ff1dl‘1
D D’

for every D in #,, and this implies that Tf, = f,.

TrroREM 1. Let Ay and A, be two totally o-finite measure spaces
and fi an f, two functions on My and M, respectively such that =
.Then there ewists an admissible linear map T of the pair (L1 () ll}“?.l; )j
Z}to th; pair (L' (Ay), I (M), of morm less than or equal to 11, ,such thla,t

1= J2

Proof. Without loss of generality we can assume that the functions
fl and f, are non-negative. Under this agsumption there exist two increas-
Ing sequences of simple non-negative measurable functions 9y and B
such t}}at ha* < hat; and converging almost everywhere to f? and fn
res'pectlvely. Then tgz*(f) and #hi*(¢) converge to #*(t) and tf**(t;
um.forrilly on every finite interval. Furthermore, the functions tgi*(t)
and ¢h,*(¢) are non-negative, non-decreasing, concave, piecewise 1]'_;.(3311‘
and constant for f;ufﬁeiently large ¢, and thy*(3) < #f3*(f) < #¥*(t). Thus
gﬁren 7 there ems.ts an m, m = m(n), such that thr*() < tgk*(t) for
all t > 0, and aceording to lemmas 1 and 2 there exist positive admisgible
?ppera,tors %’I,H,Tz,n,*Ta_n of the corresponding pairs (L', L®) such that
le;‘;%ﬁaj Imy Tzingm > hg, Tyuhy =hy,, these operators having norm
o 1?roeq[<ua. to 1. Now we let ¢, and v, be two measurable functions
define T — _T\ q’n;l! 0 <y, <1 and g, =fign, hy= "/’nTz,ng:n and
foms muﬂ;i—lic ;;G’fw“ 2 L1 ®n, Where g, a;m'i vy, here stand for the opera-

'admissiblepo er1(;11 by on a:nd‘ Py, 1reﬁmectlvely. Clearly T, is a positive
s ;) % (;r of the pair (L'(#,), L°(#,)) into the pair (L'(4,),
T ; Osmorm 1jness than or equal to 1, such that 7,f; = h,. Let now
oy th;; A(av)e_ ltiaa,r functional of bounded sequences of real numbers

n) = £ a, for every convergent sequence a,. Given a func-
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tion f in I*(s#y)+L®(4,), let v be the set function in ., defined by
»(B) =4[ [ Tofdps)
B

where p, is the measure on .#,. This set function » is countably additive
and absolutely continuous with respect to p,. In fact, given a positive
number & there exists ¢ such that f = g-+k with

[lgldm <& and |hl <e

where p, is the measure on ;. Consequently, since the norm of the ad-
missible operator T, is less than or equal to 1, we have

| [ Tfdps | <| [ Tagips| + | [ Tubdpa| < o-t o (B)
Fo B B

and consequently
{B) < eua(B)te

which clearly implies the countable additivity of » and its absolute
continuity with respect to us.

Now we define Tf as the Radon-Nikodym derivative of » with respect
%0 p,. Since A and T, are positive, T' is positive. Furthermore, since

T,f; = hy, converges monotonically to f,, we have
»(B) = lim anfldyz = [ fadps
T->00 Y B

for every measurable E, which shows that If, = fa-
Finally, let us show that T is admissible and has norm not exceeding 1.
Let f be non-negative and have norm less than or equal to 1 in L' ().

Then Tf > 0 and

[ Tfdp, = »(B) <A[ [ Tuflpa] <A1) =1
E

for any measurable subset B of .#,, which shows that Tf is integrable
and its integral does not exceed 1. If, on the other hand, ifl <e¢, then

| [ = b = |2 [ Tusia]| < ()

which shows that |7f] < ec¢. The theorem is thus established.
TeEOREM 2. Let T be o quasilinear map of L'(My)+L7(My) into
L} (M) +L° (M), that 48, o map which satisfies the following condi-
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tions

(TG = LA, TSl < e(ITh] -+ |Zf)

where ¢ 18 a constant independent of f, and f,. Suppose in addition that
T is admissible in the sense that it maps L'(A,) into L' (A,) and L*(uty)
into L™(M,), and that the inequality |Tf|| < ¢7'||f|l holds between the cor-
responding norms, where ¢ is the same constant as above. Then (Tf)*™ < f*.

Proof. Let f, feL' (M) +L®(A,), be given and let ¢, be a positive
number. Set & =f*() and let g(#) be the function on .#, defined
by g@)=fl@)—a if f(®)>F W), 9@ =fl@)+a it fl@) < —f*,)
]al.nd g(x) = 0 if |f(z)| < f*(t). Further, let h(z) = f(#)—g(®). Then we
ave

Ly
(@) <f ) and [ lgldp, < [ f*(s)ds—tof*(ty).
0
From this it follows that

ty
o|Th| <f*(t) and  [o|Tygldus < [ f*(s)ds—tif* (1)
0
which implies that

(eTh)™ (o) < f*(to)
1 10
d Ta)** - il *
md - (629)" ) < o [ elTgldu < f F*)ds—F (k).
Since |Tf] = [T'(h+g] < ¢(|Th|+Tg|), this in turn implies that

to
(T™ () < (I (1) + (070 () < = [ f*(2)ds = £**(8)

a8 we wished to show.

" TeEOREM 3. Let 4, be a linear space contained in L' (M;)+ L% (A,);
en

i) a necess.ary and sufficient condition in order that every admissible

map of jhé pair (L}(A,), I™(My)) into itself map A, into itself, is that
g% <™ and fed, imply ged,;
o) if the space A, has a norm, a necessary ond sufficient condition
in ow‘ler that every admissible map or norm less than or equal to 1 map 4,
wnto itself with norm less than or equal to 1, is that ¢** <™, fed, and
Il <1 imply ged, and |g| <1; I

) iii) 4f Az.":v? a l'li‘rwm‘_ space contained in L' (M;)+L°(A,), then a neces-
sary and sufficient condition in order that every admisstble map of the pair

icm
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(L* (), I (M) into the pair (I'(As), L°(A,)) map Ay into A, is that
g < and fed, imply ged,;

iv) if the condition in ili) is satisfied, then every quasilinear map of
the first pair into the second which is admissible in the sense of theorem 2
maps A; into A,.

Proof. The preceding statement is clearly an immediate conse-
quence of theorems 1 and 2. :

THEOREM 4. Let #, be a measure space which is either non-atomic,
or else purely atomic, all atoms having the same measure. Let 4, be a Banach
space which is continuously embedded in L'(My)+L™ (M) and whose unit
sphere is closed with respect to almost everywhere convergence. Then, if

f eLl(Jll)—}-L_""(.I{l), a necessary and sufficient condition in order that

every admissible map of the pair (L' (), L™(Ay)) into the pair (L'(As),
L2(,y)) map f into A, is that the set of all functions geL'(My)-+ L™ ()
such that g* <f* be a bounded subset of A,.

Proof. Let us prove first the necessity of the condition. Let & be
the space of all admissible linear maps of the first pair into the second
with the norm of admissible maps, and let = be the linear map of & into
A, defined by z(T) = Tf. Then clearly v is continuous if 4, is given the
topology induced by the norm of L'(.#,)-+L*(#s) and the graph of =
is closed in 4,®% with the corresponding topology. But then the graph
of 7 is also closed in 4,-2 with the stronger topology induced by the
norms of 4, and %, and consequently, T maps Z continuously into 4,.
Let now § be the image under 7 of the unit sphere in 2. Then S is a bounded
subset of A,. If g is such that ¢* < f*, then also g™ < f**, and according
to theorem 2 there exists an admissible linear map of norm less than
or equal to 1 such that Tf =g¢. Thus geS8.

To prove the sufficiency of the condition we will show that it implies
that if g, geL’(#,)+ L®(A4,), is such that ¢** < f**, then ged,, whence
the desired result will follow from part iii) of the preceding theorem.
For the purposes of this proof, simple functions which are finite linear
combinations of characteristic functions of disjoint sets of equal measure
will be called step-funciions. Under our assumptions on the measure space
#, every non-negative measurable function g on ., is the limit almost
everywhere of non-negative step-functions b such that h <g. This is
clear in the atomic case. In the non-atomic case it is an immediate con-
sequence of the fact that the medsures of the subsets of a measurable
set ¥ take all values between 0 and the measure of E. Suppose now that
g is a non-negative measurable function on .#, such that ¢™ <f**.
Let h be a step-function such that 0 <% < ¢/2 and let ¢ be the measure
of the disjoint sets on which % is constant. Given an integer m, m > 0,
we let 7, be the characteristic functions of the intervals (n—1)e-27™,
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m-z-mj of the real line and f,,(t) the largest linear combination of these
such that f,(f) <f*(f). Then

14 12
[ Fm(s)ds — [ f*(s)ds
0 0

uniformly in every finite interval, and therefore we will have

i i
1 (0)ds < [fu(s)ds

for m sufficiently large and all £ > 0. We choose now an m for which the

preceding inequality holds. If .#, is non-atomic, then » can be expressed
a8

N
h(@) = > dngn(w)

v;:he_r: the y, are characteristic functions of disjoint sets of measure
.e‘-,2 and 4, >.}.,,+1. According to lemma 1 there exist measure Ppreserv-
ing tzransf?rma‘mons of B permuting the intervals (n—1)e-2-™, ne-27")
and inducing linear maps 7'; such that

2 a; == 1.

B < 2 &L ifm,
Let A = Tifm it B* >0 and %; = 0 otherwise. Then %; is constant

on each of the intervals ((n—1)s-2—™ 5e.2-™
Sl { ) y76:2™™) and can therefore be

>0,

_ N
Bi(t) = D 2 7at).

Now we set

N
(@) = D' 2 ().

:I}:;l;,hgsgi;r;s;fﬂl(&)a = Zii)* Sfm(t) <f*() which implies that h;ed,
4| in 4, is leg i
hand. e o I 2 18 less than a fixed constant ¢. On the other

h@) < D'ashi(a),

:;Vl};?cfznlzﬁf;)iov}:s that h.eA2 and ||| < c. Now we take a sequence of
that, st o converging .to 9/2 almost everywhere and we conclude
) © sphere of radius ¢ in A4, is closed with respect to conver-

gence almogt everywhere,
N ¢/2 and g belong i
Broof in tho case when .4, ronatm g to A,. This concludes the

icm°
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In the case when .4, is purely atomic we revert to our function A
above and assume that & is the common measure of the atoms of 4.
The preceding argument would be valid with f, = f; except for the
fact that the inequality

i i
[r*(s)ds < [f.(s)ds

may not hold. However, since clearly A

i i
[fle)ds > [f(s)as, t>e,
we have
1 t
[*s)ds < (o+1) [fuls)de, >,

with

o = ( [F@as)/( [ futs)ds)

0 0

which implies that
t i
[#*(s)ds < (e+1) [fule)ds, 1>
0 0

But the integral on the left is & linear function of ¢ in the interval [0, &]
and the one on the right is a concave function there and thus the inequality
holds for all positive ¢. Now we can repeat the argument above with
(¢+1)f, replacing f,. This would establish our assertion in this remaining
case.

2. The spaces L,, and the theorem of Marcinkiewicz. In this
gection we will discuss conditions for the validity of the theorem of Mar-
cinkiewicz. The spaces Ly, first introduced by G. G. Lorentz, appear
naturally in these considerations. They are among the function spaces
studied by W. A. J. Luxemburg in his dissertation [5], we will therefore
restrict ourselves to discuss some of their special properties which are
relevant to our present purposes.

Given a totally o-finite measure space 4 we define Ly,(#),
1<p<oo 1<q< oo, ag the class of measurable functions f on .#
such that

oo Z\ie
0
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Here (p—1)/p? is merely a normalizing factor which ensures the conti-
nuity of the norm in the extreme cases.

For 1 <p < oo and ¢ = oo, L, ,(#) is defined as the class of func-
tions f such that

”f“p,oo = Sl}p ¢ **(t) < oo.

Finally, Ly (#) and L (#) coincide by definition with L'(4)
and L™(#) respectively, and L, () is the closure in L™ () of the space
of bounded functions vanishing outside sets of finite measure.

I fis bounded and vanishes outside a set of finite measure, integration
by parts gives

00

{fllp, = (l/p)ff*(t)tl/p—ldt’

0

1<p < oo,

whence it follows that
Y | fllpy = flhy; Bl = [1flloz
D1 D->00
On the other hand, we also have

Egllf\lp,q = [{flln,o05 l}'_lilollfllp,w = flleoseo-

The spaces Ly ,(#) are complete with respect to the norms just
introduced and the space of simple functions is dense in L, (#) for
g < oo. The latiter can be readily seen by observing that given a measurable
function f there exists a sequence of simple functions f, such that [f—f,]
converges monotonically and almost everywhere to 0, which implies
that (f—f.)** converges monotonically to zero and thus also the norm
of f—f. converges to 0.
~ In all cases Ly,(#) is contained in L*(#)+ L () and its embedd-
1£1§ in this space is continuouns. For if f, converges to 0 in Ly (.#), then
» (1) and f*(1) converge to 0; thus if we set h, = fy I |ful > fa(1l) and
by, = 0 otherwise, and g, = fa—hy, we find that g, converges to 0 uni-
formly and that

Jhldu = [fris)ds = fi*(1) > o.
0

Qn a.ccou.nt of theorem 3, the spaces Ly () are readily seen to be strictly
Intermediate between L'(.#) and L™(4).

THEOREM 5. Let 1 < p < o0, q <. Then L,,(#) is contained in
Lyu( M) and ’

Iflln.r < [P —1) [pg " ~|f .

icm
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Proof. Let f be in L,,(#) and |fl,, = a. Then

2 r ok 1/p dat - *
@ = [0=11p") [ 101 = (o—1)ipa [ rrwar

and

[pa/lp—1)1a* = [ f**(t)d.

0
Since f**(i) is non-increasings we have
O < [ f*(9)ds, 0 <t< oo.
] .

Hence

O < [pg/ip—1)]at
and

[p—1)/pg"a™" )1 < 1.
Consequently, for r > ¢ we have

[(p~1) [pgT™a™"f** (&€ < [(p—1) [pgla”f** (1)%7®
and integrating we obtain the desired inequality. If r = co our result
follows directly from
O < [pgl(p—1)1a”.
THEOREM 6. A necessary and sufficient condition in order that f
belong to Lpg(#),1 <p < o0,1 < g < oo, 18 that
F @
[ trmerpS < co.
0
Furthermore
2 °° * 1/p th e
Il < [p/(p—l)]{[(p~1>/p 1 rorrrZt <mIe—D1e
0
A mecessary and sufficient condition in order that f belong to L, . (#)
is that f*()t""" be bounded. Furthermore

1flleoo < [2 /(P —1)1811pf*(t)t”” < [P/@—Dfllp,co-

Proof. The necessity of the conditions and the right-hand side
inequalities are immediate consequences of the fact that f* <f**. The
sufficiency of the condition for the case g < oo and the corresponding
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inequality follow from an application of Hardy’s inequality (see [9],
. 20) to

i
) =5 [ £r6)as.

In the case ¢ = co we let @ = supt/’f*(t). Then
i

i t
PP (t) = 201 [ f*(s)ds < 7" [as~Pds = ap(p—1),
0 0

whence the desired result follows.

CoROLLARY. The spaces Ly, (#) and LP(#) coincide and have equi-
valent norms.

If p=1or p = co this is clear in view of the corresponding defi-
nitions. If 1 < p < oo our assertion follows immediately from the fact
that

Jif@)ldn = [ f*(s)ds

The following result is useful in testing continuity of mappings de-
fined on the spaces Ly (/).

TaEoREM 7. Let B be a Banach space of measurable functions con-
tinuously embedded in the space V of all measurable functions of a totally
o-finite measure space .M, and with the property that feB and |f| = lg|
implies geB and |flp > lglz. Let T be a continuous map of Ly, (),
1 <p < oo, into V which is sublinear, that is, such that

T(f+9)l <|Ifl+ITgl, ITGAI = |TflIA]

almost everywhere, for every pair of functions f, g in Ly,(#,). Suppose
that TyeB for every characteristic function y of a set of finite measure in
M1y amd that there ewists a constant ¢ independent of y such that

1Tz < (¢/2) llxlln,2-
1(-#1) into B and
1Zflls < ¢lIfllpa

Then T maps L

for every f in B.

Proof. Let f be a simple non-negative integrable function on .,
and f = 'A%, where 4, > 0 and the xn are characteristic functions of
setis such that x < 2 <... < yn. Then, ag readily seen, we have

=2hzn and = F.5%
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which implies that
“f”p,l = Zln”Xn”p,l‘

On account of the sublinearity of 7 we have

1Zf] < 3 2l Tml

and consequently

¢
121l < D 2alTrals <5 > Inlitalns

If now f is simple and infegrable but no longer non-negative we
set f=fi—f, with f; and f, simple non-negative and such that [f|
= fi+fe. Then

¢
< Y Ifllo,z -

1Zfls < 1ZHllz+ 12falls < 5 (!|f11!p,1+llleip,1) < ¢ [fllpa-
Suppose now that f is any given function in Lj,,(4,) and let fn be
a sequence of simple integrable functions converging to f in L, (#).

Then 7f, converges to Tf in V. Furthermore, gince

[Tfn"Tfm[ < T(fn“‘fm)li
we have

1Tfo—Tfmllz <IN (fo—Fudlls < ¢l (Fa—TFm)los

and Tf, converges in B. Since limits in V are unique, it follows that 7'f,
converges to If in B and

1Z1lls = tm||Tfallz <

as we wished to show.

Let #, and 4, be two totally o-finite measure spaces. Let I' be an
operator defined in some linear space containing Ly, (4#;) with measurable
functions on .4, as values and which is quasilinear in the sense of theo-
rem 2. We will say that T is of weak type (p, q), 1 < ¢ < oo, if T maps
Ly, (4#,) continuously into the space of measurable functions on .
and there exists a constant ¢ such that

(T < a7 | flp,x

for every f in Ly;(.#,). On account of theorem 6 this condition is equi-
valent with the existence of a constant ¢’ such that |Tfllye < ¢ lIfllp,1s
provided that ¢ > 1. If ¢ > 1 and in addition T is sublinear, then accor-
ding to theorem 7 the preceding inequality will be satisfied by all fin
Ly, (#,) if it ig satisfied by characteristic functions of sets of finite measure.

< elim ffullps = ¢lifly,
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Thus in the case ¢ > 1 this condition is seen to be equivalent with the
upestricted weak type” condition of Stein and Weiss [8] ().

Given a closed segment o in the square 0 <a <1, 0 < p <1, with
endpoints (a;, f1) (g5 o) aDd @y 7 agy By +# f,, and given two totally
o-finite measure spaces 4, and A, # (o, M1, M ;) will denote the class
of linear maps of Ll,,11 (vtty) 4 Lyjay 1 (A1) into the space of measurable
functions on .#, which are simultaneously of weak types (1/ay,1/f))
and (1/as, 1/B5). If there is no ambignity, we will denote this class more
briefly by # (o). On the other hand, #(¢, A1, #,) or more briefly %(o)
will denote the class of operators T in # (o) satisfying the inequalities

WA ja;,008;, < < O fllajag1tag0 i=1,2,
for all fin Ly, (A#)). If the segment ¢ is such that 8; < 1,i =1, 2, ¥(0)
will denote the class of operators in # (o) satisfying the mequahmes

HTf”l/m RS "”f”]/mL 1jay 3 f‘Lum (A1),
where & = 1jo; if $;>0 and & = co if B;=0.
With a segment ¢ as above we associate two functions on Rt xRt
namely

w(t, s) = min(s®/tf1, s°2/t2)  and  @(t,s) = s%w(t, )

and an operator S(c¢) on functions on R+ defined by

S(o)f = fqot 92

whenever the integral on the right is absolutely convergent
LemMa 3. The operator 8(o) belongs to # (o, BT, RY). If the point
(1/p, 1]q) is interior to the segment o and feLy, (R*),1 <r < oo, is non-
negative, non-increasing so s S(o)f and 8(0)feLy,(RT). Furthermore,
we have [|S(0)f|lgr < ¢lifllyr with ¢ depending on o, p and g but not on 7.
Proof. Suppose first that o, > 0 and let f belong to Ll,,,l,l(RJ“).
Then, since (t, s) < s“/t’1, we have

[ ot 01560 <vn [ pysnmias < oh [ 1 (osmas

=1 aflllﬂlua,u

(*) Obgerve that if the inequality (Tf)* < Gt“ﬁﬂflh/u,l is satisfied by characte-
ristic functions of sets and two pairs of values (a1, f1), (a2, fo) of a and f, then it
is also satisfied by any other pair a = 384 az(1—s), ﬁls-i— Ba(l—s), 0<s< 1
In fact, if a is the measure of the set where f = 1 we have |{fllije; = a“ and conse-
quently

(TH* < (ct—ﬂla"l)s(at"ﬂzaaz)l“a = ot—Ba®.

icm
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the last inequality being a consequence of the fact that ¢°2~? is non-in-
creasing. Thus we have

18(a)fl <t e I lhjaya 8(0)fT* <7107 (Ifll1jaga

which shows that S(o) is defined on Ll/all(R ) and is of weak type
1/ Ay 1/ B1)-

The same conclusion is valid if a; = 0. For in this case we have
a, > 0 and

and

oty 8) = a, ,g“z/tﬂz it s il < ¢

and ¢(t, s) = 0 otherwise. Thus

S(o)fl < f Pty )] S <t [[£4(6)57 a8 < [flost ™

and the desired result follows. A similar argument shows that S(o) is of
weak type (1/as,1/B).

Let now f(t) be non-increasing bounded and vanish outside a finite
interval. Then integration by parts gives

o0 ds o0
()f = f p(t,0)f6) = = = [ v(t, ()

and since (i, 8) is a decreasing function of ¢, it follows that § (0)f is non-
increasing. For general non-increasing non-negative functions f(t} the
same conclusion is obtained by a passage to the limit.

To prove the last assertion of the theorem we assume that o, < a,.

Let m = (B;— B4)/(a;—ay). Then
: mst i " <s,
8) =
vl 9) PILT I S Y

Setting §(o)f = ¢ and changing dependent and independent variab-
les by means of the substitutions

G (v)exp(—v/mg) = glexp(v/m)],
= f(expu),

§ = expu,

F(u)exp(—u/p)

t = exp(v/m),

we obtain
v

G(v)exp(—v/mg) = ap fF(u) ~—Byvm]du

exp[(a,—1/p)u

+a; [ Pu)exp[(oy—1/p)u—pro/m]du

Studia Mathematica XXVI z, 3 w
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or
v

G(v) = ay fF(u)exp[(a2~1/p)u-—-(52—1/q)'u/m]olu—|-

+a [ Pu)exp[(a,—1/p)u—(B,—1/g)v/m]du.
But, as readily seen

(Bo—1]g)fm = ax—1[p, (B1—1[g)/m = a,—1]p

whence

G(v) = ay [F(u)exp[(as—1/p)(u—nv)ldu+

+a; [ F(u)exp((ay—1/p)(u—0)]du

and. Young’s theorem on convolutions gives |G|, < ¢||F|. where the
norms are norms in I"(— oo, co) and ¢ depends on o, p and g¢. Substi-
tuting the original variables back in the integrals defining these norms
we obtain

‘ 0

which combined with theorem 6 and the preceding inequality gives the
desired result.

THEOREM 8. Let T be o guasilinear operator defined on L 1 A1)+
Ly, 1 (A1) with measurable functions on M, as values. Suppose that T is
simultancously of weak types (1/p,,1/q,) and (1/pa, 1]gs). Let o be ihe
segment with these endpoints. Then there ewists a constant ¢ such that

(Tf)* < eB(a)f*.

Proof. Let us begin proving the following inequality which is of
independent interest

(f4)* (1) <f* (t)4g*(82).

It will be enough to prove this of f and g non-negative. Let u be
the measure on the space on which the functions under consideration
are defined and let (f > 1) denote the set where f > A. Then if f is non-
negative and w[(f>21)] =1t, <1, we have F*(t) = 4 = f*(¢,). Further-
more, ul(f >f*#)] <t for all ¢ > 0. Consequently we have

wlf>rell <t,  wlo> ¢ t)] <t

icm
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Let now
pl(f+g > )+ g (@))] =t < t.
Then
(F+9)*@) <f*(t1)+9*(tz)'
But since

(f9 > @)+g" ) = (F> ) © (9> 9% (%),
we have 3 < 1,41, and consequently
(FHo* ) <ft)tg* ()
whenever t > #,+1,, or also
(FH9) (ttt) <fHt—e)+g"(t—e)

for every & > 0. But f* and ¢* are continuous on the left, whence the
desired result follows by a passage to the limif.
We pass now to the proof of the theorem. Let ¢ > 0 be given and leb

fo=F=F@™ i F> @), fo=FfH0 8 f < =10
and f, = 0 otherwise, where m is the slope of the segment ¢. Then clearly,

if f, = f—f, We have f* = f{-+f; and fi(s) =0 if s> fi(s) =fi(1")
if s < ™ Consequently

(TH* (1) < o(Tf+Tf)* (8) < o(Tf,)* (¢/2)+e(Tf)* (1/2)
and, assuming that p; < p,,

ds
ry = o, 8(0)f}s

i
(Tf)*(t/2) < et Ml fullp, < 01(1/p1)t_1/q1f fi(s)st

B bl 1 ds
(TH)¥ (412) < eat™ 8 falys < co(Lfp)t~1% [ F)8%72 .

But

m

§m t ds
ds - —1,-1 1/pg 7
i—lt—l/!llf sHm = grimia — gyl — it [ g

p

0
0

and therefore, since f;(s) is comstant for s < t™, we have

o0
ds
] FACOTCE
0

m =] ds
— e [ geem S e [ fie8n T = S
0 m
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whence it follows that
(Zf,)* (¢/2) < e8(0)f7.
Combining these inequalities we obtain

(I () < e8(a)(fi+13) = eS(o)f*
which is the desired result.

THEHEOREM 9. Leét o be a segment contained in 0 < a < 1,0 <8<,
f a function in Lllal(ﬂ1)+1}1,,,2,1(./{1) and g a measurable function on
My. Then a necessary ond sufficient condition for the existence of a linear
map T in W (o, My, My) such that Tf = g 1is that there exists a constant
¢ such that ¢* < ¢S (o)f*.

If #, is mon-atomic, the preceding statement is still valid if o is merely
contained in 0 <a<1,0 <B <1,

Proof. The necessity of the condition is an immediate consequence
of the preceding theorem.

_To prove tl:e sufficiency, let us observe first that under our hypo-
thesis we.hfwe (%) >0 as £ - co. Furthermore, the same is true of 8(a)f*
In fact, integration by parts gives

o0

s@f = [ o070 % = — [y, i)

0

fmnq since for each s the function u(t, s) decreases and tends to zero at
infinity, the desired conclusion follows.

Without loss of generality we may assume that f and g are non-
negatlv.e. Let now g be such that g* < c8(o)f*. Then ¢*() — 0 as t - co.
Ac;eordmg to lemma 2 there exists an admissible operator T, of the pair
(L (), L*(4,)) into the pair (L' (B, L*(R*)) and an admissible
operator T, of the pair (L'(R*), I*(R")) into the pair (L (A o), (M)
such that T'.f = f* and T,¢* = g. Then if A() is a bounded function
such that ¢* = hS(o)f* and H is the operator multiplication by h, we
]ll;ave g+= ?’ZHS (6)I.f. Now T, maps Ll,ai,l(./tl) continnously into

1,a,L,1(R_ )4 =1, 2, and T, maps Ly, (R) continuously into Lyjp, 0 (M),
Bi<<1,1=1,2, and this implies that 7 = T,HS (o) T, belc;;lgs to
W (o, My, M;). Thus T has the required properties and the first part
of the theorem is established.

It en:he}'r B1=1 or g, =1, then the operator HS (0)T'y belongs to
W (o, .{/ll,fi‘) but I' does not belong to W (o, M, #,;) in general. How-
ever, 1fg is continuous and strictly decreasing in the interval where
}t 13 positive, then a closer examination of the operator 7', as constructed
in lemma 2 shows that T,k is equimeasurable with & whenever the support
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of k is contained in the support of ¢g* and consequently, as readily seen,
T belongs to # (¢, #,, #,). Now if 4, is non-atomic the reader will
have no difficulty in showing that given a function g on .#, such that
g* < c8(o)f* there exists a function § such that § > |g| and 7* = ¢S(o)f*
in the interval where g* is positive. Then, according to what has been
said above, there exists an operator T belonging to # (o, #,, #,) such
that Tf = §. Now if h is a bounded function such that g = gh and H
is the operator multiplication by &, then the operator HT. belongs to
W (o, M1, M,) and g = HTf. The proof of the theorem is thus complete.

THEOREM 10. Let o be a segment contained in 0 < a<1,0 <p <1, 4,
o linear space contained in Ly 1(M1)+Tje,,(#,) and A, a linear space
of measurable funtions on M,. Then a necessary and sufficient condition
in order that every T in W (o, #y, #;) map A, into A, is thal fed, and
g* < 8(o)f* imply geA,, for every measurable function g on A ,.

If A, is non-atomic, the preceding statement s still valid if o is merely
contained in 0 <a <1,0 <p <1

If the segment o is merely contained in 0 < a <1,0 <f <1, the
condition on the spaces A, and A, above is a sufficient condition in order
that every gquasilinear map T defined on Ly 1 (M1)~+Lyoy 1 (A1), with
values in the space of measurable functions on M, and which is simulla-
neously of weak types (1]ay,1/B1), (L/ag,1/Bs), map A, ino A,.

Proof. This statement is an immediate consequence of theorems 8
and 9.

COROLLARY. Let o be a segment contained in 0 <a <1,0 <f <1,
(1/p,1/q) a point interior to o and T a quasilinear operator defined in
Ly o1 (M) + Ly, (#y) with values in the space of measurable functions
on My and which is simultaneously of weak types (1/ay, 1/B1)y (1/az; 1/B5)-
Then T maps Ly, (M) nto Ly, (#s) and there exisis a constant ¢ such
that

1Tfllgr < ellfllor
for every f in Ly, (#,).
Proof. This is an immediate consequence of the preceding theorem
and lemma 3, or also, of theorem 8 and lemma 3.

3. Optimal pairs of spaces. We remind the reader of the defini-
tions of the classes % (o), #(¢), (o). The first two are roughly speaking
the classes of operators satisfying the hypotheses of the theorems of
Marcinkiewicz and Riesz respectively. Given a pair of linear spaces A,
and A, we will say that they are an optimal pair with respect to one of
these clagses if i) 4, is contained in the common domain of the operators
in # (o), ii) if ged,, there exists a T in the class and an fin A, such that
Tf = g, iii) if f is a function in the common domain of the operators in
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the clags and Tfed, for every T in the class, then fed,. We will find
sufficient conditions for a pair to be optimal with respect to ¥ (¢) and
exhibit pairs which are optimal with respect to certain # (o), #(s) and
& (o), showing thereby that the conclusions of the theorems of Marcin-
kiewicz and Riesz in the corresponding cases cannot be strengthened.

The measure spaces 4 involved in the discussion that follows will
be subject to one of the conditions:

(P) there exists a sequence of sets F,, — co << n < oo, such that

B, > By,_y, /f‘(En) < GM(En~1);
lim p(B,) =0, lim p(B,) = u(s) < oo,
00

N—r—0Q

where 4 is the meagure on /#, ¢ is a constant and u () is the total measure
of the space.

(P’) the space is purely atomic, the atoms have measures bounded
away from zero, and there exists a sequence of sets ,,1 < n < oo, of
finite meagure having, except for the third, the same properties as in (P).

ﬂ?H:EO%LEM 11. Let oy and oy be two segments in 0 <a <1,0 <f <1,
contained in lines which are symmetrical about the line o = f. Let M, and
My bf} two measure spaces and A, and A, two linear spaces of measurable
functions on M, and M, respectively with the property that

fae A, implies 8(o,)f¥ < oo,
fiedy and fy < 8(o)ft imply foed,,
fredy and fi < 8(0n)fy imply fred,.
) szt m be the slope of o, and suppose that one of the following condi-
tions is satisfied:
i) A, and M, have infinite measure and satisfy condition (P),
il) A, and #, have finite total measure and satisfy condition (P),
and m > 0,
iii) one space has finite total measure and satisfies condition (P), the
other has infinite measure and satisfies condition (P’), and m << 0.
Then, if A, is contained in the common domain of the operators in
W (ory M1, My), the pair Ay, A, is optimal with respect to W (cy, My, Ms).
If M, is non-atomic, then the preceding statement remains valid if the
segments oy and o, are merely contained in 0 < a <1, 08K
Proof. Without }oss of generality we may assume that if one of
phe Spaces under consideration has finite measure, then its total measure
11§: equal to 1. We may also assume that spaces satisfying condition (P’)
ave 1 as a lower bound for the measures of their atoms,

icm
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We will begin by proving some properties of the operator S§(o).
Let f(t) be a non-negative non-increasing function on 0 < ¢ < co such
that 8(o)f < oo. Let g = S(o)f. Then, if ¢ is a positive constant, there
is a constant ¢, such that g(f) < e,g(ct). In fact, integration by parts
gives

oo d (==
8@f = [ ot )f©) = = — [ v, 9)4f(s)
0 0

and since w(t, s) < ¢ p(et, s) the desired conclusion follows.
Let now f and ¢ be as above and let m be the slope of o. Then
F) < g@mem==,  g@) = fEm e,
where (a, f) is any point in the line containing o. In fact, if y(s) is the
characteristic funetion of the interval 0 < s < ¢™, then f(s) = f(i™) x:(8)
and consequently

9 > S0 () = —F™) [ vlt, 8)dnls) = FE) pt, ) = FE)E™.

1/m

The first inequality follows from the second by replacing by ¢

Let now f; be a measurable function on .4, such that 8(a)ff < oo.
We will show that there exists a function f, on ., such that fr < 8(a)ff
and ¥ < e, 8(0)f¥. Leb g,() = S(oy)fr and let H, be the subsets of 4,
postulated in (P) or (P') and a, their measures. Define f, by f» = g1{(an)
on E,—E,_, and f, = 0 elsewhere in the case when A, satisfies condi-
tion (P), or fy = g1(a,) on By, fs = g:(a,) on B,—E,_, and f, =0 else-
where in the case when .#, satisfies condition (P'). In both cases we will
have F*(t) = g1(a,) f0T ap_y <t < ay. Since @y < 0@y 1y if @y 1 <t < ns
then ¢t > a, and therefore f(t) > gi(ct). But, as we saw above, there
exists a constant ¢, such that g,(f) <e.g:(ct) and therefore we will
have

aufy (1) > g,

for all ¢,1 > 0, if 4, has infinite measure and satisfies (P); for 0 < <1
if ., has total measure equal to 1 and gatisfies (P) and for ¢t >1'if 4,
has infinite measure and satisfies (P’).

Let now g,(t) = 8(0y)fs. Then if (a, f)is & point in the line contain-
ing oy, (8, ) is a point in the line containing o,, and if m is the slope
of oy,1/m is the slope of o,. Consequently

FHE) < g (@mEm—e,  FEmMETT < ().
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Combining these inequalities with the preceding one and assuming
that one of the three conditions i), ii), iii) is satisfied we find that

fH1) < engalt)

for all # in the case i), for 0 < ¢ <1 in the case ii) and for 0 < ¢ < 1 in
the case iii) if .#, has measure equal to 1, or for ¢ > 1 if the measure of
A, is infinite. According to our assumptions, if .#, has finite measure,
then its total measure is equal to 1 and consequently @) = 0fort>1.
On the other hand, if .#, satisfies condition (P’), then 1 is a lower bound
for the measures of its atoms which implies that fY(¢) is constant for
t < 1. Consequently in all cases the preceding inequality holds for all ¢.

Evidently, the preceding argument remains valid if My and A,
are interchanged. Thus if f, is a measurable function on A, such that
8(oy)fy < oo, there exists a funetion f, on 4, such that ff < 8(a,)fF
and f; < e 8(ay)ff. ’

. Let now f, be any function in 4, and f, a function on A, such that
i <8(a)fs and f; < 68(cy)f}. Then according to our hypotheses fied,
and according to theorem 9 there exists a T in % (o4, A, #,) such that
Tf, = f,. Suppose now that fi 18 a function in the common domain of
the operators in #"(o,) such that Tf; <A, for every 7' in that class. Then
8(01)fT < oo and there exists a function f, on 4, such that i < 8(o)fr
and f¥ < o8(a)f;. Since fy < 8(o))ff, it follows from theorem 9 that
‘tilere exists a ' in % (oy) such that Tf, = f,. Consequently f,ed,. But
5 <eS(oy)ff and therefore, according to our hypotheses, it follows that
fied,. This concludes the proof of the theorem.

THBOREM 12. Let o, be a segment contained in 0 Le<1, 0K,
(1/p, 1/q) @ point interior to Oy and My, M, two measure spaces such that
one of the conditions 1), ii), iii) of the preceding theorem is satisfied. Then the
pair of spaces L, (M), Lop( M), 1 <7 < oo, is optimal with respect to
W (o1, Myy My). If in addition o, is contained in the wnion of the square
9 < e < 1,0<8<1, and the segment 0 < <1, = 0, then the pair
18 optimal with respect to F(vy, M,, M,). If oy s contained in the umion
of the triangle 0 < a < B <1 and the segment 0 < a < 1,8 =0, then
the pair is optimal with respect to R0, My, M,).

Proc.pf. The optimality of the pair with respect to ¥ (01, Myy A;)
fo]low;vs directly from lemma 3 and the preceding theorem. In order to
f)btam the desired result in the other two cases we let o, be a segment
m0<a<1,0 <p <1, properly containing o,, and if ¢; isin 0 < ¢ < 1,
0 < f <1, actually containing o, in its interior. Then it follows from
the ef)ro]]airy to theorem 10 that % (c,) < &(0,) « # (o), and if o, is
contained in the triangle 0 <o <8 < 1, theorem 5 shows that %(o,)
& #(01) = #'(0y). But, as we have just seen, the pair L, (), Ly.(H#)
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is optimal with respect to both #'(s,) and #°(o,) and thus, since # (o)
< F(0y) « #'(01) or #(o,) = #(5y) =« # (0,), the pair is also optimal
with respect to % (o;) or #(c,) in the respective cases. This concludes
the proof of the theorem

Remarks. The reader interested in further results on spaces inber-
mediate between L' and L™ should consult E. T. Oklander’s disserta-
tion [7]. Theorem 3 is closely related to some of his results. The linear
case of the corollary to theorem 10 was obtained and announced by the
author some years ago; more recently R. A. Hunt [6] established inde-
pendently its extension to the quasilinear case. In concluding we would
like to point out that in view of theorem 12, the corollary to theorem
10 gives the sharpest result obtainable from the hypotheses of the theo-
rem of M. Riesz for exponents corresponding to points contained in the
union of the ftriangle 0 <f < a <1 with the segment 0 <a <1,
p =0. What the best result is in the other cases remains an open
problem.

Appendix. There is an interesting situation that arises in interpola-
tion theory in connection with some important operators such as the
Hilbert transform; namely, that of an operator T satisfying the weak
type condition (1,1) and having a transposed 7, satisfying the same
condition. For such operators there is an estimate for (Tf)** analogous
to that for (Tf)* given in theorem 8.

Let T be linear and map L, ,(#,)+L;,(.#,) continuously into the
space of measurable functions on ., and satisfying the weak type con-
ditions (1,1) and (2,2) for characteristic functions of sets of finite measure,
and suppose that T has a transposed T, defined on I, (#;)+ Ly, (#2),
mapping this space continuocusly into the space of measurable functions
on ., and also satisfying the weak type conditions (1,1) and (2,2) for
characteristic functions of sets. By saying that 7T is transposed to T we
mean that

[T dps = [1a(T112)du

for any two characteristic functions y; and y. of subsets of finite measure
of #, and #, respectively. Then if y is the characteristic function of

a set of measure s
2+In(sft) if s > 1,

i) (T (@) <copls, ), p(s, 1) = (s[)[2+In(tfs)] i & <.

In fact, we have

HTR)™ (1) < 28up| [72 () dua | = 25up | [2(Ts:) A
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where y, ranges over all characteristic functions of subsets of .#, of
meagure less than or equal to .
- But on account of our hypothesis we have

t
| [0 dps| <o [ min(s/u), (s/u)"1du,
0

|[ 2@ d| < o [ min[(tfu), (t/u)*1du,
0

whence a simple caleulation gives the desired result.

Suppose now that 7' is a sublinear operator mapping L'(.#,) con-
tinuously into the space of measurable functions on .#, and that 7' satisfies
the condition i) above. Then

ARA@™ 0 <@ [F*)ds+ [ 1*(s)

To see this let us rewrite i) as follows:

4

(L™ (1) < —¢ [ @(u, t)dg* ().

Then integrating twice by parts we obtain

00
2

Werp™ ) < = [ 0w e(w, )du
t

= ap [ @it [ w2
12

0

) If f is now a simple integrable non-negative function we can
write

f = Zznxn

where l,, > 0 and g, <y <...<gy are characterigtic functions of
sets of finite measure and we will have

< Zz,,xn .
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Substituting in the preceding inequa.lity we obtain

= [T(Z znxn) 21 1Tx”| Zln Tn)™
<o 32 [1/tfx (s)ds+fx 5]

<c[(1/t> f () ds-+ tf f**(s)%].

To extend this result to f non-negative and merely integrable we
take a monotone sequence of simple non-negative functions f,, converging
to f in L'(,). Then f3*(f) converges monotonically to f**(t) and T,
converges in measure to 7f. But then (Tf)** < lim (Tf,)** and the desired
inequality follows by a passage to the limit. The general case follows
now by setting f = f,—f, with f, and f, non-negative.

Our inequality for (Tf)** is equivalent to

oy <o [ 1)

which was first obtained for the Hilbert transform by R. O’Neil and
G. Weiss.
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