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Germs and their Operational Calculus
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J. MIKUSINSKI (Warszawa)

1. Definition and general properties of germs. We say fthat
two functions f and g, defined in an interval 0 <t< T, are equi-
valent, and we write f ~ g, if there is an interval 0 <t <1, ({, < T) in
which f(t) = g(f) holds. The set @ = {f} of all functions % which are
equivalent to a given function f will be called the germ of f. If we know
the germ of a function, we know more than its value at ¢ = 0, but less
than its behaviour in any right neighbourhood of this point. Evidently,
f ~ g implies {f} = {g}, and conversely.

For real valued f and g, we write {f} < {g}, if there is an interval
0 <t <t in which f(f) <g(f) holds. This definition of inequality of
germs i8 consistent, i.e. does not depend on the choice of representants
of germs. By a representant of a germ {f} we understand the function f
or any equivalent function. Evidently, the relation of inequality between.
germs has the following properties:

1°» < 2.

2°Tf o <y and y <2, then o <2

3°If # <y and y < wm, then 2 = y. -

Let & denote the set of all real germs, i.e. of the germs of real-valued
functions. Then, for any pair ,y from %, there is in ¢ a third germ z
such that # < 2 and y < 2. In other words, ¢ is a partially ordered set.

We define the arithmetic operations on germs as follows:

1) {f+{g} ={f+g}
(2) {fHg} = {fg}.

It is immediate that these definitions are consistent and that ¢
is a commutative ring. If we identify numbers y with the germs {y} (of
congtant functions whose values are y), then ¢ becomes a commutative
algebra and can be considered as an extension of the algebra of real
numbers.

‘Note that there are positive germs which are less than any positive
number, e.g. the germ of the linear function f(f) = t. Such germs can
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be called positive infinitesimals. Similarly we can introduce negative
infinitesimals. More generally, the germ of any funetion f such that
lim f(t) = 0
i>0+
(except for the trivial case f(t) == 0) can be considered as an infinitesimal;
it is greater than any negative number and less than any positive number.
Note finally that the ring ¢ has divisors of zero and therefore can
not be completed to a field.

2. Convolution ring of germs. A germ is said to be continuous if
it hag, among its representants, a continuous function. The set of real
continuous germs is a subring of ¢, when adopting definitions (1) and (2).
This subring has also divisors of zero.

However, we can also define the produect, alternatively, as a con-
volution rather than by (2). Then we obtain a ring without divisors of
zero. By the convolution of germs we understand

3) {f1*{gt = {F*g},
‘where

i
(4) (F*9) ) = [fli—r)g(x)dv.

[

It is easy to see that this definition is consistent and that, under

addition (1) and multiplication (3), the set of continuous germs is a ring.
The fact that this ring has no divisors of zero follows easily from Titch-
marsh’s theorem on convolution.

In the preceding definitions of this section, it is irrelevant whether
the germs are real or complex. By a complex germ {f} we understand the
set of all funetions & which are equivalent to a given complex valued
function f. Let ¥ denote the ring of complex continuous germs with
convolution asg multiplication. Through the whole remaining part of
this paper the product zy of germs x, y will be understood in the sense
of convolution. The meaning of powers a" (<%, n positive integer) is
obvious.

We shall say that a power series of we%
(8) @+ a@?+ ... (0, complex numbers)

converges to an element ue%, if for » = {f} the series

(8) o f+ aof?+ ...

(where f" denotes the n-th convolution power of the function f) converges,
in an interval 0 < < i), uniformly to a function r such that w = {r}.
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‘We shall show that this definition of convergence is consistent, i.e.
that the limit w, if exists, does not depend on the choice of the repre-
gentant f of the germ x. In fact, let » = {f} = {g}. Then, by definition,
we have f ~ g, i.e. there exists an interval 0 < ¢ < 4, in which f(2) = g()
holds. If (6) converges to  uniformly in 0 <t < %, then it does so in
the interval 0 <? <3, with #, = min(4), ;). Subsequently, the series
a;g+a,g%+ ... converges also to 7 uniformly in 0 <t < {,. Thus we
obtain the same limit {r}, no matter what is the representant of .

Note that the definition of convergence of a power series, given
above, is different from the usual way. Traditionally, one defines first
a convergence of sequences and then the convergence of series as sequences
of partial sums. Such a traditional way fails in our case. In fac$, it is nat-
ural to require, for purposes of Analysis, that the concept of conver-
gence of sequences should satisfy the following econditions:

(i) I », = o, then 2, —» .

(ii) ¥ A, >0 (A, numbers), then A,z - 0.

(ifi) ¥ |2, <y, and y, 0, then 2, 0.

Tt is clear in the above relation, how a product Az, (A number, 2¢%)
and the modulus || (we%) should be understood. Namely,

(M AMfy = {4}
(8) {f} = {IA1}-

It is also easily seen that definitions (7) and (8) are consistent and
that

Anx) = (An)e, Alwty) = le+1y,

lo+yl < lzl+1yls

where 1, » are numbers and ,ye%.
Now, let @, = f,, where

(A+x)2x = A+ ==,

t for 0<ti<<—,
f’n(t)= 1

—  for — 1< o0,

n

and let @ = {f}, where f(f) = 1 for 0 <t < oco. Then (7) and (ii) imply
that

1
Yp = —I;L—- &L —> 0
and, moreover, we have |, = &, < . Thus, in view of (iii) we would
have z, - 0. But, evidently, z, = @, # 0 for every n = 1,2,..., thus

(i) would imply @, — @, # 0 and the limit of #, would not be unique.
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Thus we can introduce in % no general convergence of sequences
such that the limits of convergent sequences are unique and that proper-
ties (i), (ii) and (iii) are preserved. In spite of this fact it is sensible to
define a convergence of power geries, as has been done above.

Power series of germs have ordinary properties:

If
(9) a8+ ani ... = u,
then, for every number 2,
(10) Aoy w4 Aoy~ ... = Ju.

If (9) holds amd, moreover,

B+ o+ ... =,

(11) (e B2+ (0t fo)a? 4 ... = u+o,
and
(12) Vo2t L=

with Yo = 0y fn 1+ ... +ap1B:.
The proofs of (10) and (11) are immediate. Tn order to prove (12),

we write # = {f} and assume that (6) converges to » uniformly in 0 <t < ¢,
and

(13) Bif+Bof+ ...

converges to s uniformly in 0 <t < ;. Then both series (6) and (13)
converge uniformly in 0 < ¢ < ¢, with ¢, = min(t,, ¢,), to r and s respec-
tively. Then geries (12) converges to rs uniformly in 0 <t < ¢,. Con-
sequently (12) holds.

3. Distribution germs and operator germs. The germs congidered
50 far will be called, in the sequel, function germs, in order to distinguish
them from other kinds of germs we are going to introduce now.

Replacing in the preceding definition of germs the word function
by distribution we obtain entities which may be called distribution germs.
We consider first distributions defined in an interval 0 <?<< 7T and
we say that two such distributions f and g are equivalent, it f = g holds
in some interval 0 < ¢ < ¢,. The set of all distributions which are equiva-
!ent to a given distribution is a distribution germ. In this definition, there
is a small inexactitude, because distributions are usually defined in open
sets, and in our case we need distributions which are defined in an in-
terval which is half closed. This objection is not very serious and can
be removed by a proper definition of distributions in such an interval,

Instead of doing that we shall introduce more general concept of germs,
namely operator germs.
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‘We shall first recall the definition of an operator in an interval
0 <t < T. We consider the set Op of complex-valued continuous funetions
in 0 <t < T. The set Oy is a ring under ordinary addition and eonvolu-
tion (4) as multiplication. We extend Oz to a quotient ring My, and ecall
elements of Mg operators in 0 <t < T. In particular, M is a field (see
[8]) and, for finite T, My is a ring having divisors of zero (see [4]).
Two operators f and g will be said equivalent, if f = ¢ holds in some
interval 0 <t <1, (&, <T). The meaning of the last expression needs
an explanation. The operators f and g can be represented in the form
D1 P2
(14) i Py and ¢ .
where 9y, 41, P2 and ¢, belong to Op and, besides, ¢, g, are functions
which do not vanish identically in any interval 0 <t < ;. We say that

(15) f=g In 0<t<ty,
it
(16) Pia =Py 0 0 <E <y,

where the products are understood as convolutions. The meaning of
the last equality is fully determined, for both sides of this equality
are continuous functions. It remains to show that the definition of (15)
does not depend on the choice of representation (14). Let us take another

representation

am) f'=%:— and ¢ =i:—:.
Then we have to show that (16) implies
(18) Pals = Pafs i 0 <E <y
In fact, (14) and (17) imply
(19) Pigs = Pagy  and Py =Pug> In 0 <IL T.

Multiplying the first of equalities (19) by g, we obtain, in view of (16),
PaGils = Pafufe B 0 <E <t
Hence, by Titchmarsh’s theorem on convolution,
Pafs = Psge 0 0 <<ty

Multiplying the last equality by ¢4, we obtain, in view of the second of
equalities (19), :
Pafals = Psfeds 0 0 <Py,

which implies (18), by Titchmarsh’s theorem.
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Thus the definition of equivalency of operators f and ¢ is consistent.
The set # = {f} of all operators & which are equivalent to a given operator
f will be ecalled the germ of the operator f. The concept of an operator germ
is more general than that of a function germ, since every continuous
funetion is a particular operator. Operators of the form

(20) f=%’ where  ¢(f) = 1",

are distributions of finite order. The operator germs which have (20)
as their representant can be called distribution germs. Distribution germs
are then a particular case of operator germs. If for instance p(t) = ¢(t) =1,
then {f} is the germ of the Dirac delta distribution.

Since integrable functions are distributions, they are also operators.
Thus germs of integrable functions are another particular case of operator
germs.

The set M, of all operator germs is a linear space.

4. An alternative definition of operator germs. Since the ring ¢
has no divisors of zero, we can extend it to a quotient field #. In other
terms, elements of # are quotients of germs zfy with y 5% 0. The field
& contains ¥ as its subring. Also, it containg isomorphically the field of
complex numbers; we shall simply say that complex numbers are ele-
ments of #. (They are not elements of #, i.e. the field of complex numbers
cannot be imbedded isomorphically in the ring #; this follows from the
definition of produet, which is convolution in %).

To every pair of functions p, ¢ from Oy such that ¢ does not vanish
identically in the neighbourhood of 0 there corresponds uniquely an

{p}

element of & of the form _{ﬁ Similarly, there corresponds uniquely

an element of M, of the form {%} Thus the pair p, ¢ determines a cor-

respondence between elements of # and M,. We shall show that this
correspondence is one-to-one. To this end we have to show that

{0} {22}

implies

) G- {5
. '8 92
and conversely. Suppose first that (21) holds. Then {p}Hae} = {p2} e}

Le. {p1gs} = {pag;}. This means that p, g, = P2¢; holds in some interval
0 <1t <1%. Thus we have p,/g, = p,/g,, provided the fractions are cdn-

) ©
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gidered as operators in 0 <t <4,. Thjs"*implies (22). Suppose now, con-
versely, that (22) holds. Then the operators p,/g, and p,/q, are equal
in some interval 0 <?¢ < {,. This means that P1qs = Dyq; holds in
0 <t<i. Hence we obtain successively {p,g,} = {paqu}, {P:}{gs}
= {p,}{¢:}, and finally (21). Thus the correspondence between & and
M, is one-to-one. It is not difficult to verify that this correspondence
is an isomorphism. Thus we can identify the elements of % with the
elements of M, and call them equally operator germs.

The definition given in this section has the advantage that we
gee at once that the set of operator germs is a field. On the other hand,
the definition in section 3 is adapted better to introducing the concept
of convergence of power series.

5. Power series of operator germs. As in section 2, we can con-
gider power series (8) where x is, actually, an operator germ. Imitating
the previously given definition of convergence, we shall say now that
series (B), where ® iy an operator germ, converges to an operator germ u,
if for # = {f} (where f is an operator) the corresponding power series (6)
of operators converges, in some interval 0 <t <%, to an operator r
guch that w = {r}.

In order to make this definition sensible, we have to say what a con-
vergence of a series of operators in an interval means, when that interval
is less than the interval in which the operators are defined. Let u,, u,, ...
be a sequence of operators defined in an interval 0 <t < T. We say that
such a-sequence converges in Ip: 0 <t <1, (0 <?, <T) to an operator »
defined in I,, if there iz a function ¢, continuous in I,, such that all the
products gqu and qu, are continuous funections in I, and the sequence
qu, converges to gu almost uniformly in I,. This definition is consistent,
i.e. the limit, if exists, is determined uniquely. Now, we say that a series
of operators v,+ v, ..., defined in 0 < ¢ < T, converges to » in a subin-
terval 0 <t <t,, if the sequence of partial sums u, = v+ ... +¥
converges to v in that subinterval. Thus the definition of convergence
in 0 €t <1 of a series of operators is traditional in this sense that we
firgt define a convergence of a sequence and then the convergence of
a series. On the other hand, the definition of convergence of a power
geries of operator germs is based directly on the convergence of series
of operators, but it can be extended neither to sequences nor to arbitrary
series which are not power series. Power series of operators have the
same properties as expressed by formulae (10), (11) and (12).

From properties of power series of operators it is also easy to deduce
other properties of power series of operator germs. For instance:

@) If o series ap-+ayA+tagd®+ ... of the complex variable 1 has
a positive radius of convergence, then the series ay+ a3+ a2+ ... con-
verges for every germ m of am integrable function.

Studla Mathematica XXVI 7. 3 n
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E.g., the series 142+ 2%+ ... converges for every « which is a germ
of an integrable function. As particularly interesting, we can consider
the series

1 1

(23) 1+Fw+ sz-k

This series also converges for every @ which is the germ of an integrable
function. However, if # is an arbitrary operator germ, then series (23)
can be either convergent or not convergent. An operator germ z for
which (23) i3 convergent can be called, as in the Operational Calculus,
a logarithm. It is natural to denote the sum of (23) by ¢°. In other words,
series (23) can be considered as a definition of the exponential ¢®. The
exponential ¢” exists for operator germs which are logarithms, and does
not exist for other operator germs.

Note that in Operational Calculus the exponential iy determined
more generally by means of the differential equation y'(1) = ay(A).
Such a definition cannot be used in the Calculus of Germs, for there is
there no general notion of limit, and therefore no general notion of deri-
vative.

(L) If » is a logarithm, then Ax is a logarithm, no matier what is the
complex number A.

In other words, if ¢” exists, then ¢*” exists for every complex num-
ber .

In fact, by multiplication of power series we find that if ¢* and ¢’
exist for some operator germs » and y, then also ¢**? exists and we have

(24) Y = ¢" 6V,

In particular, if ¢® exists, then ¢** = ¢*-¢®. By induction we find
that then also €™ exists for every natural number n. Thus (II) follows
immediately from

(III) If the series
(25) ag+ ay A oy A2at - ...,
where a, are fized comples numbers and © is a fized operator germ, con-

verges for some complew number ) = J, then that series converges also for
every complex number A such that |A| < |3

In order to prove (III), let us represent « in the form z = {f}, where
f is an operator. There is an interval 0 <t < t, in which the series
%+ aydof -+ @, A5+ ... converges operationally. By a known theorem
([8], . 166), the series a+ayAf+ 4224 ... converges operationally
in 0 St <t for || < |4[. This implies that (25) converges as a power
series of operator germs for every |A| < 4.
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From (24) and (ITX) it follows that the set of all logarithms is a linear
subspace of M,.

6. Remarks on operators. From recent results of P. Antosik and
of Boehme, we can eagily obtain the following theorems (IV) and (V):

V) If o<T, < Ty <... and T, — T (where T may be finite or
infinite) and there is a sequence of operators ©,, ®., ... such that x, is defined
in 0 <t <Tp and that x, = 2,,; holds in 0 <t <T,, then there is an
operator x defined in 0 <t < T such that x, =z holds in 0 <t <T,
for every index n.

In fact, after Antosik [1], operators in open intervals 0 <t < T,
can be identified with operators in the corresponding closed intervals
0 <t <T,. Le., each of them can be represented as a convolution quo-
tient x, = P, /¢, Where p, and ¢, are continuous functions in 0 <t < T,.
These functions can be extended continuously to the infinite interval
0 <t < oco. In this way also x, may be considered as operators in
0 <t < oo with the property that », = #,., holds in 0 <t < T,. After
Boehme [2] there is a continuous function ¢ in 0 < ¢ < oo such that
the convolution quotients g, = ¢/g, are continuous functions. Evidently,
we have @, = p,0,/¢ in 0 <% < oo, which implies that pngn = DPri10n+1
in 0 <t <T,. Thus p,g, is a sequence of continuous functions which
converge almost uniformly in 0 <¢<T. Its limit p is a continuous
function in 0 <t < 7. The operator z =p/g has the required pro-
perties.

(V) Let the meaning of Tn, -and T be the same as in (IV). If a sequence
of operators x, defined in 0 <1t <<T has the property that, when restricted
to any of subintervals 0 <t << Ty, converges in that subinterval, then it
converges in the whole interval 0 <t < T.

In fact, without loss of generality we can replace open intervals
0 <t<T, by closed intervals 0 <t < T,. There are functions ¢m,
continuous in 0 <t < T, such that the products gmw, are continuons
functions in 0 <t < T,, and that, for any fixed m, the sequence g¢na,
converges uniformly in 0 <t < Tm, a8 # — co. In view of [2], there is
a continuous function ¢ in 0 <t < T such that the convolution fractions

£ are continuous functions in 0 <t < T. Consequently, the sequence

n

9%, = L-qmw,, consists of continnous functions and converges uniformly
Im

in each of intervals 0 <¢ <T,, i.e. almost uniformly in 0 <t <T.
Tts limit p is a continuous function in 0 <% < T. This means that x,

converges operationally to % in 0 <t<T.

We ghall also need the following theorem:
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(VI) Let 425+ ... be a convergent series of operators in 0 <t < T
and Py, Bay ... on absolutely comvergent sequence of complew numbers, i.e.
such that |By— Py|+|Bs—Bal+ -.. << oo. Then the operator series ,Blwl-|-’
A ooyt ... 4s also comvergemt in 0 <1< T.

In fact, there is a function g, confinuous in 0 <t < T, such that
g%+ qu,+ ... 18 @ sequence of continuous functions which converges
almost uniformly in 0 <t < 7. We have

Brnt1@Pmirt oo +Pa®n = B (@Bmra+- .+ 9w0) +
+(Bnra— Bmi1) (@it o+ @) - A (Ba— Bur) n-

_ Giveg any subinterval 0 <t < T, and a positive number &, there
exigts an index n, such that |gwr.i+ ... + g, < & holds in that interval
for » > & > n,. Moreover, since $, converges absolutely, there is a number
M such that |[B,—fi|+18s—Pal+ ... < M and |8, < M for every n.
Thus we have

[Bms19Bmi1 o+ Bu g
< (1Bmaal +'!(3m—.|-2“13m+1| Fovot Bn—Pul) e < 2Me
fqr n>k > n and 0 <% < T,. Since the subinterval 0 <t < T, is ar-
bitrary, this proves that the series f,qw®,-+ fyqw,-- ... converges almost

}miformly in 0 <t <T. Hence the series of operators g @, fBao,+ ...
is convergent.

(VIL) Let us consider a power series

(26) ag+ a;f+ anf2+ ...

where f is an operator in 0 <t < T and a, are complex numbers for which
the sequence B, = nayfa,_; 18 absolutely convergeni. If series (26) is con-
vergent (operationally) in 0 <t < T, then it remains so, if we replace f
by any operator g in 0 <t < T which has the same germ as f.

) In faet, let T, be any number with 0 < 7, < T and let m be a positive
integer such that f = g holds in the interval 0 <t < t, = T\y/m. Further-
more, leb g =f+%in 0 <t < T. Then % = 0 in 0 <? <. This implies
that " = 0 in 0 < < T, for n > m. Consequently

n n —
g =f"+(1)f‘ ... +(mf1)ﬂ—m+1km-1 for 0 <t <T,.
Hence A

an" = S M—kk}j}(f) anfl—1+...+km—1§‘(m¢ii) e

- k had -1
= E — § -1 .
4 anf""—l— 1 2 ﬁ'ﬂ,an_lf"’ ++W

(ﬁw . ~/3w,—'rn+l) an—m+1fn~m+1

iMz
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and after a proper change of indices

2 oy = 2 anf%+%$ﬂn+l af™ .. -+(777:i—_;)—! Zom:(ﬂn-f-l' < Brim-1) "

in 0 <t < T,. Now, it is easy to show that, for every fixed p, the sequence

Bui1 -+ Bnip 18 absolutely convergent. Hence by (VI) all the series on

the right-hand side of the last equality are convergent. This implies that

the series on the left-hand side converges in 0 <t < T,. Since T, is

arbitrary, the series converges in the whole interval 0 <? < T, by (V).
Theorem (VII) applies in particular to the series

1

S

(27) L4 f
In this case, the preceding argument can be made more heuristie, when
we remark that the existence of the exponentials ¢-and & implies the
existence of the exponential ¢’ = ¢+,

Tn connection with (VII) some conjectures arise. (1) Does theorem
(VII) remain true if the assumption on the coefficients a, is released ?
(2) Can we assert that the convergence of (27) in a subinterval 0 <t <1
implies the convergence of (27) in the whole interval 0 <? < 7% Or,
in other words, is the convergence of (27) a consequence of the conver-
gence of the corresponding sequence of germs?
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