

Concerning the convergence of iterates to fixed points

bу

J. W. KITCHEN, Jr. (Durham, N. C.)

This paper is devoted to a generalization of a theorem of Ostrowski ([2], p. 119) concerning fixed points.

One of the earliest and most useful fixed point theorems is the Picard fixed point theorem (alias contraction principle) which states that a contraction mapping f of a complete metric space into itself has a unique fixed point. The theorem goes on to say that if x is any point of the metric space, then the sequence of iterates of x under $f, \{f^n(x)\}$, converges to this fixed point. The theorem proved here is concerned with the following question: given that a mapping f has a fixed point x^* , when is it true that iterates (under f) of nearby points converge to x^* ? Such a question is clearly of interest in numerical analysis since many numerical problems can be reduced to the problem of locating fixed points. In Ostrowski's work f is taken to be a function of class C^1 throughout an open set in \mathbb{R}^n . The proofs involve rather elaborate calculations with matrices and make heavy use of the Jordan canonical form. In this paper \mathbb{R}^n is replaced by an arbitrary Banach space and the regularity assumptions on f are somewhat weakened. The price for so strengthening and generalizing Ostrowski's result proved to be small; in fact a more transparent proof was made possible, the key to it being the well-known spectral radius formula.

THEOREM. Let f be a mapping whose domain and range are subsets of a Banach space X. Suppose that

- 1) $x^* \in X$ is a fixed point of f;
- 2) f is differentiable at x*;
- 3) the spectral radius of the derivative of f at x* is less than one.

Then there exists a neighborhood N of x* such that

$$\lim_{n\to\infty}f^n(x)=x^*$$

for each $x \in N$.

Proof. Without loss of generality we may suppose that $x^* = 0$. Since f is differentiable at $x^* = 0$, we can write

$$f(x) = T(x) + h(x),$$

where T is a bounded linear transformation of X into itself and

$$\lim_{x\to 0} ||h(x)||/||x|| = 0.$$

The transformation T is (in the terminology of Dieudonné [1]) what we have called the *derivative* of f at x^* , and so, by assumption $\|T\|_{\text{sp}} < 1$.

Case 1. Suppose that $\|T\| < 1$. We pick a number r such that $\|T\| < r < 1$. Since

$$\lim_{x\to 0} ||h(x)||/||x|| = 0,$$

there exists an $\varepsilon > 0$ such that

$$||h(x)|| < (1-r)||x||$$

whenever $||x|| < \varepsilon$. Let N be the sphere $\{x \in X : ||x|| < \varepsilon\}$. We shall now prove that N has the required properties.

By a simple argument involving the triangle inequality one can show that for each $x \in N$,

$$||f(x)|| \leqslant R ||x||,$$

where R = ||T|| + 1 - r. Since 0 < R < 1, it follows that N is f-invariant. Consequently, if $x \in N$, then its entire sequence of iterates $\{f^n(x)\}$ is also contained in N, and we get by induction on the inequality displayed above

$$||f^n(x)|| \leqslant R^n ||x||.$$

Since $R^n \to 0$, it follows that $f^n(x)$ converges to $0 = x^*$.

CASE 2. General case. By the spectral radius formula

$$1 > ||T||_{\text{sp}} = \lim_{n \to \infty} ||T^n||^{1/n}.$$

Thus, there exists an integer m such that $||T^m|| < 1$. We can now apply Case 1 to the function f^m . (By the chain rule, f^m is differentiable at $x^* = 0$, and T^m is its derivative at the point.) Hence there exists a sphere M about $x^* = 0$ such that

- a) M is f^m -invariant, and
 - b) for each $x \in M$,

$$\lim_{n\to\infty} (f^m)^n(x) = \lim_{n\to\infty} f^{mn}(x) = 0.$$

Since f is differentiable at $x^*=0$, it is continuous there and we can therefore find a sphere N about $x^*=0$ such that N, f(N), $f^2(N)$, ..., $f^{m-1}(N)$ are all contained in M. Since $||f^m(x)|| \leq ||x||$ for each $x \in M$, we conclude that for each $x \in N$ the sequence of iterates $\{f^n(x)\}$ is entirely contained in M. Also, since f is continuous at $x^*=0$,

$$\lim_{n\to\infty} f^{mn+1}(x) = \lim_{n\to\infty} f(f^{mn}(x)) = f(0) = 0$$

for each $x \in N$. More generally,

$$\lim_{n\to\infty}f^{mn+k}(x)=0,$$

if $x \in \mathbb{N}$ and k is one of the integers $0, 1, 2, \ldots, m-1$. The fact that each of these m different subsequences converges to $x^* = 0$ implies that the entire sequence $\{f^n(x)\}$ (obtained simply by interlacing these subsequences) converges to $x^* = 0$ also.

References

[1] J. Dieudonné, Foundations of modern analysis, New York 1960.
[2] A. M. Ostrowski, Solutions of equations and systems of equations, New York 1960.

DUKE UNIVERSITY

Recu par la Rédaction le 14, 10, 1965