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Proof. If pel® is posifive definite and P iy the corresponding
linear functional, then there exists a finite positive Baire measure pu,
on I' ([2], p- 97) such that

P(f) = [fla)p@)do = [ ] (a)dpm(a)
I I

Il

fff(w) (o, o) dudu, (a) = ff(a) l f(w, ay d,u,,(a)l da.
I i I :
Hence

p(@) = [ <, aydup(u)
P

almost everywhere.
Conversely, if

p(o) = [ <@, ayiu(a)
/

for some finite positive Baire meagure w, on I', then p L™, p(a) = p(x)
and

f(f*f*)(m)p(m)dm = ff(f*f*)(W)Gv, a) dup (o) da
Pr

¥
= zfi{ (F*f*) () <,y o dawdyy (o) = f If (o) *dpap () 0.
; I

Hence p is positive definite.

.OOROLLARY. A function p el is posiltive definite if and only if p is
positive, monotone non-increasing and left-continuous.

Pr.o'<)f. The above theorem shows that positive definite functions
are pogitive, monotone decreasing and left-continunous. On the other hand,
such a function determines, in the usual way, a finite positive Baire
measure such that

P(@) = wplw, b1 = [<@, ayduy(a).
/
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Commutators of singular integrals
by

E. B. FABES and N. M. RIVIERE (Chicago, IIL)

Introduction. Calderén and Zygmund considered in [2] singular
integral operators, I, of type C§’, f >1, and proved results involving
commutators of singular integral operators and the operator, A. It is
the purpose of this paper to prove similar results for KeCF,0 <f <1,

) ~ ~
and for the operator 4% a < f, defined so that A°f = ||®f, where f denotes
the Fourier transform of f.
Notation. £ == (X1, ..ry Zp)y ¥ = Y1y e-3 Yn)y # = (21, sy 2y) will de-
note points of E™ CF(E") denotes the class of functions feC®(E") with

compact support.
“g.e.” designates the phrase “almost everywhere with respect to

Lebesgue measure”,

n
zoYy = Z%%‘.; X = {weB™ |x] = 1}.

i=1

o = ( [ f@)Paa)”,  fl@) = [f@)e™"dy.
B B
y = (1, ..., yn) Will denote a point in E" with each y; representing
a non-negative integer.
Finally,
o orn

datr’ dafz " Owp

(0/02) (@) = f(@).
Aggume f(2)eC™ (") and that every derivative, (0/0x)f, satisfies
(@f0w)'f = O(|w|™™). For such f we define

Y
(S = [fo—ppmtmdy, 0<e<l
wi>e
REMARE 1. lim (87, f) (@) ewists point-wise for every x, and in P (E"),
80

for every p (1 <p < oo).
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Proof. We have

(S5 h0) = [ Flo—y) it dy-

| 4 NENT
wl>e Wl

Since
f dy =0
’n] 1 l @
W6 W‘
and since |f(z—y)—f(®)| < Cly|, it is clear that for cach u, 11111 (S (6)

exists point-wise.
To show IP-convergence we note that for & < 1, (87,f)(») is bounded
uniformly in ¢:

Y PO L B
(872 ) (@)= (87, Do )—ij]df(.» ) e
= [ (@— ) —F ()] dy.
<Y< |J| o
Since df/dx; = O(|»|™), for |@| >2
(85, (@) — (82, P (@) < Clal~".

’Hence for all @, (87.f) (@)— (87, f) (@) < C(L-+|o|~™"
eLP(E") for every p,1<p < oo, remark 1 follows.

Let B;(E") = set of all functions a(x) such that a(x) is bounded
and |a(z)— < 0Ols—ylf (0 < <)

REJ\_&:L;RK 2. Suppose feC®(E™) and that for every y, (0]0w)'f(x) =
= 0(lo|™). If a(®)eB;s, B> a, then hm (8 .af) (%) ewists  point-wise
everywhere and also in IP for every p (1 < p < oo).

_ Proof. Since afeB IP(B™), for every p (1 < p < o0), the point-
wige limit is clear.

). Sinee (L--|w|™")

Y
—y)fl@—y) W;,f.%p dy

v >s

= [ lae—n-

Wl>e

Y __a Wy
“(@)]f(2—y) [y dy+a(w ff G ljl T4y -

Y=e

Using remark 1 and the fact that « (o) is bounded, we see that the
second t.erm converges in IP(H") as e-»0 for every p (1 < p < oo).
Again for & < 1, the first term is bounded in @, uniformly in ¢ < 1.,

icm
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For |z| > 2,
¢

Yy
[ (0 — ) — a{w) | f{®~—1¥) - \ V”l'" dy | <

‘M RUES Y
geiif] <21

Hence the first term converges in L” (") as & - 0.

Detine 8jf = 11m 8i, .

REMARK 3. 1!’()7 fe 1,

S’"/ a= (f,,,/ L | “f,

Uy absolute sonstant.
Proof. Define
wyflw A ] > e,

()
Sis@) ‘ 0 i jo<e

S(‘f = lim S“ *f = 11111 Sjuf
mL2
Now,

arirg(e’ o ¥')

~ wl e ny
S = [ J_’[ [ dQ] io,
g WLy e

o Y
C’:k’/]: w:‘l”;ﬂ”v

r = el T’

Assume 2 % 0 and set s = gr. Hence,

ZmB(Jn oy')

é%s(”’) =7 fl‘,;l‘[ { S
flw./il do =
Ariser)

/ |y|[ [ & <

< O|#)*, ¢ independent of e

- ds]da.

Since

we have

N a
|87,0 (@) = <o

Hence lSj,(w
It is also clear that for ea.ch x, a8 &> 0, ;S,s( #) tends pointwise to

a litmi, which we denote by S, (), which is homogeneous of degree a.
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We agsert that From now on K(z,y) will denote a function which, for each , is
~ » homogeneous of degree —u in y and satisfies -
o i e
8 () = Oa,fm Jaol". ]
fK(w, Y)do, = 0:
Indeed, let ¢ (x) be a solid harmonic of degree & > 0 and consider z
Set
A — lim .
[t @@e = tim [ @@, e =i e e iy
] 50 ! “" |~y >8
E" i inL?
‘We now use the fact that In the next result, K is independent of the first variable.
., " Lmwua. Let feOF (E"), a(w)eBy(H"), K (%)eC*(E"—(0)). Define
Q@)™ = (=)' Q@)e™™"  (see [1]).
Hence H(f) = [ [a(@)— a(y)1 K (@—)f (y)dy.
o~ < ()0 (@) e~ Th 0 <1
[ @™ = 0 [ 5o onfor 0 <a<fp<i,
Bn B (ANl < Ollflls -
o
= ( f 8i{z")Q (»")do . To prove the lemma we need the following
z REMARK. For feOP(E"), B;(Sif) = 8§ (R;f).
But This is immediate by use of Fourier transform knowing the fact
gl that R;fe0> and any derivative of R;(f) behaves like |»|™™ at infinity.
f*“‘w‘nﬁ @ do = Of do. Therefore, using remark 1, §7(R;f)eI?(B"), 1 <p < oo.
Proof of Lemma. We have
Therefole,
n
1
mda~CfS Q(x')do @ ——HER,(8f if).
f[ i (@)@ () do, B = D) o HE S = CO Ef)

and from this our assertion follows.

Ah 1o . Set B;f =¢. So
Let R; denote the j™ Riesz transform, i.e.

HSj (9)
{5 —y) !
B, =1 e F(Y) dy,
(@) ;51 ey ()& = [[a(2)— a(y)]1E (0~ y) Hm (87,9)(y) dy
inL’«"

Definition. F 0 ( b

einftion. Hor feFr) se = lim [ K(2—y)[o(@)—a)](8]0) (v)dy

A°F = 2 in P
0.y

‘where =1 = gmox HII;I f K(w—y){ f W (yy—zf)g(z)dz}dy-|-
e 1:},@ e~y >e (y—8>0
Ryf 0B,

' | o [a@)—a()]
o] -+ dl:uol %13;1 f K(w—y){ f —]-y—_—zlm;a—(%—zi)g(z)dz}d?/

We have, using remark 3, that A°f — [o|"}, mzP e V1> >0
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For the second term, set hs(y) equal to the term in brackets. The

second term then becomes lim K (hy). Since a(2) is bounded and
80
inLP
la(z)—a(y)| < Aly—=zl’, f > a, it is clear that h,(y) is a Cauchy sequence
in I? and therefore converges in L” to a function, #(y), such that ||4], <

Cligll,. Since K is a continuous operator,

lim K(hy) = IC(h) and [K(B)lp < Clhll < Cliglly.
30
inZ?
Set
K(r—1 if |e—y|>e
Koy — | EE0 o=yl
0 it |je—y| <e.

We can then write the first term as

i [ (o) ~e(@lo(2) {lim [ K (o—y) 8aly —2)dy} de
i ? i
= lim [Ta(e)~a(2) K (84)(0—2)g(z) dz.
m]f’Fn

Cramv. (i) There is a function, call it K (87)(x), homogeneous of degree
—n—a such that

(i) JIE(8) ()| do < O(Max| (0/0m1)K|+Ma,x |K]),

(iif) (|12l “LE(S5,0) — (K (85))s](@)]|> < O(Max |(8/0m) K| —]—Max 1K),

C independent of 6.
Proof. Suppose z # 0, § < &' < |u]/2,

K (85,) (0)— K (8fy) (@) = linnga(m—-?/)[S?,a(ll%—S}’,a'(y)]d?/

= [ [E@—y)—E@)]8@)dy.
d<|yl<s”
HE(850) (@) — K (8], (@) < O Max. |(0/6) K ()i~ [ ly] 17(y)]dy
" |8
M&
T

K (8],) forms a Cauchy sequence in the L®-norm outside any neigh-
borhood. of the origin. Hence there is K (87)* (@) such that

I (80) (@) — K (87)* (@) >0 in  fo| >a > 0.

icm
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Since K, (87,)(An) = 27"""K,1(8fs) (), We have for each 4> 0

(1) K (S} (Aw) = 1™"""K (85)*(z)  for a.e. g

For each » # 0, (1) holds for a.e. 1¢(0, co).

Let B = set of points # such that it is not certain that (1) holds
for a.e. 4. Bince | B| = 0, there is a sphere, X,, of radius 0, such that X, ~ B
has measure 0 over Z,.

Detine
N\ g e ( ) ¢ %
K85) (@) :={(wa) KO\ e

0 otherwise.

K (87) ditfers from XK (87)* in a set of measure 0 and is homogeneous
of degree —n—a

O [ES)(@do= [ E(8)(0)dw
P

1< @] <2
For |»| >1,
M
[(K(8F)— K (810))() | < s
and
[ 1B (852l de < O(Sup |K|) = OM.
1< @] <2 |2 =1
Therefore
f|K 88 (w)| do < O(M+My).
Set us(v) = |a|* [K S5a) () — (K (87))s (@)] -

Since ,ua( @) = 6" u, (w/d), it is sufficient to show
(i) for u,(a)

Jmman < [ blE@®)@)de+ [ IS0l de

|oe] =2 |oo| <2 I<|nj<2
0(My+M),
[ m@lde = [ o |E(85) (@) —(K(8)) (2)|do

|#[>2 o] 2
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Therefore

lim [ [a(s) — a(2) 1K (87,) (0 —2)g (2)d2

inLP

= lim [ [a(z) — a(2)] [ K (8fs) — K (8])s1 (2 —7)g (#)de+
i
+1im | [a(a)— a() JK (87)s (v 2)g (=) .
inIP
Note. By an argument similar to that of remark 2 we infer that

for ¢

lim (6 (@) — a ()] (K87, (w—2)g(2) de

80
exists in the L”-sense.
Hence
1H (4%l < BAQ+M M) gl
80 that
I (A*f)llp < Cpllfihns
where O, = B,A(1+M+M,), B, depending on p, a,n only.

Definition. K(2, y)<Cy, f > 0, if for each &, K (w, y) 0°(E"— (0))
as a function of ¥ and each derivative, (9/0y)" K (x, y), satisfies for y'eZ2,

(3/9yY'K (@, y')— (0/0yV K (23, ¥} < Olwy— .

If a(w)eBs(E™), 0 < B <1, then we define |a||; to be the sum of the
supremum of |a(x)| and the infimum of the numbers M such that

la(@)—a(y)] < Mlo—yl.
We set
Kf(z) = lim

&0 121/ >8
inz?

K (2, z—y)f(y)dy.

We also let K* K*, K, K,, K;0K,, denote respectively the adjoint
of K, the pseudo-adjoint of K, the product of K, and K,, and the pseudo-
product of K, and K, (zee [2]).

TrEOREM. Let K, (w0, y), K, (z, ¥) <05 (™).

Then for 0 < a < B,

a) K, A°— A°K,, b) (Bf—K#)A® and c) (KioK,—K,K,;)A* are
bounded operators from IP(E™) to IF(E").

icm
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Proof. SupposefeUP(E") and let [ ¥;,,] denote the family of spherical
harmonics, which are complete and orthonormal over X (see [1]). Let
Ky — Ziatea Y-

n
a) (K, A% —A"K)f = 2, (Z e Y5y B 87 — Ry 87 alc,lyk,l) f

gl
n
= Tz > (01 By 8 — By 85 ) Yo
J=1

Using previous lemama and following same argument of Calderén
and Zygmund in [2], and of Calderén in [1], we have

(B3 A% — A*F) fllp < Op Zigllaalls | Xaafllp < Cp Ifllp -
b) KY = XYy, Eff = Za8,,;Y,,
(KfF— BN A°f = Zioa [Ty Xag— Ypatirg] A°f
Therefore
(K — E2) Afllp < O langls (1+1§|511> | Yeal+ Sup 1(0/02:) T )) Il

o,
\ < Oufy-
¢) Suppose K, = Zax Xy,
K, = 23,01, Y0,
Ki0Ky = ZymuatimbiuXimYaps
KKy = ZimprtimYimbapu Yo,
(K, Ky— Ky 0K,) A°f = Zayn[ Yoy — b1, Y114 X (F) -
Therefore
(K, Ky, — K0 K,) A%l
< OZHGZ,m“ﬁ|1b1,ul|r;(1+|§1‘}=]§1’|Yz,m|+ E&Il) 18/025) Xy} 1 X 1, < Cplifilo -

=1y
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