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R, > a,Q" > &' The requirements (a) and (b) eliminate only a subset
of B of measure 0. Dividing both sides of (7.14) by |@”| and making the
passage to the limit |Q"’| -» 0, which is justified by (a), we see that

Ja(g,a")ag < ew Ry,

&,

where now w is the largest edgelength of Rj. The last inequality has been
established for rational.rectangles R; containing &', but, in view of (b),
it holds, by continuity, for all rectangles R’ containing 4" and of diameter
< 6. This completes the proof of Theorem 9.
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On some properties of a class of singular integrals
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CORA SADOSKY (Buenos Aires)

Introduction. Our purpose is to extend some known properties of
the singular integrals of Calderén and Zygmund to a more general class
of operators introduced in [5]. These singular integrals are convolution
operators by quasihomogeneous kernels having mean value zero on
certain differentiable manifold surrounding the origin (in the case of
parabolic kernels, see [67). '

The aim of this paper is twofold. Firstly, we study the pointwise
convergence of the quasi-homogeneous singular integrals and the beha-
viour of their maximal operators. Similar questions have been considered
in our joint paper with E.B. Fabes (cf. [9]) for the different kind of
parabolic singular integrals introduced by Jones in [4]. The same ar-
gument of [9], that is essentially a suitable modification of the method
used by Calderén and Zygmund in [1], could be repeated for this general
case, changing the computations to adequate them to the truncation
of the kernels used here. Nevertheless it may be of interest to reconsider
the question since an adaptation of the general method of “subordination
of operators” given by Cotlar in [3], that can be used for the singular
integrals of Calderén and Zygmund, enables us to get also a complementary
result for the case p = 1 not considered in [97 and the pointwise con-
vergence even for integrable functions.

Secondly, we consider the classes Tj(w,) studied by Calderén and
Zygmund in [2], conveniently generalized, and prove that they are
preserved under quasi-homogeneous singular integral operabors.

In §1 we give the definition of quasi-homogeneous functions and
kernels and state some results about the singular integrals given by
convolution with those kernels.

In § 2 we study the maximal operators of these integrals and obtain
a8 a consequence that the guasi-homogeneous singular integrals converge
in the pointwise semse for functions in LP,p > 1.

In § 3 we give a generalization of the classes T3 (x,) to the case where
a different number of derivations may be taken in each variable and
prove some basic properties of these clasges.
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In §4 we prove that the T%(w,) classes are preserved by quasi-ho-
mogeneous singular integrals. The content of this paragraph was an-
nounced in [8] for the particular case of parabolic singular integrals.

Thanks are due to Prof. Zygmund and Prof. Calderén who proposed
the questions considered here, to Prof. Cotlar for suggestions concerning
the use of his method and to P. Krée for kindly making available his
unpublished results.

1. In this paragraph we give some definitions and results which
will be needed in the sequel.

By @ = (@1, oy ®Ba)y ¥ = (Y1,.e-yYn),... Wo denote points of the
n-dimensional Buclidean space ,. All functions we consider are com-
plex-valued unless otherwise stated. O™ denotes the class of m times
differentiable functions and Cf' its subclass of those with compact support.

We give an n-tuple a == (a;, ..., &), fived with a; > 1, throughout
the paper; as usual, we write |a| = a;+4...+ ay,.

Quasi-homogeneous functions. We say that a function f is quasi-
homogeneous of degree o, a any complex number, if

f(ma,, ... Vi> 0.

For thege functions we have an analogue of Euler’s formula

(1.1) y A%an) = 2°f(w),

D wwdif = of, where  d:f = 0f/om,

i=1

(1.2)

and d;f is homogeneous of degree a—a; for each ¢ =1, ..., n.

Distance. Let now p(#) >0 be a real-valued function defined for
all # # 0, peC* almost everywhere and quasi-homogeneous of degree 1,
¢(z+y) < o(w)+o(y). In particular, we shall consider

n
o(@) = supla ™ or  gu(e) = (3 a™",
1=
m >0 being the least integer such that a; divise m/2, ag such functions
o(®).
) rJ:‘.hen taking (#—y] = o(w—y) we have a distance defined on B,,
invariant by translations.
We ghall use that |m] < [2]™.

‘ Differential form and element of volume in ‘‘polar” coordinates. Con-
gidering the differential form (cf. [5])

(13)  o@) = D amdsa,

fe=1

where  d;o = (—1)'"‘day A ... Adwi_y A QWi A .. A Ay,

icm
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we get by (1.2) that, for f quasi-homogeneous of degree a and differen-
tiable,

(1.4) df A ¢ = ofds.

In particular
(1.49) do Ao = pdwm.

Now we set @, = 0(#)"4s, ..., Tn = 0()Yn, Where § = (1, ..., Yn)
is the point corresponding to # on the unit “sphere” ¢~'(1), depending
on n—1 variables, say 0y, ..., f_;. The point 2 = (@, ..., ) can be

given by its “polar” coordinates (@) 015+« On_y), Where g = o(%) and
§ = (6y, ..., 0n_) gives the position of y on ¢~ *(1). Then, by (1.3) and
(1.4') the element of volume may be given as

(1.5) do = (@) *de(@) A o(y).

Quasi-homogeneous kernels and singular integrals. In § 2 we shall
deal with singular integrals, given as convolutions with kernels %, defined
in B,— {0}, with the following properties:

(A) k(x) is a quasi-homogeneous function of degree — |af, ie.

(A%, ..., A%na,) = A k(@), Vi>0.

(Bm) keom(E”—{O}), m>=1.
(C) there exist a funetion g, a8 characterized above, such that

[ ko=0.
el
Taking into aceount (A), (3) and (4), it is d (ko) = 0, so, using Stoke’s
theorem, condition (C) is satisfied independently of a particular o.
P. Krée has introduced in [5] the operator given by convolution
with such kernels and has proved that they are continuous from the
Lebesgue space I” into itself. That is, if

(1.6) Ef(s) = v-p.kaf = IimE.f(a),
where
(1.7) Ef@) = [ ke—9f®dy,

z—v1>¢

then for all feI”, there exists a constant 0, independent of f, such that

(18)  ||E.flp < Olfllp independently of & and [|Efly < Cllfly,

for 1 < p < oo, where |||, stands for the usual norm in IL”. ’
Using the vocabulary of [10], we shall say that an operator T is
of type (p, p) when it is continuous from IP to I, 1 < p < oo, and that
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it is of weak type (1,1) when the measure of the set {»: |T'f(2)| > A} is
bounded by O([fl./4), for all fel*, with ¢ independent of f.

With these terminology, (1.8) means that K, and K are of type (p, p),
1 <p < oo (K, independently of &). It is also true that K, and K are
of weak type (1,1) (ef. [5]).

In §§2 and 4 we shall deal with the maximal operator of these
singular integrals, defined by

(1.9) K, f(m) = sgleaf(W)l-

The following standard notation will be used throughout the paper:
for any f = (By,..., fn); & =aft, ..., afp, 0 = Wit aufy, 1 =
= pl ... Bul, (0PN (@) = (05))...(050)f (w,, ..., 2,). O will stand for a con-
stant, not necessarily the same at each occurrence. Integrals without
specification of the domain of integration will be understood as taken
over the entire %,.

2. Pointwise convergence and maximal operator. It is well known
that the maximal operator of Hardy-Littlewood is of type (p,p),
1 <p < oo, and of weak type (1,1) (see [10]). It is not more difficult
to see that the same is true for the maximal operator A defined by

[ 1f)ldy

[e—v]<e

(2.1) A f(@) = gup g™

(cf. [7], chap. I, lemma 2).

Lemuma 2.1. Let o(x) be a function defined in B,, such that (@) <
< O([#]), (o) being a non-increasing function and

[ (0) e *dg < o0.
0
Let g () =&\ (Mg, ..., s~ a,).
Then, for feOF, there exist @ constant O, independent of f, such that
sup o, #f] <O Af.

Proof. We have

lpexf] = &~1¥ f‘P(B"“l(mL“ﬁ'/l): ceny S"an(wn"?/n))f('!/ly s Yn)AY1en Ay
< [ B w—y)) | (y)|dy.
Let be

)= [ If(y)ldy.

[e-y]<o

icm
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By (2.1) it is
(2.2) 1(8) < 89Af ().

The last integral becomes
rlm}o(p(a/a)dI(é) = g—lalqs(a/g)I(a)]go_a—mlf 1(8)dd(8]e).

By (2.2) the integrated part is bounded by (8/e)“®(8/e)(Af)(z). As
by hypothesis over @ we have ®(g) ™ —0 when ¢ — 0 and when g — oo,
this part vanishes.

Then

—r""fz(a)dqs(a/e) < — & Uf (@) [ §Uad(s]e)

= — (AN @] 3D (8]e) 7 — lal [ D(8]e) 8 s}

oo

= (4f) (@) ([ B(0) 0™ do).

[

Since the lagt expression is independent of ¢, the assertion follows.
PROPORITION. For feOY, let Kf and K,f be defined as in (1.6) and (1.7),
and let k(x) satisfy conditions (A), (B;) and (C).
If
D,(f) = E.f(w)— Ef (@")+ K (fre) (&)

where yq 18 the characteristic function of @ =@, = {y: [x—y] <&} and
ateQ,p, then

D(f) = sup|D,(f)] < CAf ().

Proof. We have

D,(f)
= [ kl—yf@)dy—vp (k@' —f@dy+v. [ kla—y)f@)dy
[Z-yI>e l-yle
= [(b@—9)—k(@—y)f@dy+ [ *@—yf@)dy+
[z—vI>e
[#l-yl<s

+ [ k@—yf)dy.

[2l-yl>e
[-y]<e
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As [z—
1D.(NI< [ke(z—9)—

'] < ¢/2,

—plfwlay+m |

sj2< 21—y ]<e

—yI7"f(ydy = I,+1,+1I,.

@t —y 171 f(y)] dy +

+M [ @
ef2< [T-y]<e
It is easy to see that I,+I; < OAf(#).
To show that the same is true for I, we consider:

n

< D) lau—al| [0ul (@~ 02|

1=1

n
< OM ) [m]7%%,
i=1

% (2) — Fy (0<0<1)

By these ihequalities and the boundedness of %(x), we get that
p(@) = Fy (@) — Ty (2)
is in the conditions of lemma 2.1 and the proposition follows.
THEOREM 2.1. The operator K, acting on feI?, 1 < p < oo, as defined

in (1.9) for a kernel k(x) satisfying (A), (B,) and (C), is of type (p, p) for
l<p<oo and of weak type (1,1).

Proof. Let ¢ be such that K, f(s) < 2{K,f(v).
‘i For thig chosen ¢ we take @', [#—a'] < ¢/2, and by the Proposition
it is
E.f(@) < 21D, (f)|+ 2 | Ef ()] +2 | K (1, ()|
< 04 (@)+ 2| Bf (@)| +2 B (frg (@)

- In [3], M. Cotlar proved that a linear operator T' iy of type (p,p)
and of weak type (1,1) if it satisfies the inequality

(2:3)  |Tf(2)] < OITof (@) + O|Taf (@) + O |Ts(fo) (M),

where T';, T, and T, are operators of type (p, p) and of weak type (1,1)
and D is any dense subset of all I?, 1 <\ p < co. As 4 and K are operators,
})obh of type (p, p), 1 < p < oo, and of weak type (1,1), and O is dense
in all I, 1 <p < oo, the thesis follows by (2.3).

The next result may be of independent interest.

CoroLLARY (Pointwise convergence). If K, is defined as in (1.7)
and k(x) satisfies conditions (A), (Bl) and (C) then, for feIP, 1 <p < oo,

lim K,f(s) = Ef(a)

VfeD,

exists for almost every m.
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Proof. Consider A(z;f) = 4(f) =1lm sﬁpKJ(m)~11mi.niKJ(m)
It is |A(f)] < 2K, f(w).
For feIP let f = g+ h, g0y and hel”, |hll, < 6.
It is easy to see that

lim K,g(x)

&0

= Kg(x)

exists in the pointwise sense. So 4(f) = 4(h).
If p > 1, we get, by theorem 1, that

4Rl < 21Kl < C6,

& arbitrarily small.
If p =1, for any A> 0, we get by theorem 1 that

) > A} < meas{E,f(w) > A2} < O(][h]l4/2) <

& arbitrarily small.
Hence, in both cases, 4(h) = 0 a.e., and the agsertion is true.

meas{{4(h 0s/a,

3. Now we characterize the T%5(z,) spaces.
Definition. If u > — |a|/p, we denote as T%(,) the class of functions
feIf, 1 < p < oo, such that there exists a polynomial

Pla—m) = ) olo—u)

ag<u

(P=0if u<0),

with the property that

—u—|ajjp
sup ¢ ([

[x—7p1<e

(8.1) \f (@) — P (w— o) Pda)' ¥ < oo
PROPOSITION. For each feTh(x,) the polynomial P is unique.
Proof. Considering two polynomials P, and P, satisfying (3.1), its

difference

Plo—a) = Pi—Py = ) Osla—m)

ag<u
will satisfy, for 0 < ¢ < o0,
( f P (k)P an)"”
[hi<e

We must show that any such P vanish identically.
If a-B =y < u, that is, if P(h) is quasi-homogeneous of degree y,
using the “polar” change of variables (1.5), we have

( [ pmran)” =0 [ P@PaR)" R = 480
hi<e =1

(3.2) = 0(g"*%®), where & =z—.

(3.3)
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By (3.2), 4 must be zero, which implies that the polynomial vanishes.
If a-f <y < u, we use induction on y, with the assumption that
(3.2) implies P = 0 as inductive hypothesis.
It is immediate that P vanishes for y = 0. If y > 0, then
= Y OW+ D Oph =Q(h)+R(h)

ap<y af=y

and, by (3.2) and (3.3),
([ iempaf” <( [pmpa)™+( [ mora)”
<e <e

[hl<e
= O(@Hlal/p) _,_O(Qr-hlallr).

So, @ satisfies the inductive hypothesis and vanighes identically.
The same is true for R, bemg quagi-homogeneous and the assumption
follows.

Norm. The space T%(x,) is linear and we introduce in it the norm
(w03 f) = Iflp+ 2 105+ supe™ ([ |f(@)— P(w—ay)da) ™.
ap<u 0<g<oo [z_,wozgp

‘When there is no possibility of confusion we shall write 7% (a; f)
= T3(f).

Lemma 3.1. The spaces Ty(a,), 1 < p < o0, 4 = — |a|jp are complete.

Proof. Consider a sequence {f;} of functions such that T%(f;—f;) -» 0
as j, ¢ tend to infinity. Then the sequence converges in I? to am f.
Let P = hm P;, where P; is the polynomial corresponding to f;;

>
the existence of such limit follows from the fact that the coefficients
of P; converge. For each ¢ we have

e”“(e‘“'“' f ‘(f(wo-i-h)—ff(%—!-h)—-(P(h)——P,(h))”’dh)lm
= lim g~“( —la f\ — )= (B—PoPan)™

\lilmlnfﬁ(fi"ft) < oo,
" dFrom this we see that feT%(m,) and making j tend to infinity, we
n
sup™ P [ |(f—f)—(P—PyPan)" 0.
[rl<e

fF‘rom this follows T%(f—f;) - 0 when 4 — oo, which complefes the
proof.

iom
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LEMMA 3.2. For 1 <p<oo, if v=u> —lalfp, then T5(w) is
continwously included in T% ().
Proof. We consider first the case u > 0. Let
Pyh)y= D' Opb, h=us—u,
af<<u

be the polynomial that corresponds to f in the definition of the class
T%(x,) and let R, be the corresponding remainder. Let P, and R, be
similarly defined. For ¢ <1,

P () —Pu(M =| > Opk| <T5(HT
u<ap<y

and

| e <[ [ oo+ | | ol
[(hI<e hi<e thie
< OT2(f) @™P+e - T2 (f) gUP+® < OTE(f) g /P,

For ¢ >1, a8
Pum)] =] 3 0H| < 3 106l 1M < T3 e
ap<u af<u

it holds
( [ Buwran)” <iflo+( [ P (R} an)"” i
[hl<e hi<e
< T2(f)+ OT2(f) 0P+ < OTE(f) gl
Thus,

supe™~ P [ [Ru(WPAH)" < OTH()

[hl<e

which is the assertion.
Second case, v < 0. If 9o >1,

(e [ 1f @+ mPan)"” < Il

h<e
and if o <1,
(e [ @ tmPa)” <o (e [ ifleotmra)”
thi<e [h)<e

and again the thesis follows.
Lewva 3.3. Given feTh(x,), w > — |alfp, let g(x) be such that
supe=( [ lg(@)Pda)” < TUN.
e [z—Zyl<e

Studia Mathematica XXVII z. 1
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Then
(@ [ [e—al @)l <OTEN M i laltu>s
[z~zpl<e
and
® [ [m-o]lg@)de < OTHHT i Jal+u <.
[e—y1>0

Proof. We set
Bo)= [ lg@)lda.

[e-2q]<e

By Holder’s inequality,

[@(0)] < 0( f |g|pdm)l/7’gla|/7" < OTE(f) Qu—k]a[(l/r»i-]l?)')‘
[e-2y]<e
Hence, if |a|4-% > s, then

4

[e—a]'lg(@)dw = [r°dB(r) <e™*B(o)+s [+~ B (r)dr
4 0

d<[z—ng]l<e

4
< Tz(f)o(emwu_a_l_Sf,\awu—s—ldr) < OTR(f) Q(al~|-“—8’
0
80 that
(=]~ lg(2)| do < OTG(f)™**, it |al+u > s,

T—xp]<e
and (a) is proved.
Similarly, if |a|4+u < s, then

00

[ le—=adlg(@)de = [ +~0d0(r) <s [ r~*"LD(r)dr < OT(f) 7,

[z—zgl=e 0
and (b) is proved.

4. Convolution of quasi-homogeneous kernels and 77%(x,) functions.
Now we are in condition to state and prove the theorem about quasi-
homogeneous singular integrals acting on 1% ().

) TeEOREM. Leét K be an operator as defined in (1.8) given by convolution
with a kernel k(x) satisfying conditions (A), (By) and (C). Let M be a bound
for [°k(@)| on the set when [2] =1 for 0 < a'f < u+1 if w > 0 and for
Bl =0 if u<0. ‘

Then, if 1 <p < oo, u = —|al|fp and feTE(x,),

D 4f w+0,1,2,..., then EfeTh(a) and T4(Ef) < OTE(f).
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(M) if w=1,2,..., then KfeTi(w,) provided that
[ le—a] " |f(2)|dw = N < oo,  and T5(Ef) < OTR(f)+MN.
(1) 4f w =0 and K,f(x) < oo, then KfeTh () and
T3 (Ef) < CTG(f) + OKf (%)

Proof. (I) Leb be a fixed ¢« 03 (B,) such that ¢(x) =1 if o —a] < 1.
We set f = f,+f., where f; = ¢P,

Plo—m) = D Oplo—a))
af<u
being the polynomial corresponding to f eT% (%)

Then f,eT5(x) and TL(f) < OTL(f) Oongequently f,eZ% () a,n(.l
T2(f,) < OT%(f). Then it will be enough to apply the operator K to f,
and f, and prove the result for each of them. o .

Tirst we consider weCy(H,), any such function vanishing outside
[#—a] < R.

Hyp(a) =lim [ k(y)p(@—y)dy =lim [ 5@ (ple—y) —yp(@)dy
&0 wi>s . >0 [y]>e

is an integral which converges uniformly for ¢ -0 and |Ky| < C(yp) M.
Since 9;(Ky) = K(9;p), then KypeC® and [0°Ky| < O(yp)M. Also we
see that, for [@—m,] > 2R, |Ky(z)| < O (p) M [x— x,]"'*!. These inequal-
ities show that K|, < C(y)M and that

(4.1) Ti(Ky) < O(y) M.
Considering now the explicit form of f;,
filo) =p(@) 3 Oplo—ay)’y
af<u

we have

(4.2) T(Ef) < ) |0l T4 K (p(a) (@—ay))).-

af<u
Bub ¢(2)(z—x,)’ is in the conditions of y(») and we apply (4.1) to it.
Then (4.2) becomes

TH(ES) < ) 0, 0M < OMTE().

ap<t

‘We consider now the case % > 0.
f» is a function that satisfies the hypothesis of Lemma 4.
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‘We consider Kf, when u > 0 expanding %(z) by Taylor’s formula
at the point x,:

Kfy(z) = v.p. f kE(@—y)f(y)dy = v.p. f +

[—-zgl<e  [U=Tg]>e

- B
= V.p. f El@—y)faly)dy+ Z&Iﬂﬂ)«fa”k(wo——y)fz(y)dy-

[—Egl<e ap<u
PR
- 3 [ ora—nnwart
ap<u T -Fgl<e
- — o\
Ly ﬂf%’ [ #hte—y)faly)dy+
=R
(2—,)* s
i 0k (wy+ 6 (x— o) —9) fa(y) dy

!
u< | pl<t-+1 A [y—Zg]>e
=L+L+ L+ L+l (0<6<1).
I, is a sum of integrals which, on account of
(4.3) 0°% (@)] < M [w]714=0

and part (a) of Lemma 3.3, are absolutely convergent near w,. Using
Holder’s inequality and ||f,ll, < 7%( f), we see that they are convergent
at infinity. So, I, is a polynomial, that we call P(x—a,), whose coefficients
are dominated by OMT%(f).

For [y—ux)] > o,

|0°%(y4- 00— @) — )| < M [wo—y]~1"-2°

if we assume [@—a,] < ¢/2. So I, is dominated by O MT5(f) "~ [0— w,]%,
by part (b) of Lemma 3.3, ag || > « implies that, a fortiori, a:8 > .

Similarly, by (4.3) and Lemma 3.3, I, and I, are bounded by
CMTL(f) 0" [w—m,]%.

Finally, consider I,. Its norm in I” iy dominated by a constant
times

( [ ihwra)™,
[@p—vi<e
80

il < OTL(S) g™+,
Combining this estimates, we obtain that

[ 1falo)—Plo—apPde)’” < 0TB(f) g+ 10,
[z—mgl<e/2
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Sinee [|Efyll, < O|lfellp, in account of the estimates for the coefficients
of P(x—ax), we see that T%(Kf,) < CTL(f). As the same holds for K,
the proof of (I) is completed for » > 0.
For u < 0, we obtain that f; =0 and f =7f,. We write
K@) =vp. [ klo—9f@dy+ [ k@—y)f@dy =T+
. [zp—~vi<e [Zg—v]>e
I is estimated as before. On account of part (b) of Lemma 3.3 and
as, for [y—a] >0, [2—m] <of2 it is k(z—y) < OCMy,—x]", we
infer that I is dominated by CMT%(f) 0% So, part (I) follows for u << 0.
(II) The above proof can be mantained for u =1, 2,3,... except
at the point where we consider the integrals of the functions 8°k (z, — y)f, (y)
for a-p = u, because these will no longer be convergent. Under the ad-
ditional assumption the polynomial P(x—=,) vanishes, so f, = f and the
integrals converge.
(IIT) Case u = 0. Let f = g+h, where g(z) = f(2) if [z—a,] < 20
(¢ fixed) and ¢{(x) = 0 otherwise. Then
( [ Ef@ra)” <( [ iKg@rd)”+( [ |Eh@)Pd)”

[r—zgl<e [Z—Zpl<e [z—zg]<e

<Olgh+( [ | ba—y)f(w)dy | az)"” < OTE(f) "+

[#—Tgl<e [zp~v]>2e
+ [ | [ me—p-k@—pfway| ao)"” + 0" E, f ).
[r—Zgl<o  [Zg—¥]>20 .
We get that [k(z—y)—k(zy—y)| < GM'Zn‘ [ — 2] [Be—y 171~ % for
[o—¥]> 20 and [z—zx,] < p. So, i
4 | [ (fe—y—k@—y)f@ )|

[#o—¥]>2e
<D OMlm—aul [ If@)[@—y]" %y,
[Zg—-v]>2e

Let
Bo)= [ If(y)ldy.

[E—¥l<e
By Holder’s inequality, ®(g) << OT2(f)o'®. Then the last term of
(4.4) is less than or equal to

OM |g;—ay| [ r~1=%dd(r)
20

= ) OM |o;—ay| (B(r)r~"=%

2

~ 1-2|a) foo@('r)r"“'““l"‘l d'r)
2

< X OUTL P lac—ul
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Applying this last ihequality it results
m
] (se—n—Elm—y)f e ay] )"

fz—dgl<eo {m0_§q>2g

( |2 CMT2(f) 0~ % oy — sl |

[z~ 10] <e

>1I7J < Oﬂ[r[y(ry)(f) Q\a\/p'
This completes the proof of (III).
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