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Means and Folner condition on locally compact groups
by

A. HULANICKI (Wroclaw)*

In the last years several papers by different authors appeared, all
dealing with some conditions imposed on a locally compact topological
group which imply various properties of spaces of functions intrinsically
connected with the group which are not valid for all locally compact
topological groups in general. Let us mention only three of the results
of this type.

In 1948 Godement [11] defined the class (B) of locally compact
topological groups such that any continuous positive definite function
f on @ is the limit of a net of functions Dy +a7 with oye L, (§) convergent

to f uniformly on compact sets. In 1960 Reiter [19] considered the class
# of groups @ such that for any compact subset A of ¢ and any ¢ > 0

there exists a function feI, (&) such that f > 0 and IIfl. =1 and, more-
over,

JIfs)—fs)lds <& for all ted.

Dieudonné and Reiter in a series of papers [5], [6], [19], [20], [21]
showed that the groups of class # have many interesting properties con-
cerning the convex hulls of translations of funetions from L, and the
behavior of convolution operators defined by symmetric probability
meagures on @ They investigated also the class % in terms of subgroups,
homomorphic images, extensions. We should also mention here several
attempts made towards generalization of the many well-known results
concerning invariant means on bounded functions on a discrete group
to locally compact topological groups (with L in place of the space of
bounded functions) [6] and [14]. Very recently Reiter [23] has shown
that (R) = £.

The aim of this paper is to propose a new generalization of the no-
tion of an invariant mean value on L (@) for a locally compact group.
The class # of the groups for which such an invariant mean exists ap-

* This paper was written while the author was an associate visiting professor
at the University of Washington, Seattle, Washington, USA. :
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pears to coincide with the classes () and # and the fact that it containg
Abelian and compact groups as well as that it is closed with respect to
taking subgroups, homomorphic images and extensions becomes as simple
to prove as it is in the case of discrete groups. We also obtain Folner's
conditions whose combinatorial character shows that the class # can
be defined intrinsically not appealing to any fonction space on the
oup.

¢ I())ur indebtedness to the celebrated method of Day of treating in-
variant means on digcrete groups in terms of weak and strong invariance
is obvious. We also benefited from gome recent ideas of Namioka as
presented in [18]. We want to express our gratitude to Issac Namioka
for conversations about the subject of this paper as well ag to Fred
Greenleaf and Czestaw Ryll-Nardzewski for many corrections.

Preliminaries. All the groups considered here are locally compact
topological groups. The class # of Baire subsets is the least o-ring of
subsets of the group containing all the sets of the form {s: f(s) > 0}
where f are real continuous functions on the group vanighing outside
compact sets. The left-invariant Haar measure defined on # is denoted
by |4| for 4 e#. In what follows, we shall not use any other Haar meas-
urable sets than those of #. If 4, B¢, then the function

£(s,1) = |sAAtB|

is a # X #-measurable function on the product of the group with itgelf.
The differential of the left-invariant Haar measure is denoted by ds
and the Radon-Nikodym derivative of the right-invariant Haar measure
with respect to the left-invariant Haar measure by 4(s). We have

Jre™ A ds = [f(s)ds

for any left-integrable function f.

By L (or L(@)) we denote the linear space of continuous functions
on a group G vanishing outside compact sets. For any 1 <p < oo we
denote by L, (or L,(G)) the space of #-measurable functions » integrable
with the p-th power equiped with the norm |z,. If p = 1 we shall of-
ten write ||#|| instead of |jz||;. The space L, (or L, (6)) consists of the essen-
tially bounded locally Baire measurable functions on . Forany 1l <p < oo
the space I is norm dense in L,. We consider also the space of Borel
meagures M (or M (&)). By &, s¢@, we denote the measure concentrated
at the point s and the total mass 1. If 1 <p < oo, the space I, with
1/p-+1jg = 1 is the space of linear bounded functionals on L,. The value
of the functional defined by feL, on the element ¢ L, is denoted by (f, ).
For a function fely, 1 <p < oo, and a measure ue M, we define the
convolution feu(s) = [f(s87") 4 (t™) du(t).
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Clearly, f+pueLy. If du(s) = ®(s)ds, where zeL,, then
fra(s) = [fOo )@ = JFat e 4@,

For any function weL,, 1 <p < oo, and any ue M we denote by
#*, 4~ and u*, 4~ the funetions and measures

w(s) = a(s™)A(s™Y), @(s) = w(sT),

px(B) = p(E@), p@) = [ AEdu).
We have *

(#,y) = (y,2), (v,y%2) = (y*m,2) = (z*27,¥),
whatever functions or measures », y,2 are such that the corresponding
integrals are absolutely convergent. If felp, 1 <p < o0, wely, ue M,
then
(fro)*p = fx(zrp).
We also have

f*‘s:; =fs; f,(t) =f(t8),
Oo#f = ,f, of (@) =f(s79).
We shall use many other properties of the convolution of functions

and measures which are not listed here, for the general reference we
send the reader e.g. to [13].

A net {z,}, x,¢L,, is said to be convergent almost uniformly to a func-
tion © on a set A if there is a fixed number M such that llzlle < M and
for any &> 0 and & > 0 there exists a y, such that if y > Yo, then

where

where

[z, (s)—a(s)| < & for all seA\B,, where |B,] < é.

ProposITION 0.1. If a net {,}, #,eL, is almost uniformly convergent
to a function © on a compact set A, then for any a, Bel the net {a*wx*p}
s uniformly comvergent to the function axz*f on A.

A continuous function f on @ is called positive definite if for any
zeLy (@)

JJ# Das v dsds > 0.

A continuous positive definite function is necessarily bounded on @
and [f(s)| <|f(1)], seG. For any xeL, the function z#2™ is continnous
positive definite. If weL, then z+2~eL, and is positive definite.

ProrosirionN 0.2 (cf. [11]). For any continuous positive definile
function feL, and any & > 0 there exists a function x<L such that

lwxa™(s)—f(8)] <& for any se@.


GUEST


90 A. Hulaniocki

ProposITION 0.3. For any weL, and any & > 0 there exists a function
xeL such that

[mxa™(s)—uku~(s)] <& for all seG.

Let @ denote the class of functions o such that
a(8) =0 for s,

fa(s)ds =1.

(0.1)
(0.2)

Let & be a group and H a normal subgroup of ¢. Denote by « the
homomorphism =z : ¢ —G/H and let m(s) =3. Let ds,dh,ds denote
the differentials of the left-invariant Haar measures on &, H and G/H,
respectively, such that for any weL,(G) we have

[a(s)ds = fds‘fm(sh)lﬁ.
H

[77:4

(0.3)

Let A(s) and o(h) denote the Radon-Nikodym derivatives of the
right-invariant Haar measure with respect to the left-invariant measure
on G and H, respectively.

We now define a mapping of L,(G) into IL,(G/H),

¢ o,
where
(8 = m(s)).

It is clear that if we®(Q), then #¢P(G/H). We show that any
ae®(G/H) is of this form. Let F be a continuous function on @ such that
for any se@/ F(sh)dh =1 and F(s) > 0. (For the proof of the existence
of such a function see [1].)

Let
(0.4)

() = [ w(sh)dh

B(3) = a(n(s)): F(s).
‘We then have
[B(shydh = [a(m(sh)) F(sh)ah = a(3)
and hence, by (0.3),
[o(s)ds =1.

ProrosITION 0.4. Let feL (@) and suppose that f is constant on_the
coseis sH = Hs, seG. Then f defines a function feL(G/H) and f = fomn.
Let ac®(G). Then axf is constant on the cosets sH = sH and

(axf) = d*f, (Fra™) = fra™.
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In fact,
(axf) (5) = axf(s) = [a(®)f(m(:"s))dt
= [@ifa(m)fE 9 ah = [d(BfE%)a = axf(s).

The second of the equalities is verified in the same way.
PrOPOSITION 0.5. Let

_ 47 s)els) for seH,
p(s) W{ 0 for se@\H.

Then for any feL (@) and zeL,(@) we have

sup |p (h)-f*a~ (R)] < 1flleo ]l

In faet,
Ip (h)-F*a™ (R)] < [Iflloo [ 1(h8) 47 () o (B)] ds
= ko lo(sh) 0 (B ds = |Ifl [ (59) o ()| dgds

= IIfllo |2 (39)| dgdé = [|fllo il -

1. Means. Let G be a group, X a closed subspace of L,(G) with
the property that if feX, then the complex conjugate feX.
A linear functional m on X is called a mean on X if it has the fol-
lowing properties:
(i) mf = mf.
(i) essdi;nif(s) <mf < esi;upf(s) for any real feX.
8

Any mean is necessarily bounded. A mean m is called finite if m
is defined by a Borel measure x on @, ie. if

mf = [f(s)du(s) = (f, p)-

Clearly u must be a probability measure. In the case X = L, any finite
mean is defined by a probability measure ux which is absolutely con-
tinuous with respect to the Haar measure and consequently du(s)
= a(s)ds, where a is real function belonging to I, such that

(1.1) fa(s)ds =1.

Denote by @(@) the class of finite means on L (G). We shall identify
&(@) with the class of functions a satisfying (1.1). Note that @ forms
a semi-group under convolution. The class @ is to play the utmost im-
portant role in all what follows.

a(s) >0,
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If X is the space O(G) of continuous bounded functions on @, then
the set of finite means on C(@) is precisely the set M, of all Borel prob-
ability measures on @. M, forms a semi-group under convolution and &
is a two-gided ideal of it.

The following proposition is an immediate consequence of a more
general theorem on linear lattices (cf. e.g. [17], p. 16, Theorem 4.3):

ProrosITIoN 1.1, The set of finite means 48 w-dense in the sel of
means on L.

In fact, by the definition of a mean, any mean m is a non-negative
funectional on L (@). By Theorem 4.3 of [17], p. 16, there exists a net
{z,} of non-negative functions @,¢L,(@) which is w+-convergent to m.
Thus if f =1, we have

lim [ja,|| = lilym(f, @) =mf =1
v

and, hence, the net x,/||»,|| is w*-convergent to m and, moreover, x,/|z,|  ®.

PrOPOSITION 1.2. The set of means on L, (@) is conves and w*-compact.
2. Invariant means. Class . In this section we propose a new

definition of an invariant mean on L. (&) for a locally compact group G.
In the case when @ is discrete our definition coincides with the usual one.

DrrinIrIoN. We say that a mean m on L, is topologically left (right)
invariant if for any ae® and fel

m(axf) =mf (m(f*p~) = mf).
We say that a mean is topologically invariant if
m{axfxp~) = mf

The class of topological locally compact groups for which exists
a topologically left or right invariant or invariant mean is denoted by
F1, Fr or F, respectively.

PROPOSITION 2.1. A mean m is fopologically left (right) invariant
or topologically invariant if for amy feL. we have
m{p*f) =mf  (m(fx~) = mf),
for amy u,ve M,, respectively. '
In fact, let ae®, then axy, axve®; therefore

for any feL, and any a,fe®.

m(uxfrv™) = mf

muxfxy™) = m(ak(uafxr™)wa™) = m((a*u)xf*(arr)~) = mf.
Since @ = M,, the converse implication is trivial.
COROLLARY 2.2. ¢ c &, ~ f,.

In fact, if m is topologically invariant, then

m(frp) = m(dyxfxp) =mf for any ueM,.
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Hence, m is topologically right invariant. Similarly, m is topologically
left invariant.

COROLLARY 2.3. If a mean m is topologically left (right) invariant,
then it s left (right) snvariant, i.e.
Mmef = m(6sxf) = mf, mfs = m(f*67) = mf.

ProPOSITION 2.4. Any topologically left (right) imvariant mean m
definefl on the class C(G) of bounded continwous Sfunctions on a group G
s uniquely exiendable to o topologically left (right) invariant mean m' on
Lo (G).

Proof. Let m be a topologically left invariant mean on ¢ (@). Let
feL, and let ae®. Then we have axfeC(G). We put

(2.1) m'f = m(axf)

and we see that any extension to a topologically left invariant mean on
L., must be of this form.

It is easy to see that m’ as defined by (2.1) does not depend on the
choice of ae®d. In fact, we have

(2.2) m(a*f) = m(Bxf) a,fed,

because for any ¢>> 0 there is an element ge® such that loxo—af < e
and |[f*e— Bl < ¢, hence, since m is topologically left invariant,

for any

| (axf) —m(e*f)| = |m(axf)—m(axoxf)] = [m((ax o —a)xf)| < [Iflloe,
72 (Bxf) —m(o*f)] = |m(Bxf)—m (B oxf)] = |m((B%o—B)%f)| < lIfllot,
which shows that
Im(axf)—m(B+f)| < ¢llfl

and, since ¢ is arbitrary, (2.2) follows.

The following conditions are obvious translation of Dixmier’s con-
ditions as presented in [7].

ProPosITION 2.5. In order that Gef,,Ge #y or Gef the Sfollowing
conditions are necessary and sufficiont, respectively. For ANY Ay enny O
Brs -y Bre® and any fy, ..., foeL (@)

(Dy) ess int g] (fixai —fi) (s) < 0,
(D) oss int ; (@xf;—f2)(s) <0,
(D) ess int D) (apnfox i —fi)(s) < 0.

i=1
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3. Weak and strong invariance. The notion of weak and strong
invariance is an adaptation of the corresponding notions for discrete
groups due to Day (cf. e.g. [21).

DEFINITION. We say that a net {a,}, a,¢®, is w-[strongly] convergent
to left (right) invariamce if, for any aed,

w-lim(a,*a,—a,) =0
v

(w-lim (a,*a—a,) = 0
v

[hl:l “ay* Oy — av” = 0],
iz o+ o) = 0.

We say that a net {a,} is w-[strongly] convergent to invariance if for
any a, <P we have

w]im(a*a,*ﬂ——a,,) =0 [hm||ama,,*ﬂ——-a,]|

PROPOSITION 3.1. A group Gef; (Ge}f,) or Ge g if, and only if,
there exists a net {0}, a,e®, w-convergent to left (right) imvariance or to
invariance, respectively.

Proof. Let m be a topologically right invariant mean on L. By
proposition 1.1, there exists a net {a,}, @,¢P, w-convergent to m. For
any ae® and each feL, we have

(3.1) 0= m(fxa~—f)

= ﬁ?(f*d”*f, o) = liin((f*aN, a,)— (f, a,))

= lim(f, a,*a—a,),
r

which proves that {o,} iz w-convergent to right invariance.

Conversely, if {a,} is a net, a,e®, which is w-convergent to right
invariance, since the set of the means is w*-compact, there exists a mean
m which is a cluster point of the net {a,}. The sequence of equalities (3.1)
read from the right to the left shows that m is topologically right invariant.

It is clear that if for a group @ there exists a net {a,}, a,<®, strongly
convergent to right invariance, then there exists also a net {a,,}, aye®,
w-convergent to right invariance (we may, of course, put a, = a,). It
is of importance that the converse is also true. In the case of discrete
group this was originally proved by Day [2]. Recently Namioka has
tound a very simple and elegant proof of this fact. His proof with few
formal changes only applies to our case and we reproduce it here for
the sake of completeness.

PROPOSITION 3.2. If for @ group G there ewists a net {a,}, a,<®P, w-con-
vergent to right invariance, then there ewists also a net {a,}, a, P, sirongly
convergent to right invariance.

Proof (Namioka [18], proof of theorem 2.2). Let B be the product
(LI(G))“’. Then FE is a locally convex linear topological space under the
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product of norm topologies. Define a linear map T': L, (@) — F as follows.
For weL,(@) and ae®,

T(z)(a) = rxa—m.

Now the weak topology on E coincides with the product of the weak
topologies (see e.g. [15], p. 160). Then, since

w-lim(a,*a—a,) =0
¥

for any a¢®,

we see that 0 is in the weak closure of 7'(®). Since F is locally convex
and T'(®) is a convex set, the weak closure of T'(®) is identical with the
closure T'(®)~ of T(P) relative to the produet of norm topologies. Hence
0T (®)~which means that there is a net {a}, a,e®, such that for any
fixed ae®

]im][a;,*a-—- alf =0,
b4

which proves proposition 3.2.
PROPOSITION 3.3. If a met {a,}, a,e®, is strongly convergent to right
(lefty invariance, then the net {a*sa} is strongly comvergent to invariance.
Proof. Note that if {a,} is strongly convergent to right invariance,
then the net {a}} is strongly convergent to left invariance. Thus, for
fixed a, fc® and any ¢ >0 and any y > % we have

llaxdi—ajll <e and lloy*B—a,ll < e.

Hence, since |la,j| = [lg| =18l =1,

ek s oy f— alea,xBl <&  lojxa,*f— x| < s

and 8o
llaxobxa,*f—apra,l] < 2¢
ag§ required.
COROLLARY 3.4. We have ¢, = ¢ = fi.
COROLLARY 3.5. Ge 7 if, and only if, there exists a net {a}, a,eD,
w-convergent to right invariance.
COROLLARY 38.6. Conditions (D,), (D;) and (D) are equivalent.

4. Reiter's condition. In 1960 Reiter [19] proposed the following
condition for a loeally compact group G:

(R) For every compac’ set A = G and any ¢ > 0 there exists a fune-
tion ae® such that

lse—alj < & for any sed.

Tt is almost obvious that (R) implies the existence of a net {a,},
a,e®, strongly convergent to left invariance. In fact, if y = (s, 4) with
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the partial order (¢/, 4') > (s, 4) f ¢’ < &, 4" > A4, and o, i3 the element
of @ the existence of which (R) asserbs, then for any ae®, if 4 is a com-
pact set such that y >y, we have [sa,—a,ll <¢/2 for all sed, while
[sos—0y]| < 2 for all se@. Thus y > p, implies

& &
f oty — gyl a(s)ds < = Af a(s)ds <

sta—a (8)|ds < 2 f(z d?<—2-
and so
e> [ lloy—ayal(s)ds+ f llsa,— o)l a(s) ds
A&
= [luey—ai ats) s> [|[ als)a(s71)—als) (1) s
= |a*a,—a).

It is also not difficult to véri-fy the converse implication.
Let A be a compact set and let &' > 0. We are going to find a fune-
tion « such that aed and

4.1) lse—al < &  for all sed.

Put ¢ = ¢'/56 and take any fe®. There exists a neighborhood U
of the unity of G such that

(4.2) llsB— Bl < & for all seU and |eyxf—p| < ¢,
where ex = |X|™* x> for any Baire set X< U of finite positive measure.
Let
n
(4.3) AcUs;U  with s =1
=0

and let ¢; = 5. If {0}, ¢, eP, is a net strongly convergent to left in-
variance, there exists an «, such that
(4.4) IBro,—al <e

(4.5) llesa,—al <e for 4¢=0,1,...,n

Let a = fxa,. Clearly ae®. Then, by (4.2) and the fact that ,fxa,
= 4{f*a,), we have |,a—a| < & for seU and also |e,*a— al| < ¢ whence

leyta—sal] < 2e for seU.
Since [|-|| is left invarjant,

(4.6) lleao® @ —sgall < 2¢ for all teU and ¢ =0,1,...,n
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By (4.4),
(4.7) la—a,l < &, .
whenee [le;xa,—e;*q)f| < & for all 4 =0,1,...,n. Hence, by (4.5),

llesxa—a,ll < 2e for all 4=0,1,...,n

and, by (4.7), lle;xa—a|| < 3e. Therefore, by (4.6), [sa—all < Be =g
for all 4 =0, ..., n, t«U which, in virtue of (4.3), gives (4.1). Thus we
have proved the following
PrOPOSITION 4.1. A group G has Reiter’s property if and only if G £.
Clearly enough if G is discrete, i.e. when compact sets are finite,
Reiter’s property is another formulation for the existence of a net of
finite means strongly convergent to left invariance.

5. Felner’s condition. In 1955 Fglner formulated a condition which
he proved to be necessary and sufficient for a discrete group to belong
to class 2.

For any finite set A and every £ > 0 there exists a finite set F such
that

[SEAB| < ¢|B)|

Recently Namioka [18] bas shown that this condition is a straight
forward consequence of the existence of a net of finite means strongly
convergent to invariance. In this section we formulate Felner’s condition
for topological locally compact groups and we prove that it is a simple
consequence of Reiter’s condition. Our proof is somewhat modeled on
that of Namioka but, oddly enough, is simpler.

‘We say that a group @ satisfies Folner condition if it has the following
property:

(¥) For any positive Borel measure x on @, any set 4 of finite u
meagure: 0 << u(4) < oo, and any ¢ >0, d > 0 there exists a compact
Baire set # and a Borel set B < A with u(B) < § such that

(5.1) [sHAE| < ¢|B|
for any seAN\B.

ProposrTION B.1. If Ge ?, then @ satisfies (F).

Since compact Baire gets approximate in measure Baire sets of
finite measure, it is enough to show that G satisties a version of (¥), E
being a Baire set of finite measure. First we show a simple

LevmMA. Let a, f be two Baire measurable non-negative functions on G
both in L,(@). Let B; = {s: a(8) = A} and F; = {s: f(s) = 1}. Then

for any sed.

0

(5.2) lla— Bl = [ |B:AF;]d2.

Studia Mathematica XXVII, 2 7
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Proof. Write y; = xz, and 7, = xr,. Then, for any se@,
a(®8) o
a(s) = [ 1d2 = [ q(s)d2
0 0
and similarly
B(8)

Bls) = [ 1aa = fm(s)ou.

[1]
Hence

oo

63)  1a(®)—BE) = [ (1a(8)— 1a(8)na() @A+ [ (n2(8)— xa(s) ma(s)) dd.
0

0
In fact, if a(s) > B(s), then x,(s) = 7:(s) and only the first of the
summands of the right hand side appears and
21(8) — 21 (8) ma(8) = xa(8) —ma(s):
Similarly, if a(s) < §(s), then only the second summand of the right
of (5.3) appears. By (5.3) we have

la—Bll = fla(s)—B(s)ds
= [ a2 [ ()= 1) () -+ () —m(8) s (s))ds = [ | By AF;|aa

a8 required.
Now suppose a is a Baire function belonging to @. Clearly, if E,
= {8: a(s) > A}, then, for any t¢@, ¢B; = {s: ;a(s) > 4}. By (5.2) we have

lsa—al = [ 8B, AH;|dA
0
and also
oo
(5.4) [ 1Bjar =1.
0

Now let 4 be any Borel measure on @ and let A be a given compact
set with 0 < u(4) < oo, let ¢ > 0 and 8 > 0. Suppose Ge #. Then GeZ
and, accordingly, there is a function o in @ such that

lia—all <& = edu(4)™.
Then

F |sB, AT, ,
oflEndzA *W—d#(s)=jllsa~alld3<8ﬂ(44)=8-

Hence, by (5.4), there must exist a 1 such that |H,] = 0 and

|sE, AR,

du(s) <
7 u(s) < e

A
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which shows that for the set

B = {8: M = e}
[ Bl
we have u(B) < § and so
(8B, AB| < ¢|H,]| for all scA\B with u(B) < 6,

a§ required. N

It is easy to prove that if a group G satisfies (F), then G ¢, directly
(an almost trivial cancelation argument shows that (F) implies (D)),
we postpone, however, the proof of this fact to the next section where
it will be shown via certain property of positive definite functions on @
which is of its own interest.

Clearly, if u(A) = card A we obtain the following weaker version
of Felner’s condition:

COROLLARY 5.2. If Ge#, then for any &> 0 and any finite set A
there ewists a compact set B such thai

|sSEAE} < ¢|B| for any sed.

Az has been proved recently by Namioka [18], this condition is
equivalent to the existence of a left-invariant mean on C(G).

6. Weak containment of unitary representations in the regular repre-
sentation. In [11] Godement considers the class (R) of groups @ such
that any continuous positive definite function on @ is the limit of a net
of funetions of the form

n
D wxar,  wiely(@),
i=1
convergent uniformly on compact sets. This can be formulated equiva-
lently as the property that any unitary representation of the group is
weakly contained in the regular representation (cf. [8] and [14]). Gode-
ment himself has noticed that G ¢(R) if only the function identically equal
to 1 can be approximated uniformly on compact sets by functions of the
form z*x~ with z<L,(G). In the case of connected locally compact groups
the class (R) has been shown by Takenouchi [22] to coincide with the
class () of Ivasava and in the case of discrete groups it is shown in [14]
that (R) coincides with _#. As a matter of fact, it is proved in [14] that
if @G¢(R), then there exists an invariant (not necessarily topologically
invariant) mean value on L (@). Neil W. Rickert has pointed out that
there are some mistakes in the proofs for non-discrete case. All of them
can be corrected, although the proof of the fact that (R) = # which we
present here seems to be much simpler than anything which can be deri-
ved from [14]. In view of section 7, the result of Takenouchi is also
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a simple corollary of the equality (R) = # and the fact that any semi-
simple non-compact Lie group contains a non-Abelian free group as
a cloged discrete subgroup ().

DrriNiTION. We say that a group G belongs to class (R) if there
exists a net {w,}, x,¢L,(@), such that for any compact set 4 the net
{z,*2;’} converges uniformly on 4 to the function identically equal to 1.

ProposITION 6.1. If G satisfies (F), then Ge(R).

Proof. First we note that it ig sufficient to find a net {x,}, z, L, (),
such that z,*x; converges almost uniformly to 1. In fact, by proposi-
tion 0.1, for any ae® ~ L the net {a*m,*a; o™} is convergent uniformly
on any compact set to axlsxa™ = 1.

Let 4 be a compact set, &, 6 positive numbers. By (F), there exists
a compact Baire set B such that (5.1) holds. Let y = (4, ¢, 8) with the
obvious partial order in the triples (4,e, ). We pubt =, = xgz|B|" '~
Let seANB. Then

1—a,xa5] =

1
1—I—;ﬂ'[‘fXE(t)XE(3—lt)dtl ={1—mfm(t)xam(t)dt

1 1
I—E‘IEA sE| = —IE]E\SEI <e.

ProrostTION 6.2. If Ge(R), then G satisfies Reiter’s condition.
The proof is related to one of the proofs of Day as presented in [3].
Proof. Suppose that for a compact set 4 and ¢ > 0 we have

[z#2~(8)—1] < /4  for all sed.

We may of course assume that the unit element 1 of G belongs to
A and consequently that 1 = wxa™(1) = |o,. Let y(s) = [ (s)], se@.
Clearly, |z+2™(s)| < y*y™(s). Since y#y™ is a positive definite function,

(6.1)

Y*y~(8) <y*y~(1) = |y, = |y =1.
Therefore

0 < 1—y*y~(s) K L—|zsa™(s)] < |1 —zx2™(8)] < &fd
for seA. Hence, for sed,

=@ )l = 11— [y )y () @] = [L—yxy~(s)] < e/t

(*) The fact that a semi-gimple non-compact Lie group contains a non-Abelian
free group as a discrete subgroup can be easily deduced from classical results on
semi-simple Lie groups. In fact, any such non-compaet group contains a factor
group of the simply connected covering group of SL(2, R) which, in turn, contains
a non-Abelian discrete free subgroup. For the detailed exposition and references the
reader is advised to consult e. g. [23].
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and consequently,

lly —sylls = (1 —(y, sy))‘l‘ (1 — (v, s?/)) < gf2.

But, if ¢ = y?, then, since |yl =1, ac® and 50 for sed we have
la—sally = [ly2(t)—ay2(®)]ds

= fly(t)—sy(t)l 1Y@ +ay () < |y —sy lally +avlls < 2{ly—opllz < &,
which shows that @ satisfies Reiter’s condition.

7. Class #. In this section we show that # contains compact
groups as well as locally compact Abelian groups and is closed under
operations of taking subgroups, factor groups, and extensions. Since
we already know that _# coincides with the class # of groups satisfying
Reiter’s condition, all these facts become consequences of the correspond-
ing theorems proved by Reiter and Dieudonné in a series of papers [5],
[61, [19], [20], [21] for class %. Their proofs however are more compli-
cated than the ones we present here which are almost as simple as the
proofs of corresponding theorems for discrete groups.

ProrosiTION 7.1. If G 43 an Abelian group, then Ge ¢.

Proof. It is sufficient to show that there is a net {0}, 2, ¢P(G),
strongly convergent to right invariance. For any finite subset 6 = {ay,
..., ax} of @ and a positive integer n let y = (8, n). We partially order
the pairs (8, n) writing (8',n') > (6,n) i 8 > 6 and »' >n. Let

ay:—'n_k a{f*...*ag‘,
0<ty,....0p<n
where o' = ax...xa (j times). Then for any ae® if a = ;¢4 and any n
for y = (3, n) we have

> dbeedir . wdf (ol — o

0<Fy,. . fpsn
=l et <o,

Since #» tends to infinibty with ¢, (7.1) follows.

ProrosrrioN 7.2. If @ is compact, then Ge #.

Obvious.

ProposITION 7.3. If H 1is o closed normal subgroup of G and Ge £,
then G[Hed.

Proof. Let m be a topologically invariant mean on I (). For
each fel,(G/H) we put mf = m(fon), where x is the homomorphism

llasx ay— o)l = n~*
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G — G/H. Clearly, m is a mean. By proposition 0.4, if ae®(G/H) and g
is as in (0.4),

m(axf) = m((axf)on) = m(px(fon)) = m(fox) = mf,

which shows that 7 is topologically left invariant and so G{He 7.
ProposTrIoN 7.4. If H is a closed subgroup of G and Ge 7, then He j.

The eagiest way of proving 7.4 seems to be via the equality & =
In fact, let A be a compact subset of H. Then 4 is a compact subset
of @ and, since @e(R), in view of proposition 0.3, for any & > 0 there
exists & function #eL such that

(7.3) |wen™(R)—1| < ef2  for all hed.

But wxu™ is a continuous positive definite function vanishing outside
a compact set on G consequently its restriction to H, ie. uxu~|H =f
has the same property as a function on H. By proposmon 0.2 there exists
a function zeL(H) c L,(H) such that

|exa™ (R)—F(h)| < ef2 for hed.
Hence, by (7.3),
loxa™~ (R)—1| < e for hed,
which shows that He(R) = 2.

ProOPOSITION 7.5. Let H be a closed normal subgroup of a group G.
Suppose that H and G/H belong to the class f. Then Geg.

Proof. Let ds, dh, dé be the differentials of the left invariant Haar
messures in ¢, H and G/H chosen as for (0.3) and let p(s) be defined as
in proposition 0.5. Then for any feL, (@) and weL, (@) the function fxas™
is continuous and

suplp () (f+a™) (h)] < 1Mo llell -

Therefore the operation
x - p- (f*xa™)

is a continuous linear operator from L, (@) into L, (H). Let m, be a topo-
logically invariant mean on L. (H). Then

F(w) = my(p- (f*a™)
is a continuous functional on I,(@). Consequently,

Fla) =(f,a); [ely(@).
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For any heH, &,¢ M (H) and

(Onxf'y @) = (f'y Bp-1%2) = my (p- (Frdp—1%2)7)
= m1(P'(f*a7~* 577—1)) =4 (h)'”h(p (f*a™* ‘5h))
= A(R)p(h)my(p-(fxa~x83)) = o(h) e (R) ™ my(p-(f+a™) 67)
= m1(? (f*‘v)~) =(f", @),
which shows that f' is constant on the cosets Hs = sH, seG. Therefore f

defines a unique function feL,(G[H). Let m, be the topologically in-
variant mean on L. (G/H). We put

mf = m,f.

Clearly, m is & mean on L, (G). It remains to prove that m is
topologically invariant. Let ae®(@). Then

((Fra™), @) = my(p-(Fra™xa™) = my(p-(fx(@xa)™))
= (f'ywxa) = (f'xa”, ),

whence (fxa™) = f'*a~. But f' is constant on the cosets Hs = sH.
Therefore, by 0.4, if a($) ='fa(sh)¢i}—z, we have (f'*a™) = fxd and, con-
sequently,

" m(fra) = my(f2a™) = maf = mf,
which completes the proof.

We conclude by showing that a classical result of von Neumann is
an immediate consequence of ¥elner’s condition.

PROPOSITION 7.6. If @ 48 a mon-Abelian free group with descrete to-
pology generated by two elements a, and a,, then G4 2.

Proof. There is no finite set ¥ in G such that

|6 BAB| < 3{B| for ¢=1,2,

because the inequality says that more than half of the words of E begin
with a; for both i =1 and ¢ = 2. Thus, by 5.2, G¢ 7.

Added in proof. Recently F.P.Greenleaf, I. Namioka and H. Reiter (*)
have shown that the class & of locally compact groups which admit topologically
invariant mean is identical with the class of groups which admit invariant mean on
Leo(G). As a matter of fact, in a brief and very elegant way I. Namioka has shown
that an invariant mean on L (G) defines a topologically invariant on L (6).

(*) F. P. Greenleaf, FEquivalence of various types of invariani means on
topological groups (to appear); I. Namioka, On a recent theorem by H. Reiter (to
appear); H. Reiter, On some properties of locally compact groups, Indagationes
Mathematicae 27 (1965), p. 697-701.
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Exponentially convex functions on a cone in a Lie group™
by

8. LACHTERMAN (St. Louis)

1. Introduction. Necessary and sufficient conditions for a real
sequence {f(n);n =10,1,2,...} to be expressible as an integral

fn) = [ T da(y),

where da(t) i§ a bounded non-negative measure, are

@) Y eaf(+k) >0 and Y gaf(+k+l) >0
1,k=0 1,k=0

for any set {a,;n =0,1,...,m} of real numbers. This is known as the
Stieltjes moment problem. (Cf. [13; 15] and for a brief history [7].) For
a continuous real function f(z) on the real line the representation be-
comes

fl@) = fe-"da(t)
and (A) becomes -
(B) D) wouf(@s+m) >0,
1, k=0

where {2,;n = 0,1, ..., m} is any finite set of points on the line. Such
functions were called ewponeniially convex by Bernstein [3].
In the case of the Hausdorff moment problem
1

fln) = ["da(t),

0

where da(t) is & bounded non-negative measure, if and only if

(0) 0< > gaf(i+k+1) < Y gaf(i+h).
3,k=0 1,k=0
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