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a function geC[0, o) which does not vanish identically in the right
neighbourhood of 0 such that f = p,/q and g = p,/q, where p,p, ([0, oo).
Let M, be the set of all operators which can be represented in the form
p/g (p<C[0, o0)). By Theorem V, f can be approximated by sums (2) in
the topology of M,. But every sequence which converges in the topology
of M, also converges operationally, which proves our assertion. Taking in
particular g = 1, we see that every operator from M, can be approximated
by polynomials 2, ...+ 4, k™ of the shift-operator with positive ;.

5. We have considered, so far, functions, distributions and operators
defined on the one-dimensional real space R. However, all the theorems
can also be inferpreted in the Ruclidean space RB™ of any number of di-
mensions. Then by an interval [0, I'] we understand the et of points
t=(t, ..., t,) whose coordinates satisfy the inequalities 0 <, < T
where T = (T, ..., Ty). Similarly, the interval [0, co) means the set
of points ¢ with ¢, > 0. By the convolution

2

[9t—7)k(z)dr

0
we understand an integral stretched on the set 0 < 7; (¥, (i = 1, ey m).
The proof of Theorem I is based on the Titchmarsh theorem, which holds
for any number of dimensions (see [5]). This theorem permits to introduce
the class of in-dimensional operators ¢ = p/g, where q does not vanigh
identically in the m-dimensional right neighbourhood of 0. Then all the
frs-ceding considerations remain true in the new, more general, interpre-
bation.
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On generalized topological divisors of zero
in m-convex locally convex algebras

by
W. ZELAZXO (Warszawa)

By a topological algebra we mean in this paper a topological linear
space together with an associative jointly continuous multiplication.
An element x of a topological algebra 4, x 5= 0, will be called a left (right)
topological divisor of zero if there exists a non-void subset P = A such that
zero is not in the closure P of P but 0exP (0ePx). Here, as usual, UV
= {wy: 2eT, yeV}. An element x4 is called a topological divisor of zero
in A if it is both a right and a left topological divisor of zero. It is a clas-
sical fact of the theory of Banach algebras, due to Silov [3] (for algebras
without a unit, see [5]) that a complex Banach algebra either possesses
topological divisors of zero or is isomorphically homeomorphic to the
field of complex numbers. The same holds for locally bounded algebras —
a class more general than the class of Banach algebras [5]. Here we in-
vestigate the problem for another generalization of Banach algebras,
namely for the class of locally convex multiplicatively convex topological
algebras (shortly, we shall call them m-convex algebras throughout this
paper). An m-convex algebra is a topological algebra (over complexes)
with a basis for neighbourhoods of the origin consisting of sets {U} which
are convex, symmetric and idempotent, i.e. such that UU< U. Or,

" which is equivalent, it is a locally convex algebra with the topology given

by means of family & of submultiplicative pseudonorms:

1) : lleyll < e iyl

and, in the case where the algebra in question possesses a unit e,
2 flell =1

for each |- ||e#. We may assume that & consists of all continuous pseudo-
norms satisfying (1) and (2) in the case where there is a unit element.
The theory of these algebras was created by Arens [1] and Michael [2].

The statement that an m-convex algebra either possesses topolog-
ical divisors of zero or is isomorphically homeomorphic to the field of
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complex numbers does not remain true: there are no topological divisory
of zero in the algebra F of all entire functions of one complex variable
with pointwise addition and multiplication and with the compact-open
topology (the topology of uniform convergence on compact subsets: of
the complex plane). However, in this algebra there exist two sequences
of entire functions such that the distances ¢(py, 0) > 6 >0, o(yy, 0) > 4§
>0,n=1,2,... (B is clearly metrisable) but lim.p,w, = 0. That means
that in 7 there are sequential divisors of zero — a special case of the
following general concept:

Definition. Let A be a topological algebra. A pair of subsets P, Q< A
is called a pair of generalized topological divisors of zero in A it 0¢P o @,
but 0ePQ.

The concept of generalized topological divisors of zero was introduced
by the author in paper [4], where it was proved that a topological divi-
sion algebra over complexes either possesses generalized topological di-
visors of zero or is isomorphically homeomorphic to the field of complex
numbers.

In this paper we shall show that the above statement on division
algebras holds true for the class of complex m-convex algebras, thus, for
that class, we answer in the affirmative a general guestion posed in [4],
and this is a generalization of the theorem of Silov mentioned above.

Without loss of generality we may limit ourselves to the commu-
tative case, since it is sufficient to construct such divisors in any commu-
tative subalgebra of the algebra in question, and since any complex non-
commutative algebra possesses a commutative subalgebra non-isomorphic
with the complex numbers field. We may algo limit ourselves to the case
of complete m-convex algebras (cf. [2], section 5). In fact, any m-convex
algebra is a dense subalgebra of a complete m-convex algebra. On the
other hand, it is obvious that if a topological algebra with jointly con-
tinuous multiplication possesses generalized topological divisors of zero,
then there are such divisors in any dense subalgebra.

We now recall some properties of (complete) commutative complex
m-convex algebras, which ghall be useful in the sequel (¢f. [2] ox [4]).

If 4 is an m-convex algebra with unit ¢, then there exists in 4 at
least one multiplicative and linear functional f, continuous in 4. Denote
by 9 the set of all continuous multiplicative and linear functionals defined
in A. An element wed is invertible in A if and only if f(x) s 0 for each
feM. If W, (4) is a sequence of polynomials of one complex variable 1,
with complex coefficients, and it W,(4) tend uniformly to zero on each
compact subset of the complex plane, then for any ¢4, and |:|e¢%,
lm ||W, (2)| = 0.

LeMMA 1. Let B be the m-comvex algebra of all entire fumctions of
one complen variable A, with pointwise addition and multiplication and
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with the topology of uniform convergence on compact subsets of the complen

plane; then 17 possesses generalized topological divisors of zero.

Proof. Set @,(4) = (n+A)/(n+1), and ,(1) = (n—2)/(n+1). For
[A < Vn we have

_ nr 27

[ (2) (D) = nE-tn

1
(r4+1)2 ~ m24+-2n-+1 <4

and so for suitable integer %, we have

Sup 17 () u () <
13l<V7 n

If we now put ¢, (4) = (pn ()", pa(A) = (3 (1)), we have Limp, p, = 0
in B. On the other hand, ¢,(1) = y,(—1) = 1, and since the functionals
F,(p) = @(p) are continuous functionals in 4, it follows that there is
in A a neighbourhood U of the origin such that ¢,, v,¢ U, » = 1, 2. Thus
setting P = {p}, @ = {w.}, we have 0¢P o @, and 0ePQ, g.e.d.

Lmmuma 2. If for a commutative m-convex algebra with unit e the set
M of continuous mulitplicative and linear functionals consists of at least
two elemenis, then A possesses generalized topological divisors of zero.

Proof. Let fi,f,eM, fy5f,. There exists an xed such that
a = fi(x) # B = fo(x). If we set

2
Y= a_p (z—pe)—e,

we have fi(y) = 1, and f,(y) = —1. Now take polynomials ¢, and ,
constructed in the proof of Lemma 1. Since ¢, y, tends uniformly to zero
on compact subsets of the complex plane, we have, for any ||-|<P,
Hmlgs () wa (%)} = 0. This implies 0e{p,(¥)} {wn(y)}. On the other hand,
Fulon(®) = oulfi@)) = pu(1) =1, similarly fo(pa(y) =1; so, by the
continuity of functionals f, and f,, there exists in 4 a neighbourhood U
of zero such that [{pa(¥)} w {¥a(¥)}] ~ U =10, and 50 0 ¢{p,(y)} v {wa(y)}.
Thus the sets {g,(¥)}, {y.(¥)} form a pair of generalized topological divi-
gors of zero in A, q.e.d. :

LEMMA 3. If in a commutaiive and complete m-convexr algebra A with
unit e there exists exactly one continuous multiplicative and linear functional
f, then A possesses generalized topological divisors of zero provided A s
not isomorphic to the field of complex numbers.

Proof. If A is not the field of complexes, then there is an wed
such that » £ 0, and f(x) = 0. Put

1
Ly = T+ —€;
"

since f(x,) = 1/n # 0, this is a sequence of invertible elements in A.
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‘We now fix a pseudonorm |- ||, in & such that |2, # 0; we may assume
l#fl, = 2. We may also assume that Lim e’y = co. (If lloz' was a

bounded sequence for any ||| eP, then z would be an invertible element

of A, the proof is exactly the same as in the case of Banach algebras,
see e.g. [5].) We now put ¥, :,ﬁ,l,/,‘lfi;l”"' For any |-||e? we have

(8 Yull = 1/llzmle = 0, and 80 0e(@,) (Y On the other hand, we have

lgalle = 1, and {zylly > lello—1/n > 1, 80 0¢(z,) v (yn) and the sets (z,),
(y,) form a pair of generalized topological divisors of zero in 4, q.e.d.

Lemma 2, Lemma 3 and the remark that any non-commutative
m-convex algebra containg a non-zero commutative subalgebra not iso-
morphic to the field of complex numbers imply

ProposirioN 1. Let A be a compler m-convex algebra with o unit;
then either A possesses generalized topological divisors of zero, or A is
isomorphically homeomorphic to the field of complew numbers. )

Remark 1. In complete algebras the divisors of zero may be chosen
in the form of two sequences (z,), (¥)<= 4 such that for each ||:||¢Z
we have lim|jz,y,| = 0, and for some |‘|lyeZ we have |[m,ll, = |[¥ully = 1.
(In Lemma 2 as the pseudonorm |wll, we may take |lf, = max{|f,(x)|,
Ifa(@)[}.)

To prove a similar result on algebras without a unit we need the
following

LeMMA 4. Let A be an m-convex algebra without generalized topolog-
ical divisors of zero; then for each |-|eP there ewists a pseudonorm |-||
i P such that for some C >0

(3) lleyll = Cla] |y|

Proof. If (3) does not hold, then there exists a pseudonorm. |-}e«Z
such that for each |- ||«# and each natural number % there exist elements
&y, YpeA such that

for each x,yed.

(1) gl < 1o Il

We may assume |w| = [yx| = 1. Setting P = {wed: |o| =1}, we
have 0¢P. On the other hand, for an arbitrary neighbourhood U of the
origin there iy a psendonorm |:||e¢# and an integer % such that {wed:
llv|| < 1/k}= U. Taking, by (4), suitable @y, y; for the pseudonorm |||,
we have 2,y < U. Therefore 0¢P? and there are in A generalized topolog-
ical divisors of zero. This is a contradiction which proves formula (3).

Rgmark 2. Since [[+]| in formula (3) is a submultiplicative pseudo-
norm, it follows that |-| is continuous with respect to ||| and there
exists a positive constant K guch that

(5) o] < K |
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ProrosITioN 2. Let A be a complete (commutative) complex m-conven

- algebra without a wnit element; then A possesses generalized topological

divisors of wzero.
Proof. Define an m-convex algebra A consisting of all formal sums
xz+Ae, zed, A — a complex scalar, with multiplication defined by
(wy+218) (Do) = m1ms+l1$2+12m1+11129;
and pseudonorms defined by
lz+2ell = llzl+ 14,

A is a complete m-convex algebra with unit ¢, and so by Proposi-
tion 1 and Remark 1 there exist sequences (z,+Ase), (ya+Ane) < 4, such
that

(6) Hm[|(@,+ A e) (Yt Ine)l =0 for each ||-[eP,

I-leZ.

. and for some |-[,«# we have

(1) I+ Anelo =1 = lyn+Zuell.

Tt follows that the sequences A, /2 are bounded; thus, by passing,
if necessary, to a subsequence we may assume thaf there exist limits
At =lima:, and 22 =limai. By (6) we have either i* =0 or 4* =0,
and so by symmetry we may assume A' = 0. We may then rewrite (6)
in the form

(8) lim |2, Y +AnYn+Anzal = 0 for each ||-[«Z.

By (7) we have |z, —~1. Let us remark that we cannot have
Hm|y,] = 0 for each |-||<2, since in that case, by (8), it we would have
Yim 2y Y+ A2 af] = O, and 50 L ||l — 73] ] = O, Which is impos-
sible, because lm|A%| =1, and [z.¥ull < [l2all [yl We may assume,
therefore, that

(9 l@allo > 6> 0, alle >8>0,

taking, if necessary, some bigger norm instead of ||+ lo-

We shall now discuss a number of possible situations. Hach time
we may assume that there are no generalized topological divisors of zero,
and so, by applying Lemma 4 try to arrive at a contradiction.

1° The sequences (), () are both unbounded in A. In this case
we may assume that there exists an element |']¢# such that

(10) lim |,| = lim |y,| = oo,
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by passing, if necessary to a subsequence (otherwise, by passing to a gub-
sequence, we would find that one of the sequences is bounded in 4).
Let; ||-|| denote a continuous submultiplicative pseudonorm corresponding
to || by formula (3). By Lemma 4, and Remark 2 we have

(11) “mnyn‘*‘)-}tyn’{”limn” 2 02| | Yl —IszL”f'/nl —K M’fbl [ -

The right-hand term of (11) tends, by (10), to infinity, while the
left-hand term tends, by (8), to zero, which gives a contradiction, and
shows that in this case there are generalized topological divisors of zero
in A.

2° Suppose that the sequence (z,) is bounded, while (y,) is an uh-
bounded sequence. There exists a sequence a, of scalars, a, — 0, such
that ¢y, remains unbounded. Thus, multiplying the #»-th term in for-
mula (8) by a,, and setting 2, = a,¥,, we may rewrite (8) as
(12)

Um |2+l = 0 for each ||-je2.

We can find such a pseudonorm |-|eP that lim|z,| = oo (passing,
if necessary, to a subsequence). If we assume that there are no general-
ized topological divisors of zero in 4, we may find, by formula (3) of
}]’;emma 4, a pseudonorm ||-|| corresponding to ||, = max{[lx|ly, |#}. We

ave

‘ 1
lnzn + 2 2nll 2 Oy, Ignll,"‘KM;il 21

which gives a contradiction, since the left-hand term tends, by (12),
to zero, while the right-hand term tends, by (9), to infinity. Thus in this
case the proposition is proved.

3° Suppose that algo 12 = 0. If (#4) s (o) are botb bounded, then (8)
reads as

lim |l 9,)] = 0 for each |-[e2,
and, by relati-ons (9), the proposition is proved. If (2,) is an unbounded
sequence, while (y,) is bounded, then (8) reads as
U |2y, + A wall = O for each |-[|e#,

an}i thig is exactly, by formula (12), the gituation of section 2°. 8o in
this case our proposition is also proved. :

We have to consider the remaining case, in which A* 3 0, (m,) I8
unbounded, while (y,) is a bounded sequence. In this case (8) reads as

Hm“%%—%i%!l =0, -lle2;
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so, substituting », by —y,/4%, we infer from this formula that

(13) ]-im”mn?/n_mn” =0 for each ”HEP,

while (9) hold true. Now consider the following situations:
4° There exists a zeA such that for some ||, 2

HEHZ‘%; "‘zHo # 0.

In this case, setting z, = 8y, —z and passing, if necessary, to a sub-
sequence, we see that, for some 6 > 0, |jz,/l, > 4, while

Lim |@,%,) = 0  for each ||-|eZ;

thus, in this case, there are generalized topological divisors of zero in A.
5 Suppose that

(14) lim|jey,—2|| = 0  for each ||-||¢#, zed,

but ¥, is not a Cauchy sequence with respect to any ||||eP. There exists,
therefore, a psendonorm |-|[,e%, such that for a certain sequence of
integers (%,), and some 6 > 0 we have l9n—7¥x,|lo > J. On the other hand,
for any 2zeA we have ]im]lz(yn——ykn)n = 0, for each ||-{ <%, and so any
non-zero element of A is a topological divisor of zero.

6° Suppose that (14) holds, and (y,) is a Cauchy sequence with
respect to each psendonorm belonging to 2.

In this case the completeness of 4 implies that there exists an ele-
ment yed, such that for any ||-||e# we have lim|y,—v| = 0. From (14)
it follows that ¥ is a unit element in 4, which contradicts the assumption
that A possesses no unit. This completes the proof of Proposition 2.

From Propositions 1 and 2, and from the remarks that any m-convex
algebra is a dense subalgebra of a complete m-convex algebra and any
dense subalgebra of an algebra possessing generalized topological divi-
sors of zero also possesses such divisors follows

TrEOREM 1. Let A be a complex () m-convex algebra. Then either A
possesses generalized topological divisors of zero or A is isomorphically
homeomorphic to the field of complex numbers.
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A generalized function calculus based on the Laplace transform*
by
CHARLES SWARTZ (New Mexico, U. 8. A.)

1. Introduction

In this paper the classical Laplace transform is extended in a very
natural way to a space of generalized functions. This extension is carried
out by utilizing a method for construeting generalized functions suggested
by Mikusitiski [5]. This method has been used to construct Schwartz’s
space D’ [8] and to extend the Fourier transform to a space of generaL
ized functions [4].

The usual operations of translation, addition, efe. are defined for
the g.£.’s (g. f. = generalized function), and the classical formulas per-
taining to such operations are extended to the g.f.’s. Differentiation,
integration, and convergence are defined and the usual limit interchanges
in distribution theory are justified. In particular, the convergence defi-
ned is the -“weak” sequential convergence suggested by Mikusinski, and
it is shown that the g. f. space is “complete” with respect to this sequential
convergence. Using this completeness property, it is shown that the
Laplace transform maps the g.f. space onto the class of all functions
which are analytic in some half plane Rz > a > 0. We also give several
characterizations of the g.f’s which are distributional derivatives
of continuous functions of exponential order, and an inversion formula
for such g.f.’s is presented.

Convolution is defined for the g. f.’s, and we give conditions under
which the convolution equation A*X = B has a solution X. Multipli-
cation of a g.f. by a suitably well-bebaved function is also defined. In
the final section, we consider g. f.’s depending on a parameter and estab-
lish some of the limit interchanges that have been used formally in the
operational calculus.

2. Preliminaries

We will denote by 4 the class of all functions f(2) which are analytic
in some half plane Rz > a > 0. The half plane may depend onthe function.
A sequence {f,(2)} of functions in 4 converges to f(z) in A if there exists

* This paper is based on my doctoral dissertation presented to the University
of Arizona.
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