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ACTA ARITHMETICA
XII (1967)

Some applications of Carlitz’s 7-sum
by
K. NAGESWARA RA0 (New Delhi)

1. Introduction. Let 2 = GF[p", x] represent the domain of poly-
nomials over the Galois field GF(p") in the indeterminate x. Let R be
a primary (see § 2) polynomial of 2 and of degree 7. Algo let D, =1, ...,
D,, = R be all the primary divisors of R. If M, N are any two polynomials
of 2, the main objeet of the paper is to obtain formulae-in terms of
Carlitz’s n-sum (see (2.4)) for the number of solutions of the congruences

(1.1) M= X,+X,+...+X; (mod R),
where s; of the X’se2, have the property (X, R) = D; and Zsi =8, and
(1.2) N = Y Zy+...+Y:Z; (mod R),

where Y;,Z; are polynomials of 2.

Problems of similar nature in the rational case have been discussed
by various writers and reference can be made to Cohen [5] to [10],
MeCarthy [12], Nicol and Vandiver [15]. We should also refer to Ramana-
than [16] who considered the problem (1.1) in the rational case in an
equivalent form. The author [13], [14] has also discussed certain gener-
alizations and analogues of (1.1) in the rational case. We also established
some arithmetical identities.

In the proofs we utilize the representations due to Cohen [4] (see
also Carlitz [2]), of & clags of arithmetic functions defined over 2. This
contributed much to the simplicity of the proofs.

2. Notations and preliminaries. Let K be a field of characteristic
zero, containing the pth roots of unity. Let F be any polynomial of 2,
say
(2.1) F = agt’ ...

+a,, where a, # 0,

then » is called the degree of F' and is written as degF = »; I is said to
be primary if a, = 1. We use the symbol |F| to denote p™.

A single valued function f defined over the elements of 2 and assum-
ing values in K, is said to belong to the class (R, K) if f(4) =f(4"
wherever 4 = A1 (mod R).
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The symbol ' denotes the summation over all primary divisors D
DR

of R.
Let H be a primary polynomial of 2, with deg Il = & and let 4

be a polynomial such that 4 (mod H) is equal to

Ly ALy,

(2.2) LieGP (™).

Then following Carlitz ([1], §2) we define (4, I) to be ¢ where
a, is defined to be the integer (mod p) which, occurs as the meml coeffi-

cient in the expression

(2.3) Ly = a, 0" ... ay,
6 being the generator of GF (p") relative to GIF(p).

Carlitz ([1],§ 4) introduced the sum #(4, R) defined as follows

D) Bu(4)

(Z,R)=1

(2.4) 7(4, R) =

the summation being over all Z of a reduced residue system (modR),
where B,(4) = B(ZA, R).

For arithmetical funetions f of the class (B, K) we have the following
representation due to Cohen [4] (see also Carlitz [2]):

(2.5) fa) = D aB,4),
deg Z<r

where

(2.6) 4 =" D (V) E(~V).

deg F<r

3. Main results and related arithmetical identities.

THEOREM 1. The number of ordered sets (X,,..., X,), X; (mod R)
satisfying the congruence (1.1) is equal to

iy 24 (” RIS )) (M1, D).

‘ Pr.oof. Let N (M, R) represent the number of solutions of (1.1).
It is evident that N (M, R) belongs to the class (R, K) and hence by (2.5)
and (2.6), it has the representation given by

(3.1)

(3.2) N(M,R)= D' 4B,

dogZ<r

(M),
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where
1
3. = N(V,R)E,(—V
(8.3) a, E] degzvlr (V, RYB.(-V),
ie.
1 .
G =g ) N RB(=Vi=Vym= V),
l ]des‘V<r
‘where
V =V,+V,+...+Vs (mod B),
ie.

V).

From the definition of N (V, R), where s; of the V’s are such that

(ViyR) =D; (i=1,2,...) and Ddlsi=s
we have
1 1 R R
= LN vy EE (=T ) = (z )»(z_)
a |R|V V( ( ) B2 2) ) IRI? D, ’-Da
S
and
1 ( 13)
4 N iz, =]
(3.4) 4 IR]ﬂn —

Let (%, R) = R/D, then

1 o« B B
%=-Il—\,“‘“li771 ('5,1)

2) can be written as

N, R) = LYJLR]IT"7 (R RL)(

E,(M)) .
DiR deg Z<r
(2,R)=R[D

(8.5)
Therefore (3.

(3.6)

Now the result follows as stated in the theorem.

Remark 1. The above result can now be interpreted as follows.
Consider a complete residue system (mod R). This can be divided into
classes C(D,), ..., 0(Dy) so that O(D;) consists of all those elements NV
of the complete res1due gystem (mod R) which are such that (¥, B) = D;.
In analogy with a well known result of Vaadyanathaswamy [17] (see
also Menon [11]), Theorem 3, where s; = 1 = ¢; and & = 0, t #4, t #J,
shows that the classes O(D;) combine by addition. That is to say, if
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C(D;) ®C (D;) stands for the totality of all sums of the form A 4B (repe-
titions retained), where AeC(D;), BeO(D;), then every number of (/(Dy)
occurs the same number of times in C(D)@C(D;). The same can be
put as follows. For any given MeC(D;) the number of solutions 4, B

of the congruence

(3.7) M = A-+B (mod R)
with the restrictions that AeC (D
O (Dy).

COROLLARY 1. The number of solutions (M, R) of the congruence

:), BeO(Dy), is independent of M in

(3.8) M =X,-+-...+X, (mod R),

where (X;, B) =1 (1 =1,...,5) is given by

o0 (M, R) = |R|Z (D,) (M, D).

DR

(3.9)

By pufting s; = s and s; = 0 for 1 > 1 in Theorem 3 we obtain the
above corollary.

THEOREM 2. We have

O (M, R) =

dog M<r

[P(R)T,

where @(R) = 7 (0, R), the Euler totient for GF[p™, »].
Proof. We have

1« (R
OO (M, R) = — 3(m )
(3, 1) = 3o 55 ) 01, ),
(3.10) o9 (31, R)=»E— 7\, R)T,(M),
I ] degz<r
l e
(3.11) o9 (11, B) = D4, 2 ,I«J,,(,M)).
deg M<r dogZ<r dog M=

?311‘17 the inner sum vanishes unless Z = 0 (mod R) and in the latter case
it is |R| (see Cohen [4], (7)). Hence follows the result.
THREOREM 3. We have

.‘7,
R

DR

Bl if

E R (M, R)
= =9 (M, =
(D D’i)n< D) l()

otherwise,

== Dh

bm@
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To prove this theorem we need the following
LeMMA 1.

R IRl i (M,R) =Dy
7y —— M) =
2 97(7, Di) B.(M) l() otherwise.
degZ<r

Proof of Lemma 1. For any primary divisor D; of R, set
it (M, R) = Dy,

2 .
(312) otherwise.

‘ 1
PO, R) = [0

Evidently P9 (M, R) is a function of the elass (R, X) and hence by (2.5)
and (2.6) we have the representation

(3.13) PY(M, R) = a. B, (M),
degZ<r
where
1 i
(3.14) a == D) POV, BB(=T),
| |degV<r
i.e.
1
(3.15) =g D BV
deg V<r
(V. B)=D;

Sinee (V, R) =

V R
D, if and only if (D ) = 1, we have

"D,

1 (R
ks

Now by substituting for a, in (3.13), the truth of lemma is established.
Proof of Theorem 3. From Lemma 1, we have that

(3.16) a, =

1 R
PO(M, R) = — 7 (z, ._) B, (M).
lRi deg;:r 'Di
; R
Let (Z, R) = o then
1 ' [R R
PO(M, R) = — ’7("5’—15‘)( Ez(M))
|E] DR Nz fy=riD
degZ<r
and
1 ' (R R)
(1) M,D
(3.17) PY(M,R) = T 2 (D o) 1 D).


Pem


bm@

218 K. Nageswara Rao

Now Theorem 3 results from (3.12) after multiplying both sides of (3.17)
by |R].
As immediate consequences of Lemma 1, we obtain the following
corollaries.
COROLLARY 2. ‘
R .
n(z,E) =0 i D;#R.

degZ <t

A result obtained by setting M = 0 in Lemma 1.
COROLLARY 3.

D (%, R)B,(1) = |R|

degZ<r
results for M =1 and D; =1 tn Lemma 1.
THEOREM 4. The number of solutions of the congruence (1.2) is equal to
RP ST (N, D)LDI
DiR
‘We need some preliminary results for the proof of Theorem 4,

Levma 2. The number of solutions S(4, R) in Yy, Zy (mod R) of the
congruence

(3.18) A = Y,Z, (mod R)
s given by
"R
(3.19) 84, R)=2 = |4, D).

DR

Proof. It is clear that S(4, R) belongs to the class (R, K) and hence
by (2.5) and (2.6) we have the representation

(3.20) 8(4,R) = 0 l5(4),
degZ<r
where
1 1 Q
621) 0 = 2 D' s, BB(~7) = N B (=gor)
deg V'<r deg V<r Venygey (mod Ity
from the definition. of 8(V, R)
1 Qe 1
-5 B—yom) == ' ( 3 m(-pna) :
dogyy,deg zg<r ! ldom/0<r dogep<r ‘
1 1
= B= D,
Vp2= 0(mod ) Yo2=0 (mod R)
R . R
(3.22) ay = If’ if (Z,R) = N7h

Some applications of Carlitz n-sum 219

Substituting the value of a, in (3.20), we get that

S(4,R) = 2 \%

degZ<r
(e,R)=E[D

(3.23) Eq(4),
which is equal to (3.19).
LeMMmA 3.
D S(@, R)B,(—a) = |R| £
b z D

doga<r

where (2, B) = o
Proof. The left sideof the lemma is equal to

> aﬂE”(m)) By (~1) =

degz<r degy<r

' 6y Ty —2))  (see (3.20))

degx<r degy<r

O a( 3 Baly—s)-

degy<r dogx<r

But the inner sum is |R| if ¥—Z = 0 (mod R) and 0, otherwise (see Cohen

(41, (7))
The left side of the Lemma 3 is equal to
(3.24) |R]| -

it (2, R) =‘%‘. This

R
But in Lemma 2, it is shown that a, = '-1—)

completes the proof of Lemma 3.

‘We now go to the proof of Theorem 4. Let S,(¥, R) represent the
number of solutions of (1.2). It is clear that §,(¥, R) = S(N, E). We
note that S,(N, R) is a function of the class (R, K) and hence by (2.5)
and (2.6) we have the following representation for §,(¥, R)

(3.25) So(N,B)= D A.B(N),
degZ<r
where
1
(3.26) A= T 2 8s(V, R) By(— )

It is clear that

(3.27) 8,(V, R) = 8(@;, B),

Vs@g+ e t-aig (MO R) i=0
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where @; = ¥; %, ¥iy 2 (MOdR) (i = 0,...,8)

8
1 1
A4, =" ! ”S(m” R)) B (—g—ky—. .. —~x5)
IR‘ deg V<r I’=mu-{-...+ms(mod1x’) f=0
1 : .
== 3 ([]8@, R )
. |R] Tgenig (MOAR)  1=0
1 5
== 8 (e, B) Bs( ),
|R| 1=0 dega;<r
1 R |
. A, = —|R 84l el
(3.28) =S|

by Lemma 3 if (Z, B) = R/D. -
Substituting in (3.25) the value for 4, we obtain

1 ) s XV (N, D)
Ss(N, R) = |Rl28+1 ——Ij-mEz(N) == lRi o 2 l 7’\:'1 =
' deg Z<r 1Dl DR
(@R)=E/D

Thus the proof of Theorem 4 is completed.
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