228 Indar 8. Luthar

We now let
(15) by =270 Y'b(n, y)
z

where, in the summation, y runs through all the real characters of the
group of ideal classes of k. We now notice that the real characters of the
ideal class group in the restricted sense of & are exactly the chara,cter‘;
of the group of genera in the restricted sense of k. By the theorem oyf
Gauss the number of genera in % is 2”7 It follows that b, = 0 unless n
is the norm of an ideal in the principal genus, i.e., the norm of a totally
positive number of %, in which case b, = 1. Thus the number By(x) of
rational integers < & which are norms of totally pogitive numbers of &
is given by

(16) Bi(@) = ) by

nEe

Summing (14) over all real y, we get

x o7
(17) anlog—=————« 2«

= n ©  Viogw
1 I(3/2) I'(m4-1/2)
X aP(7)+a ot + d
[ 5 "Toaa Fee gy (loga)” ] lO((logm)m”"Z)'

Taking m = 4, we easily obtain the following

- THEOREM. Let k& be a quadratic field with discriminant d and let By (x)

denote the number of rational integers ; 14
gers < @ which are norms of totally positi
numbers of k. Then - / posiine

ai-9 @ oy —
Bk(m)=‘—:.‘ _..[a = a] 0 d
Vo Viegz + 2logw + log™x |’
Here g denoles the number of distinet rational primes dividing the diserimi-

nant d and the constant a is given by (9).

Wg remark that .for imaginary quadratic fields we can give an explicit
expresgion for a, using the first limit formula of Kronecker. ‘
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N
Estimates of > &~*(ka)™*
k=1

by
A. H. Kruge (New Mexico)

1. Introduction. Throughout this paper, o is the set of all nonnegative
integers, R is the set of all real numbers, and Ry, is the set of all irrational
real numbers. For each weR, (] is the largest integer not greater than x,
and fr(z) = z—[x] is the fractional part of . For each zeR, we define

@y = min(fr(z), fr(—a)),

whence (@) is the disbance between 2 and the set of integers.

If, in some context, “A” and “B” are expressions and C is a con-
dition (perhaps a conjunction of several conditions) on whatever variables
may appear in “A” and “B”, then “4 = O(B) under (or relative to, or
for) G” means as usual that 4/B subject to C is bounded (here 0/0 =0
and A/0 = oo if A #0), and “4 =< B under (or relative to, or for) c?
will mean that 4 = O(B) under O and B = O(4) under C. Sometimes
ingtead of “A = O(B) under C” or “4 =< B under C” we shall write
«4 = O(B) (0)” or “A = B (0)” respectively.

Throughout this paper, &, m,n, N, and p are restricted without
additional mention to be integers.

(Consider the condition C: ®eRyy, N>1, sk, and teT.) This paper
ig concerned with estimating sums of the form

N N
1) Z k™ ”(kw)“ (= Z k-t ]siulmwl‘ under O if T is a bounded subset of R)
Ie=1 Kol
with s and ¢ nonnegative real numbers. The writer knows of no general
treatment of this problem. Hardy and Littlewood ([3], pp. 216-217)
showed that if s 3t 3> 1, then, for each ze Ry, such that

(2) 1=0( o) (jew\{0}),

the sum in (1) is O((log ¥)*) for N > 2. As remarked in [3), p- 214, (2) is
equivalent to

(3) Iy (@) = O(QMW)M) {(new),
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the sequence (¢,(#))a.o being the sequence of denominators of the conver-
gents of the usual simple continued fraction expansion of x. (This notlcm-
tion, which is somewhat standard, is reviewed in §2).A Moreover, the
equivalence of (2) and (3) may be proved easily from (44) and (49) (,)f §3
and the discussion following (++) of § 3. In the notation of § 2, it is ea.s?l

shown that (3) is equivalent to o Y

(4) Ay 11 ({I?) =0 (Qn (w)(s—i)/l) (‘n € (()) .

It follows easily from the metric theory of simple continued fractions
(see (B1) and (A) of § 2) that (2) holds for almost every welR if s > ¢ > 1
and that (2) holds for almost no seR if 8 = ¢ 2 1. In (b) of ’I,‘]morcx;:z
(see § 4), we shall show that, if s = ¢ = 1, the sum in (1) is ()((logN)ﬁ)
under N > 2 for a much larger class of we Ry, than characterized by (2)
or (3). In (c) of Theorem 2, we shall show that, if s > 1 and s >¢ >0
the sum in (1) is O(logN) under N >2 for each weRy, sabisfying’(?,)’
Hardy and Littlewood ([3], pp. 216-218) showed that, if s ¢ > 1, ther;

®) D h Ik < oo
k=1
for each xRy, satisfying (2) (or (3)). In (¢) of Theorem 2 we shall prove
a somewhat stronger conclusion.
Behnke ([1], pp. 289-290) showed that for e ]
k: ach @elRy, i
0(2) < N < gis(0), i e

N

(6) D) kay' = 0(NlogN) (N >2).

=1

@)tk
(In (6), contrary to [1] and to [6] :

brai : , P. 109, one cannot replace log ¥ by

logg,(z); this i3 pointed out in the discussion before Theorem 1 1{’11 §4-.))
We shall makfa a closer examination of the sum in (6)in (d) of CL‘]1001“@111 1
(see § 4). Walfisz ([10], p. 787) used (6) o show that, for cach real & = 0,

N
) D oyt = O(N(logN)'™) (I = 2)
k=1

i(;rT?ll;nost every zeR,; we sl'mll obtain more precise information in (b)
Ao}rl(;rfn i (see 54)&51{516 sum in (7)is the sum in (1) with s == 0 and ¢ == 1

er of additional results i f b ¥ )

il bo obtamed in b4 on the magnitude of the sum in (1)
by p;é;st Slstnnp?mt in [10] in v.iew of [9], one may use (7) and summation
by b th;) ss ;nfmte the sum in [1] with ¢ = 1. The estimates so obtained
best for two reasons. One reagon is that (7) itself is not a sharp

]\7
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(RS
estimate. In fact, in the sense of (b) of Theorem 4 (see §4), no single
replacement of (7) is gharp. The other reason is that in the summation
by parts formula

N N-1 k N
(SP) Z U Vs == Z (g~ 11) 27’;' +uy Z V;
=1 =1 J=1 =1

with ()., positive and decreasing and with (v;)7., positive, an upper
I .

bound, on Y o; which is sharp on an infinite set of k need not result
i=1
N
in an upper boundy on D) vy which is sharp on an infinite set of N.
k=1
k
On the other hand, in the same context, an npper boundy, on Y v; which
f=1

ig sharp on the set of all & (too much to expect in estimathi;g the left
member of (7) for almost every eIty should yield an upper boundy
J\T

on > uvy which is sharp on the set of all N.
k=1
Using (7) and summation by parts, one may prove (as is implicit
in [10], § 3, in view of [9], p. 571) that for each real & > 0, for almost
every o eRiy.,
N
DUt Gy = 0((log Ny (N >2).

Je=1

In (b) of Theorem 6 (see § 4) we show that for almost every @eRiy,

N
Sy = (log N (N = 2).
k=1
In §4 we present many more results and introduce most of the

theorems by commenting on the existing literature.

The writer thanks the referee for suggesting the use of (15) (the
referee used ¢ = V2 in (15)) instead of (15') in §2, for shortening the
proof of the note following (I) in § 2 (by using the first inequality of (17)),
for pointing out several mathematical inaccuracies, and for an extensive
list of errata.

9, Preliminaries. For each real ¢ > 0 and each n = —1, let
. n
(8) Sy(n) = i
=1

whence S;(—1) =0 and, if new,
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n+1 W
f wtdu < Sy(n) <14 f u""clu,
1 1

2l—t~_1 14 ’)LL 11 .
L_f—?)ﬁ“ < 8;(n) < T it t<1,
(9) log(n+1) < 8,(n) < 1--logu,
1—(n--1)-¢-1 p—nm D
= (ntl_l)_‘““ <8 (n) < - T B PR

For all real s > 0 and ¢t > 0 and all Ny Pew With 0 <l < p, lot

(10) 8(n,p;s,1) 2,] (i)

F=l

Now consider such ¢, 4, n, p. Suppose that n > 0. N ow

/2]
"Sa([nf20) < Do =)t < 2t Sy f2),
f=1

n n N
= =< Y =) < ([ng2] 1) D =i
F=[n/2]+1 J=[n2]+1

Fwnf2] 41
n
WS 21D ~8p—n—1) < 3 o (p—j)t
J=[nfa]--1

< ([n/21+1)"*(Syip —[n/2]—1) 8y (p —n—1)).
Hence

(A1) p='Sy([n/20)+n(S,(p~[n/2]—1)—8,(p ._n»l)) < 8, p;s,t)
< (P27 800 /2D (0 21-H1)* (84(p —[0/2 |~ 1) — 8, (p —n—1))

< (P/2)'8([n/2]) +([n[2]+1)~* Siln—[n/2]) < 28, ((n—[n/2]).

In the rest of this section we g
simple continued fractions.

We define a set R, and a function 4,:
Ry =R, and let Ay (@)
nonintegers, and let

hall present a few preliminaries on

By, - B for each new. Lot
= for each weR. Let R, be the met of all real

Ai(@) = (@—[8])™"  (veR)).

Consider any integer n > 1. Tet R, be the set of all @eR,_, such that
Ay (@) e Ry, and let

An(“") = /11(/171,,1(99)) ($€R1>.

m@

N
Estimates of ’}j 59 Casy 233

fo= 1.
Tor each new, let a,: B, — B be defined by
a’n( ) [An(a')] ({I/‘ERH)'
Now R, c R, c Ry = R for each nem. It is well-known that M Rn
Up -1 !

New

= R, d:nd., in the 1].()(}'(]4(!1011 of (5()11‘]111[1(3( 1134(/11101157 for each we E‘im‘?
‘e
L == a,o(;l) a (7;) == (], (’l’/) _}‘ .;.,l,,,. SR

Similarly, for each new, for cach &R\,
@ = (@), ay(w), .oy tu(@)].

For each new, define the functions p,, ¢, 0, on Ry by letting, for each
wely,
' Pul) [gn(®) = 6,(@) = [a(2), a1(@); .. Ga(a)]

with p,, (@), g.(«) relatively prime integers and ¢, (2) > 0. It is known th;;t
for each mew, (12) and( 13) below hold, where g_,(#)= 0 for each veR.

az - e—hio = 'Zz’n(w)(Aw((;zii R M
(13) Pol@) s (@)~ Prn (@)n(@) = (=11 (@eRe).
We may rewrite (13) as

14) G (@) 0, (0) = pus(0)+ q—l}) (5eR,).

By induction, where ¢ = (1+l/5)/2, for each xeRy,,

n
- ’ 0).
(15) max (¢, ﬂ (@) < gulw) < 2" g wlw) (1> 0)

(In [7], p. 75, the somoewhat harder inequalities (with ¢ as just defined)

n

aw) ] (@@+28) <nl@ \°"H w(@)  (mew)

Je=1

are proved.) It follows from (15) (alternatively, (15'), see [71, p- 78, (1)
and (2)) that

n
(16) log g, (#) <n—1-4- Zlogaf(w) (weRy, and n > 0).
=1
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Tor each integer N > 0, weo define functions h,, @, and @, on Ly,
as follows. Consider any such N. Consider any «<Ry,. Let hy(z) be that
integer n > 0 such that ¢, (%) < N < ¢,(2). Thus

T Gry(@)-1{®) < N < Gupry (@)
Let
(18) Q(@) = [V [y ()],
whence
(19) 1 < Qlo) < iy ().
Let
(20) @iv(@) = min(Qu (), any (@) —1).

Much of the content of the following propositions (A)-(0) is well-known.
(A) Suppose that (c,)3_; is a sequence of positive real nwmbers. Then

00

1 3 - s
Gy < oo (resp., = oo) is a necessary and sufficient condition that
1

=

for almost every (resp., almost no) eRy,,
(21) a(2) = 0(c,) (0 31).

Proposition (A) is a variant of the classical Bernstein-DBorel theovem
and is usually stated under the added assumption that (e,)2., is non-
decreasing. For a proof of (A) as it stands, see [7], pp. 98-99.

(B) Suppose that s =1 is a real number and (¢,)2.; ©8 a nondecreasing

o0
sequence of positive real mumbers. Then > (ne,)™' < oo (resp., == oo)
. . . N==1
w8 & necessary and sufficient condition that for almost every (resp., almost
N0) @ €Ri,
n
(22) D (@) = 0((ne,))  (n1).
=1
Proof. Khintchine [4] proved that case of (B) in which ¢ == 1,
It (22) holds for every weX for some set X < Ry, baving positive
00
measure, then 3' (ne,)™' < oo by (A).

N=1
oo
Suppose that 21 (n€,)™' < oo. By Khintehine’s result, for almost
N

every #eRy,, (22) with s replaced by 1 holds. Congider any such #, For
some real K >1,

%
Z“f(w) < Kne, (n=1).
i=1

hﬂ‘l@

N
: SV 18 ¢y bY:
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Let K by so given. For each new\{0},
a(a) < 3 (Kne) ™ a(a) < (Kne)’,
=1

kil

-

1
-

H
whence (22) holds.

Thus (B) holds.

The proof of (B) shows that (C) below holds.

(C) Suppose that (6)%y 98 @ nondecreasing sequence of positive real
numbers. Then f: (n6,)"t < oo (resp., = o) I8 @ Noecessary and sufficient

[
condition that for almost every (resp., almost o) e Ry,

n
(22" (Z a,,-(m)”)”s =0ne,) (mz1l;8=1).
=1

(D) There is a real number d > 0 such that for almost every LeRiy,
n

(23) lim#n™* Zloga,,-(m) =d.
j=1

N—r 0

Proposition (D) is due to Khintchine [5]. For an alternative proof
of (D), see Ryll-Nardzewski [8].

(B) For almost every eRy,
(24) hy(®) =< logV (N > 2).

For a proof of (1), see [T], pD. 134-135; (E) is essentially an immediate
consequence of (D) via (17) and (16). ‘

(F) Suppose that k is an integer. Suppose that (0n)ne1 I8 @ nondecreasing

ad .
1 .
sequence of positive real numbers. Then §1a,,, < oo (resp., = o0) 18
M=

@ necessary and sufficient condition that for almost every (resp., almost n0)
BeRym,

(26) ah",(m),plc(m) = O("’[logn]) (77/ = 35 hn(m) > "“75) .

Proof. Pirsh suppose that 3 Gl < oo, Tt b= (1 +V5)/2. By
[
(15), o () = 0" for all xe Ry, and neo. There is a real I > 1 such that

ha(@)+% < Klogn for all 2Ry, and new guch that » = 2 and h, () > —k.
Let K be so given. For each integer 7 < K, let d, = ¢,. For each integer

w3 K, leb dy = ;. It is easily verified that 21 At < oo. By (A),

N

for almost every @elRi,
ay(®) = O(dn) (v =1),
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whence, under n >3 and h,(z) > —Fk,
a'hn(“)"r]-'(m) = ()(dh,L(-E)-HC) = ()((Z[Klugn]) =0 (()[Iogn])'

o
Next, instead of supposing that ) ¢;' < oo, suppose that (26)
=1
holds for each x in some subset, say X, of Ry, having positive measure.
By (E), there are a real number b > 0 and a set ¥ < X having positive
measure such that for each ze Y,

(27) hy, (@) +% = blogn
for all sufficiently large 7ew. Let b and Y be so given. For each ¥,
by (26) and (27),
a’hn(:n)-yk(w) = O(C[logn]) = 0((’[(Iz,n(g;).¢_7.‘)/b])
for n > 3 and hy,(2)+k > b. For each z¢Y and each mew, if m > k, then
m = h,(2)+k where n = gn_z_,(@). Hence, for each xe7Y,
() = O(Cpupy)  (m =D; m > k).
Since also ¥ has positive measure, by (4),
o0
2 Cupy < 00
Mm=[h]+1
It follows easily that > ;' < oo.
=1
Thus (F) holds.
(G) Suppose that s > 1 is @ real number. Suppose that (¢,)n., 18 & non-
o0
decreasing  sequence of positive real numbers. Then Y (ne,)™' < oo
n=1

(resp., = co) is a necessary and sufficient condition that for almost every
(resp., almost no) zeRy,,

()

D (@) = O(([logn)epegny)’)  (n = 3).

(28)

L%

The proof of (G) is essentially the same as the proof of (F) with k = 0.

N
One merely works with the sequences (ne,)%., and (2 ay()*)n., instead
f=1

of the sequences (¢,)°_, and (a%(ac))?f=1 , and one uses (B) instead of (A).
The sufficiency part of the nonparenthetical part of (G) with s =1 is
essentially given in [7], 4.3, p. 35. Under the added condition that Con,
= 0(e,) for nea\{0}, the sufficiency part of the parenthetical part of
(G) with ¢ = 1 is essentially given in [7], 411, pp. 194-195.

N
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Just as (C) may be obtained from (A) and that case of (B) in which
s =1, one may obftain (H) below from (F) (with ¥ = 0) and that case
of (G) in which s = 1.
(H) Suppose that (¢,)i, s o nondecreasing sequence of positive real
[s°]
numbers. Then D (ney)™t < oo (resp., = oo) is a necessary and sufficient

n=1

condition that for almost every (vesp., almost no) xeRy,,

Ty ()
(28') (Y @) = 0(llognlegoen) (1 >3558 >1).
F=1

(1) Suppose that k is an integer. Suppose that (e, 18 & nondécreasing
(=]

s —1 Y
sequence of positive real nwmbers. Then D (ney)t < oo (resp., = oo)
n=1

is a necessary and sufficient condition that for almost every (vesp., almost no)
2eRyy,

(29) ahn(m)_,uk(x) = O(Cn) ('n = 1; h‘ﬂ(w) > '—k)

o0
Proof. First suppose that 3 (ne,)' < oo, Let d, = em for each

=1

integer n > 0. Now

© ) an o
Mgt =2 Y om (2 o) < 2 > DGt =2 ) (je)7 < oo
97:1 =1 n=l jagh—1i i=1

By (F), for almost every xeRy,,
a«hn(r),yk(m) = O(d[logn]) = 0(02[1ngn]) = 0<('[2Ingn]) = O(C[nlng 2]) = O(CH)

for n >3 and h,(z) > —k Thus (29) holds for almost every @eRi.
Next suppose that (29) holds for each » in some subset, say X, of
R, having positive measure. For each xe¢X,

a‘hn(x)+k($) = O(ﬂn) = 0(03[Ingn]) ("’ = 1)

o0
By (F), } ¢, < oo. Hence
1

N=

00 oo 313 o 31y
— Y - j -1
Doyt = 3 3 eyt < 3 Y @Fe)
=1 <o n=s’ j=0 A=g/
o0

[}
o0
< V31 (3ey) !t =3 ) eg' < oo.
= f==0

7

i
>

Thus (I) holds.
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Norte. In (I), one may replace (29) by

(29,) ahn(r).i.k(m) = O(“n) (“’ = 1; ]In(' ) —k 1’ n = qhn(r) 1( ))

anithout impairing the validity of (I)

Proof. Suppose that (29') holds for all # in some subset, say X,
of Ry, having positive measure. For almost every x¢X, where
0 = Tnpie)-1(®) <y

ahn(z)+k(m) = a'hnr(z).q_k(w) = 0(ew) = O{ey) (=15 hy() > —k).
Now apply (D).
(J) Suppose that s = 1 is a real number. Suppose that (¢,)5., is @ non-
decreasing sequence of positive real numbers. Then Z(n(logn)cﬂ) < oo
Ne=2

(resp., = oo) is @ necessary and sufficient condition that for almost every
(resp., almost no) xelRyy,

T ()
(30) D al@)f = 0((logn)a,f) (n>2).
=1
The proof of (J) is essentially the same as the proof of (I) with & = 0.
Ty ()
One merely works with the sequences ((logn)e,)., and | Z’ aj (@))%,
i=

instead of the sequences (¢,)o_, and (“hn(m) m)),u, and one uses (G) instead
of (F). Proposition (J) Wlth § =1 is essentially given in [7], 4.4, p. 136,
and 4.13, p. 196.

Just as (C) may be obtained from (A) and that case of (B) in which

$ =1, one may obtain (K) below from (I) (with % = 0) and that case
of (J) in which & = 1.

(K) Suppose that (c,)i_, is o nondecreasing sequence of positive real
o0
numbers. Then nz;(n(logn)cn)‘1< oo (resp., = co) is a mnecessary and
sufficient condition that for almost every (resp., almost no) e Ry,

Tigy ()

(30) (2 a; (.73)")1,8 = O((logn)e,) (n=2;8 =1).

iz

(L) Suppose that new,xeR,, teR, and 0 < t. Then

n

(31) Z“M-I ZQHI ~ 1)_121+lqn+1(w)t‘

= i=o

N
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Proof. ;. () = 2¢;_1(») for each j among 1, 2,..., n. Hence

, % . in/2] , [(11‘11);'2]
Y a; 1( QJ( ) < %’+1(m) = ZQ71+1—271(‘1")+ 2 g71~2h("r)i

7 0 7=0 h=0 =0
< hZ Qn+l ’) 7’)“}‘ 2 q;z —h)[ s 2Qn+1(m)t’;:(271)h
= (2'—1)7'2" g, (@)

(M) Suppose that f is a nondecreasing real—valued function on the set
of all nonnegative real numbers. Suppose that f(0)>1 and that f(2u)
= 0(f(u ) for w > 1. (Then there is ceR such that f(u) = O (u) for u > 1
(cf. [71, 5.3, p. 147).) Let X be the set of all e Ry, such that

(32) @) <) (G =1).

Relative to xeX and n>1,

. T (@)
_ (logn)f(logn)
(33) gww—ﬂmgaﬁﬂ-

There is a set ¥ < X of cardinal of the continuum such that, relative to
zeY and n>1,

R (2}

(logn)f(logn)
(34 g/: o (@) = logf(logn)

To prove (M), apply [7], 5.6, p. 152 and [7], 5.8, p. 154. See also
[7], top of p. 134 and observe that the right members of (33) and (34)
are o(n).

(N) Suppose that ngew, eR, and 6 > 0. Let f and X be given as n
(M). Let Z be the set of all xe X such that

(35) ( [n] a(@)) " =P (0= mo).
=1

(The left member of (35) is the geometric mean of a,(z 2).If 6 <1
and f is unbounded, for sufficiently large ny, Z has the cardmal of the con-
tinuum (cf. [7], 5.10, p. 157).) Relative to weZ and n > 2,

(36)

7

- (logn) ( logn )
~ logf(logn)

logf(logn)

=~
g F

&
Q
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To prove (N), apply [7], 5.10, p. 157.
(0) Suppose that K<R,1 <K, and 8 is the set of oll weRy, such
that a;(x) < K for each positive jew. Relative to xeS and n > 2,

Ty (@)
(37) 2 a;(z) < logn.
j=1
To prove (O) (which is elementary and, except for notation, well-
known), apply [7], 5.9, p. 156.

3. Some basic estimates. The general approach of this section ig
very close to one used by Behnke [1]. The discussion concerned with
(47)-(49) is fairly close to Walfisz [10], p. 787.

Consider any real numbers s >0 and ¢ > 0.

Consider any positive integer n. Consider any w <R, ;. For brevity,
for each j among 0,1,..., n+1, instead of a; (), p;(2), ¢;(®), 0;(), 4;(z)
we shall write a;, 9y, ¢;, 0;, A; respectively.

Suppose that N is an integer and g, < N < gny1. Let @ = [N/g,]
and » = N—@gq,, whence

N =Qq+r, 0<7<qy.
NOW ¢ny1 = @np1@ntuo, and 0 < g,y < ¢y Hence Q << a,,,. Leb
Q' = min(Q, a,,;—1).

I zeRy,, then ntl =hy(z),Q = Qn(2), and @' = Qx(x).

Consider any nonnegative integer % <. (Throughout the rest of
§ 3, I i8 so0 given.) Let 7, be ¢,—1 or r according as h < @ or b = . The
numbers

) (gat1) 00, (gat2) 0, (hgnt3)0n, -y (ign+(gn—1))00
are congruent modulo 1 in some order to the numbers

(#) Ly 2/gns 3/guy --y (@a—1)[dn-

Congider the numbers

(%) (1), (hgu+2)@, (hgat3)a, ..., (hga+ (g —1))2.

From (12) and (14), observe that if b < @ the numbers of (x+) other than
(hgs+Ga-1)w lie, modulo 1, one in each of the g,—2 successive intervals
determined by the numbers in (). Simélamly, observe that if h = @ the
first  numbers of (s*) other than (Qgn+¢,_1)@ lie, modulo 1, in some
order one in each of an appropriate number of the ¢n,—2 suceessive in-
tervals determined by the numbers in (#). If b = @, then (Qg,~+qu1)®

N
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ig among the first r numbers of (#x) if and only if ¢,_, <r. If h = Q
= Qny1) then

1 QAT = N <2 Quyy = Gppaat-dnor,
whence 7 < ¢n_1. Thus, if & = @ == a4, then (Qg,+-g,_,) is not among
the first » numbers of (x). It follows from these observations that, if
b < @, then

Ip—-2 p=1
DT+ fa)t < D) Khga-tiay
e 7/7’17»{-1
Thus, by (8), oot
(38) 2 S 2) L D) hgaeki)eyt i h< Q.
7’/-'7’;;1—1

Regardless of whether 7 < ¢, by the observations following (ws),

" "
(39) D lhgati) eyt <2 Y (bgn)™ = 2¢hSulr)-
Fral Tl
T a1

Now (where 07F == oo if § > 0)

"1 n

40) (1)t D) gty = D) (hguki) " K(hgati) o>~
Iy e
™
<0Gt D) ((hgati)ad™
. Iy
By (40) and (38),
(41) 27 (hA1)" g Silgn—2)
Uyl
D (b)Y~ iE B <.
J#fl;;,,l-q

By (40) and (39), regardless of whether h < @,

"l

(42) D (b)) ™ < 257 g 8ura).

ol
Assume tentatively (until the end of (50)) that g, > 1. If b < @y, then
Mptgny < g1 < Apgalnt-Gn-1s and, by (12) and (14),

1 }Wn +Gn-1 A""""l —h
43 hay, - [ = ‘ = '
(43) ((hgnt-gn-r) &> n G A1 @ +n1) Apyr@ntgns

Acta Arithmetica XIL3 ®
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If b < gy, Shen, by (43_»),
(44) (an+1"‘h)/£ln+1 < {(Mgpt 1) B> < 2(a"lbrlrl'_h’)/qn—l-l-
I£ 0 < b < Ggqyy then Agypr < g1 (M +-n 1) < 2Ry 1Qn, and, by (44),

“nllflnll

i —8
= On 14 3 _/
(45) ~—————+——ﬁ*‘—7 < (Mn~+Qu-1)™ (Mt n—1) B T (s 1_71)

2R (a1 —h)
By (44) with b = 0,
2 0t 1 g Gns < T (IR B Ottty
(46) 975ty < i {gaor@d ™! < 2' gl
Now h < y,1; hence, Dy ( (12),

(47) hn@—Dn| < Onpa/Inir < n'-

By (47)

(48) © (R = BB —Pnl> = hlgaB—Dnl.
By (48) and (12),

(49) B (g1 ) < Bgn®> < b/dnys-

By (49), if h > 0,
(50)  ahyygh H O < ghyygath O < (hg) ™ (g™
i+ ) D < (Anga+2) g B ED.

Next assume tentatively that ¢, =1. Then n =1, and g = g = 1.

By (12),

(51) <oy = (hady =min(6; —w, —0,-+1) = min(h, A,+1—h) J(As+1).

‘We no longer assume that g, is restricted in any way.
By (41) and (42),
N
(82) 2 Se—2(SH@-) < D Gy
k;o,qn’iglaﬁodqn)
< 205 8i(ga—1) 8s(Q)-
It ¢, >1, by (45) (applicable since N < @y 1n~+3n-1) and (10),
, N
(83) 2t SQ-T o)< D WGy

k=g,
Tty (10d a5)

< af,’,“q’y;flS(Q', ny1; 8y 1)

N
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k=1

If ¢, > 1, then, by (50),
N

2 k* (76.%')- (an+1+2) Qn 8544(Q)-

K=Qp,
Jes=0 (mod gp)

If g, = 1, then, by (51) (since @ = @¢:-+0 = N < a,)

(54) “:L-Hqi;-s Ss-f-t (Q) <

N
(55) (2 +1) S0 (Q) < D) By ™ < 2(a+2)'8044(Q)-
Kos 1

Tor each integer I, if 1 < M < gy, then ¢, = e, and, by (12) with »
replaced by 0,
(56) Ckay = min(k, 4, —%)/4,

for each positive integer & < a,, and

-

(57) @ 8ppe( M) < 270 * oyt < 2 (ay+1) 8o ( ).

=1

By (52), (58), (54) and (11) if ¢, >1 and by (65) (in (55), ¢, =1 and
¢y = @p+1) and (11) if ¢, =1 (whence n = 1),

(58) 27 gh " Si(gn—2) (8 (Q) —1) 410 " sy (Q) Zk-%kmr

k=qp
< zfln *81(gn—1)8:(Q) “I“’/n+1qgn—8(2m“(t—a’°)S(Q/; An 13 Sy )+2'3tSs+i(Q))
<29n S‘St(qn'“1 SB(Q ’I“l 3ta'n+1qi;‘ass+t(g)-
By (38) and (39),
N
(59)  27'QahSulgn—2) < S eyt <2(Q+1)ghSuan—1).
Tesk0,y, ,_kl?n%md )

It ¢, > 1, by (45) and (46) with s =0,
(60) 2_1!151afm-l(st(a’ﬂ—[-l)'—Sl(a'ﬂwkl—_Q))

< 27 (dh 4 b (81 (@12 —1) = Su{ 80,1 — Q)
N

D Gy

ka,q,,,lc :ﬁlnodqn)
< 2k +hia (Si(ansn—1) = 8y(any—@Q' —1))
< 2'¢, aatc»|~1 (St (Gng) —8Be(Ap 11—’ “1)) .
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It g, > 1, by (89) and (60),

(61) q%(Z“QSz(qn—Z)+2“a5»+1(&(an+1)—St(an-u—‘?)))
N
< )

k=1
kz£0(mod a,)

<d (2 (@+1)8:(gn—1) +2ta'7tt-}l(st(an+1) —B(@n g1 —@Q' "1))) .

If g, > 1, by (50) with s =0,

N
(62) dbydhS(Q) < i@ < D ka7t < (Baia+2)gn8i(Q)-
kio(mhqn)
It ¢, >1, by (61) and (62) (since
Q'+1 ;
Se{ap1)— St(an-yl‘Q ~1) = a/n+1“Q’~1+j)h < 28:@)),
j=1

N

(63)  ¢(27Q8,(gn—2) + 1 SUQ)) < D) (R
k=1
<£I‘n(2 (@ ’|‘1)St(qn“1)‘[“3t+la'n| 18 (Q))

Sinee Sy(—1) =0, observe from (55) with s = 0 that (63) holds also if
¢ = 1 (whence n = 1).

By replacing N,n,Q, Q" in (58) by gj1—1,J, @41y 4741 —1 Tespec-
tively for all j among 1,2,...,n—1, summing and taking (57) into
account with M = g,—1 ((B7) is applicable if ¢, >1; if ¢; =1, then
8s4:(q2—1) = 0), we obtain

f~1
(64)  @Seslm—1)+27 D) af*Byle—2) (8 (ay,2)—1) +
J=1
Nk
-I-Z ayg+1,‘7§'_s'gs+t(“i+1)
J=1
Ip—1 ~1
< 2 = Ceny™ < 2(41) Sope(n—1) +2 297 *81(gs—1) 8s(7.2) +
J=1
N1
+4'3t2 a;4-195—sssq-t(“1-;-1)-
Fe=1

N
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b=l
By (64) and (58)
-1
(65) aiSsa,t(qﬁl)JthZ 45" 8l —2) (8o (a,1)—1) + i
jm1

+Za,+1q, Sopel @) F270 407" 8i(gn—2) (8:(@)
j=1 N
ES 276’8</cw>“"‘
Towal
N1

< 2280 S, —1)+2 D) 6 il —1) Ba(ay0) +
f=1

"1)+a:z+1 qtn—sSsvH(Q)

-]—-1 3 Z ag+1QJ q&pl(“f»l 1) } z’qn St({ln_'l) (Q)+4 3t“n-(1Qn Ss—)-t(Q)'
J=1

4. The main theorems. In Theorem 1 below we shall apply some of
the estimates in § 3. In Theorem 1, (a) applies generally, (b)-(e) apply
to the case s = 0, (f) applies to the case 0 <<t < s and 1 < s, (g) applies
to the case 1 < t, and (b) applies to the case s = ¢ = 1.

In Theorem 1, the second equation of (78) in its context in (d) was
proved essentially by Behnke ([1], pp. 289-290). Behnke stated his result
with what would amount to NlogXN replaced by Nlogg, in the second
equation of (78), and a similar statement occurs in Koksma ([6], Satz 186,
p. 109). The result so stated is incorrect; to see this, in (75) take N
= Qu0y1, Whenee @ = a,,,—1 and the right side of (75) is Nlogg,+
-+ Nlog (= NlogN), whereas for some well,, loga,,; = O0(logg,) is
false. Behnke’s argument proves the second equation of (78), and another
proof of the second equation of (78) has been given by Walfisz ([9],
pp. 587-589).

Belnke ([1], p. 282) proved that case of (f) of Theorem 1 in which
§ 22 and { =1.

TuroreM 1. Suppose that sy, ty, and t, are positive real numbers. Then
(a)-(h) below hold where

n=hy(@)—1, @ =@n@), Q =@,
and, for each jew, we write a; and ¢; for a;(w) and g;(w) respectively.
(a) Where s and t are nonnegative real numbers, let

N1 N1

I'= alsﬂkl 1—1) +2, Q‘"—s'gt Qy')(S (@741) — )‘I‘ )—1 0’7-{-141 * Byt (@i40) +

F=l

“i‘% *Sy(qn (*S )+“n+1% ¢ L% (@),

n

A= D Sigy).

7=1
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Relative t0 @ eRyp, New, n > 0,0 <8, and 0 <t <1y,

N
(66) =0 (Z k“‘(kw)"), 2, B kawy~t = O(I'+4),
k=1
N
(67) PRGNS qi(stqﬂ)Jra;Hst(Q)).
k=1

(b) Relative to & eRyyy N o, g > 1 (0r 0> 0 for (69)), and 0 <t <1y,

N
68) ) oyt < g (@84(n) i (Seltns) — (a1~ Q)

k=1

aptk
N
(69) 3wyt = a1 84(Q),
gtk
¢h98:(gn)= 0 2<km>—‘)
(70) . e
l Ny~ = 0(¢h(@8:(g)+9"8:(@)) -
k=1
aptk

Moreover, there are positive real numbers « and § such that for each ®eRyy,
for 0 <t <Yy ’

) N
a<Tim (3 hay™) [ (dh(@8u(an) +8(Q)) -

Nooo ‘F21

otk

(c) Suppose that t, < 1. Relative to xeRy,, Neow, ¢, >1, and 0
<t <ty

(71) 2 Gyt =N,
qnfk
(72) Z oy < 5@ = Ny, Q%
qn!k
N
(13) Dyt < N4 Ve, Q%

k=1

em®

N
Distimates of N k%>t
f &y ey 247

Moreover, there are positive real numbers o and B such that for each w<Ry,,

fOT 0<t<t19
N

< Hm (31 qhad™) (7 -+ N a2 < g,

Neseo k=1

a < lim (Z <km>*‘)/(N+Nt mux(il z)) <.

Neroo ‘iz

(d) Relative to weRyyy New, and gn > 1 (or 0> 0 for (78) and (77)),

N
Z Sy = ‘Nl()gq“"'q‘na‘n%-l(1°g“n+1"]0g(%+1‘Q')):

(75)
k=1
apth
N
(76) D) oy < gy, (1+10gQ),
gt
N
(77) D (hwy™" = Nlog N + g 0.1 (1--log@),
k=1
Nloggy, = (Z (709})_1),
los=1
(78) Vo it
l 2(705&)‘1 = O(NlogN).
Gt

Morcover, there are positive veal numbers « and B such that for each zeRy,,

Noroo To=1
atk

N
‘a < lm ( > <km>-1) [(Nlogg,) < B,
(78" .
a<lim (Y CIw)y™) [(Mlog N) < .
Neroo :,,};;5

Suppose that 1 < ty<<i;.

(e)
<t <y,
N N
Dyt 3 Gyt <
Fenal Jemal
ng

(£) Suppose that 0 < iy <t, and 1 < 8,.
>0, 0 <t <<y, 8 <8 and t, < s—t,

3 n
- \U, 2t -8 t 8
= 2/ 41407 = ZW-HW .
§=0 =0

Relative to xeRy, New, n>0, and
(19)

{2 H
(90 n41) =< Qo1

Relative to xeRy,, Neow,

N
D Gy~

F=1

(80)
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(g) Suppose that 1 <ty <ty Relative to @eRyy, New,n>0,0<s,
and 1, <t <1y, (80) holds.

(h) In the notation of (a) with 8§ =1 =1, relative 1o ey, Neo,
and n >0,

nt+l n—~1

(81) r= Y+ 3 (logg)(10ga) +(logg) (10gQ),
i=1 j=1
(82) 4= 14 > logas,
j=1
N n4-1
(83) i iyt = 0((log ) (log )+ ) @)
k=1 J=1

Proof. In their context in (a), (66) and (67) follow from (65) and
(63) respectively. (Observe that if 1 <j <n and ¢; <2, then
057 8u(01) 85 (71) < 2051305 Sasa (@113
observe similarly that if g, <2, then
gh* 84(00) 85(Q) < 201185 By (Q)-

Observe that @ < ah,18:(Q).)
Tn their contexts in (b), (68) and (69) follow from (61) and (62) (and
(67) with g, = 1) respectively. (It is easily verified that

Q< agu-l (St(“n+1) '_St(a/qz+1_Q)) .

This observation is pertinent in (61) if g, = 2.) As N increases from g,
10 gnyi—1 (recall that g, < N < ¢ny1), @ increases from 1 60 anyy, and
8y(ty 1) —S4(0y41—Q) increases from ayl, to Sy(a,,,). Moreover,

p1

O (S )~ S — @) = Y (il
f=tp 1~ Q+1
Onp1 .
< Y (ol = @) (i~ (0= Q) = @S-
J=tp 41— Q@+1 .

Because of these considerations, (70) and (70") follow from. (68).

Suppose that ¢, < 1. By (9), (17), and (18), relative to weRyy, Neo,
n>0, and 0 <t <4y,

GQ8:(an) = ¢4Qah < Qg =< N,
6.0'8,(9) = ¢,Q"Q" < Q¢ < .

Hence, in their contexts in (¢), (71) follows from (70), and similarly (recall
(9)) (72) follows from (69), and (73) follows from (71) and (72). As N

N
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increases from g, 1o gp1—1, ) increases from 1 to a,,,, and aﬁb +1Q1—2t
(= Q(an;1/Q*)) varies monotonically from ab .y to aliy. Thus the sen-
tence containing (74) follows from the sentence containing (73).

Tn their context in (d), (70) and (76) follow from (68) and (69) respec-
tively with ¢ = 1 (cl. (9)), and, with # > 0 instead of ¢, > 1,

N
2 oy =< N 10g G-+ .1 (1 +10g0Q)

IowsX
by (67) with ¢ =1 (cf. (9)). Algo in this context,
Nlogg, < NlogN =< 1-}-Nlog(g.Q) = 1-+-N (log g, +log®)
< -Nl()g On "l"flna"n-rl(l “}‘1(’3(2) .
Thus, in its context in (d), (77) holds. Using
log ¥V = logg,-+log@,
one may prove (78) and (78') in their context in (d) from (70) and (70")
respectively (cf. (9))-
If ¢, = 1, the first and second members of (79) are the same. In its
context in. (e), (79) follows from (67) and (69) with ¢ = 1 (¢f. (8) and (9))
Let ¢ = (1+1/5)/2 andl b =min(f,,8,—1)/2. For all real  and v, if
0 <u <o and gew\{0}, then

q

a
@ Bulg) = D alif < D) (ali) = 0" 8u(0)-
=1

7=1 7

Hence, in the context of (80) in (1), by (15) and (9),

n

Ssia) < a6 Sealay) < (s—0)(s0—-d—1)7" D a5”
Fe=1

F==1 7=1

()7 < oo

e

< (8y—D) (85— —1)""
j=

—

Because of this, one may prove (£) from (a) (cf. (9)).

For each nonnegative sek and cach aco\{0}, Si(a)<a by (8).
Because of thig, one may prove (g) from (a) (ck. (9)).

In their context in (h), (81) and (82) follow from the definitions of I’
and 4 and (8) and (9). In this same context, by (66), (81), (82), and (16),

N n -1
N oyt = O(I+4) = 0((%—{—Zloga7—|—logQ)logqn+jz:a,)
k==l Fe=2 =

g1
= 0((togg,+1og@)loggat D, a);
J=l

whence (since also ¢,Q < N) (83) holds,
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The proof of Theorem 1 is complete.
In Theorem 1 we gave estimates of the sum in (1) for all weR,, in
terms of the simple continued fraction expansion of x. In Theorems 2
and 3 we shall give estimates of the sum in (1) for certain subclasses of
Ry.; the estimates will not be in terms of the simple continued fraction
expansions, but the subclasses of Ry, will be defined in such terms.
Theorems 2 and 3 will be proved by using Theorem 1.

Theorem 2 sharpens the results of Hardy and Littlewood mentioned
in connection with (2)-(5) in § 1.

Walfisz ([9], p- 571) showed that for almost every we Iy, , for every
real ¢ > 0,

N
Zk"ldcm)“l = 0((logN)"™) (N >2),
k=1

and it is implicit in Walfisz ([10], § 3) that the exponent 3--& could be
replaced by 24-¢. It is easy to bring the (strengthened) result of Walfisz
to within the compass of (a) of Theorem 2. (The strengthened result of
Walfisz follows from (7) via summation by parts.) See (b) of Theorem 6
also.

Walfisz ([9], p. 585) showed that for almost every weR;, and for
every #eRy, for which (4;(s))52, is bounded,

S ! < oo,
k=1

It is easy to bring this result (which in fact is covered by (5) in its con-
text) to within the compass of (c) of Theorem 2 (e.g., let ¢ = 1,8 = 5/4,
and & = 1/4). (Walfisz’s result follows from (7) via summation by parts;
the exponent —3/2 could be replaced by any real number
fact, this will be done in (¢) of Theorem 5.

TeroreM 2. Let f, X, ¥, ny, 6,2, K, and 8 be given as in (M), (N),
and (0) of § 2. Then (a)-(c) below hold.

N (a) Suppose that ulogw = O(f(u)) for w > 2. Relative to xeX and
>3,

loglog N

< -1

< —1.) In

N
(84) Zk-lgm;)nl =0

k=1

(log ¥)f (log V)
loglog ¥ ._.__)

Relative to xeY and N > 2,

N
(85) Syt =
k=1

hﬂ‘l@

N
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iz 1

If also u(logu)* = O (f(w)) for w2, then, relative to weZ and N >3,

. log ¥V log¥
5 Tt eyt = 1 .
(86) ,g’lk <l loglog N * (10g10gN)
(b) Let X be the set of all we Ry, such that
(87) ay(w) < G (L--1ogj) (j =1).

(Thus Xy has measure 0.) Relative to weXy and N =2,

N
D eyt == 0 ((log N Y.

Tewsl

(88)

There is a set ¥y = X, such that Yo has the eardinal of the continuum and
such that, relative to xe¥, and N =2,

N
270"1</cw>"1 = (log V)%

Jom=1

(89)

(¢) Consider the conditions

(jew),
(jew).

a4 (@) < Ky ()"

G142(0) < Ky (@)™

(90)
(91)

(90) and (91) is considered to be 6qm'w.al-
for almost every @ el there is o choice
hold. Observe that if 0 <t<s,
with K replaced by K+1.]
<807

[Note. It t = 0 < s, then each of
ent to weRy,. If 0<t<s, then
of KeR such that (90) and (91)
then (91) implies (90), and (90) implies (91) ’
Suppose that syt eR and 1 <8 and 0 < t,. Relative to 8,
<t, eRy, N > 2, and (90) or (1),

N
%70"(7&0}"‘ == () (log N).

(92)
Relative 1o s, <8 <<t,, N =2, and wel (i.6., (90) with ¢ =3),

N
i oy < log N

Fowal

(93)

Suppose also that sl and ¢ > 0. Relative 1o 8 <8 0 <t <ty BeRin,

and (90) or (91),

(94) ?Z: B ey~ = O(1).
e
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Proof of (a). For some real ¢ > 1, relative to > 1, % = 0 (f(u))
and f(u) = 0(u°) (cf. (M)). Hence, relative to > 2, logf(u) =< logu,
By (M), relative to #¢X and N > 3, '

T () - p
) — o {logd)f(log N)
(95) gl (@) = 0( loglog NV )

By (M) relative to zeY and N > 3,

W (log ) (log V)
ogN)f(lo
(96) a'j(m) = __.__%.lu._,....w_..gv S

= oglog N
In Theorem 1, n-+1 = hy(x), and, relative to N 3= 3,
(97)  (log¥)(loggy) < (logN)*

(log N) [ (log N)f(log NV)
= ———— (log N)(loglog N) = O ~-2---20 201
1OglogN( gN) (loglog V') ( Toglog ¥ )

Now (8.4) in its context follows from (83), (97), and (93). By (81) and
(66) (with s =¢ =1) in their contexts, relative t0 @ <X and hy(s) > 1,

by () N
(98) D a@) =0(Y 5 Chay ™).
=1 fo=1

Now (85) in its context follows from (84), (96); and (98). (It should be

remarked that, where N’ = [f(1)f(2)+-2], h*\.rr\'r(w) >1 for each zeX,

and positive real upper and lower bounds of S E Chwd~! for weX and
f=1

1 <NV < N are easily computed.) If u(logu)? = 1 > 2,1

iy ) If w(logu)? = O(f(w)) for 3> 2, then,

(99) (1ogN)ﬂ=0< logh (JBEEL ,
loglog ¥ * \loglog NV

Now (86) in its context follows from (83), (99), (36), and (98).

B Proof of (b). In (a), let Jlu)=K for 0 <w <1, and let f(u)
= Kﬁ»&l—;—)logu) for each real u > 1. Then X, = X 3 let ¥y = Y. (Flere
Teca; -) Now (88) and (89) in thei

) Now ) eir contexts reduce to (84) and (85)

¢ I;roof of (c). (92) and (93) in their contexts follow from (16) and
) of Theorem 1. (Here recall the definition of § from (0).) Let

¢ =(1+V5)/2. For each Tely, and each new, g,(x) >0 by (15)

N
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In the context of (94), since (91) implies ¢ <s and (90), for each
integer n >0,

n n

Wl t 18- ¢ 1 —t T
M agal@) @)= < Y gy(0) K
J=0 F=0

i1+ i’ (¢ < KA {1 (10,
i=1

Thus, in its context, (94) holds by (f) of Theorem 1,

The proof of Theorem 2 iy complete.

Chowla ([2], p- B46) showed that for each xeRy, for which (azj(.qo));';_l
is bounded,

N
D ay™ = O(Nlog¥) (N >2).

fe=1

A more general regult is presented in (b) of Theorem 3 below. The summa-
tion by parts formula which may be used in the proof of parts of Theorem
3 is (SP) (with N > 1) of §1.

TunoruM 3. Let K and 8 be given as in (O) of §2. Suppose that s,
s;eR and 0 < sy << 8. Then (a)-(¢) below hold.

(a) Consider the conditions

(100) aj () < Kgp (@) (few),
(101) Gie1(0) < Kg(@) (jeo).

[Note. Recall the note within (¢) of Theorem 2 with s = 1.7 Suppose that
t,eR and t, < 1. Relative 10 2eRyy, New, 0 <t <ty, 8 <8 <8, and
(100) or (101),

N N
(102) N ) Gyt Y Chay™h = 0(),
Fe

jem 1

N N
(103) 8:(N) < Z eyt 5 270"“(7000)“‘1 = 0(8:(N)).

Jow 1 Tl
(b) Consider the condition
(104) a1 () < K (L4+logg (@) (jew).

[Note. It follows from (16) and (D) that for almost every ©eRu, 1084 (®)
=n (n>2). Hence, by (A), (104) holds for almost no weRy. By (16),
if @eRyy and a, (@) = O(n) (n > 1), then (104) holds for some choice of K.]
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Relative to ZeRyp, N =2, 85 < 8 < 8y, and (104),

N
yooo }
105 eyt < Nlog N,
(105) 2
N N
(106) Zk‘“<7cm>"‘xf ™ (Togaw) du.
k=1 1

Relative 1o meRy, N =2, 8 <8 <1, and (104),

(07 Zk"“dm}"] = (1—8) ' N* "log N,
k=1 .
(108) N Chay™" < (log NY-.
=1

(c) Suppose that ty,t,eR and 1 <ty <<t Relative to weS, N >2,
1o <t Kty and 8 <8 K 8y,

N
(109) D <yt = N,
=1
N N
(110) 2k‘“<km>“x f =t du.
k=1 1

Relative to zeS, New, 8 < 8 << 8y, 8, <1 < by, and 8 41,

N
(111) D Gy ™ < (t—s) N (N0 1)
k=1

(Also, see (93).)

Proof of (a). In the notation of Theorem 1, relative to & eRyy, New,
0o > 1, 0 <t <1, and (100) or (101),

L@ = OV = 0¥ (@) 1Q7) = (W' N'='Q ™) = O (N).

Thus (102) in its context follows from (73) in its context. (Use (100) or
(101) to handle those # and N for which ¢, = 1.) The reader may prove
(103) in its conbext from (102) via summation by parts.

Proof of (b). In the notation of Theorem 1, velative to el
New, g, >1, and (104),

0atn3(1+10gQ) = 0(g(10g4) (1+10gQ)) = 0(g,Q(logga)) = O(Nlog N).

Thus (105) in its context follows from (77) in its context. (Use (104) to
handle those s and N for which ¢, = 1.) The reader may prove (106)
in its context from (105) via summation by parts. The reader may then
prove (107) and (108) in their context from (106).

Fistimates of kg k8 Chay—t 255
=1

Proof of (¢). The proof of (e) is similar to the proofs of (a) and (b)
and uses (79) instead of (73) and (77).

The proof of Theorem 3 has been sufficiently discussed.

We now pass to “almost everywhere” results.

In Theorem 4 we shall estimate the sum in (1) with ¢ = 0.

Walfisz ([10], p. 787) showed that for almost every zeR,,, for every
real ¢ > 0, (7) holds. A more precise result is given in (b) of Theorem 4.

TurorEkM 4. Suppose that by, t,eR. Suppose that (ex)¥-1 18 ¢ non-
decreasing sequence of positive real numbers. Then (a)-(e) below hold.

( ) There is « positive real number f such that for almost every xeR;
for 0 <1t <1,

ey

(112) lim \ syt N < B.

N-oo k—

[Moreover, trivially, for each e Ry,

N N
< 2 ™™ < 2 eyt
Fsal fe=1

for all N ew™\{0} and w,teR with 0 < u <1.]

(b) There are positive real numbers a and f such that for almost every
@ e Ry,

N
(113) a < lim [ 3 Chay™") [(N1og N) < §.

N—=>oo f=1

o0
Doreover, D3 (Noy)™* < oo (resp., = oo) is a necessary and sufficient

condition that for almost every (resp., almost no) & e Ryy,
N
(114) D ckwy™ = 0(Ney) (N =1).
fewml

(e) Suppose that 1 <1y 1.
and hy(w) > 1,

Relative t0 weRy,, 1, <t <1y, N =1,

N N
(115) (¥ </m>~’)”‘ =(Y ey~
Towm 1 Te=1

Suppose that teR and 1 < 1. There are positive real numbers o and f such
that for every ®eRy,,

N
(116) a < lim (2 <7am>~‘) /Nt < B.

Neyoo Fmml
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0

Moreover, D (Nex)™
N=1

condition that for almost every (resp., almost no) & elyw,

N
2 eyt = O
k=1

Proof. We shall use the notation of Theorem 1. Thus, if wely,,
then n+1 = hy{z). To prove (a), apply (73) (in its context) and (T)
(with k¥ = 0 and ¢; = (14logj)* for each jem\{()})

By (D), for almost every & e¢Ryy, 1_1'_1_1_16»,(; 1) < 6%

< oo (resp., = oo) is a necessary and sufficiont

(117) (New)) (N 21).

Tlenee the existence
J-500

of o and p as specified in (b) follows from (77) in ity context. Tor we Ry,

qnan+1(1+10gQ) < @t 1SS
and, if N = g¢,, then also

Nan11,

N = gr@-1(®) and  gun(1+10gQ) = Nay 1.

It now follows from (I) (with % = 0) and the note following the proof of

(I) that 2 (Ney)™ < oo (resp., = oo) is a necessary and sufficient

condition that for almost every (rvesp., almost no) welR,, relative to
New and n >0,

Q"na/n.p.l(l +10gQ) =0 (NCN) .

By [7], 3.7, p. 82, if Y (New)™! < oo, then log¥N = o(cy) a8 N - co.
N=1
Because of these considerations, that part of (b) involving (114) follows
from (77) in its context.
Now (115) in its context follows from (e) of Theorem. 1. The exis-

tence of a and # as specified in (c) follows from (e) of Theorem 1. For
LeRiny quy1 < 2Nay, 1, and, if N = ¢,, then also

N = th(z)_l and. N(”n»}-l <

1
It now follows from (I) (with % = 0) and the note following the proof
of (I) that 2 (Ney)™ < oo (resp., = oo) is a necessary and sufficient

condition that for almost every (resp., almost no) weRy,, relative to
New and n >0, ¢,,, = O(Necy). Because of this, that part of (e¢) in-
volving (117) follows from (e) of Theorem 1.

The proof of Theorem 4 is complete.

In Theorem 5 we shall estimate the sum in (1) with 0 <t <1.

(Observe that in (e) of Theorem 5, some pairs (s, ?) with 1 < ¢ are rele-
vant also.)

bm@
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TUROREM 5. (a)-(¢) below hold.
(a) There is posilz’w real number B such that for almost every o eRyy,

for 0<s <1l and 0 <1<1,
(118) lim ( X k8 ()™ )/Nl—s < (1—s)28.
Nosoo ] Tl
[ Moreover, trivially (see (9)), for each weRy,,
9l-5 .
“ Soarled - 8¢ [ -
»5—:8«41» = S(N) < er ey <Zk eyt

i
for all Neo\{0} and u,teR with 0 < 4 < 1.)

(b) Suppose that 0 <t <1. There is a positive real number B such
that for almost every xeRy,,

119 lim k™"l log N
(119) M(/Zu Chary™) flog N < B.
[ Moreover, trivially (see (9)), for cach xeRy,,

N N
log N = S(N) < 275"1<7c:1;>‘” << Z7ﬂ“l<k$>—t
frowy iz

for all Nea {0} and weR with 0 < u < 1.]

(c) For almost every weRy,, for all 8,1eR, if 1 <s and 0 <t <s,
then
(120) D Chay ™t < oo
Py

Proof of (a). Use (a) of Theorem 4 and summation by parts (i.e.,
(SP) of §1).

Proof of (b). We shall use the notation of Theorem 1. By (8) and
(9), relative to we Ry, and meo\{0},
"

Zq LS4 (Sulag, ) —

e

m
D Sl

2{ 1 =m.
j=1

Let ¢ = (1 —|—1/5)/2, whence 1 < ¢. By (8), (15), and (A), for almost every
e Ry, relative to mew\{0},

Zlog A1y

J=l

oc

=

< ch(i D0~ oo,

(o]

P
Z 0410y Srya(ay41)
j=1

Acta Arithmetica XIL3

-

fus


Pem


bm@

258 A. M. Kruso

Tn the notation of Theorem 1 and (a) of Theorem 1 with & =1, it follows
from the considerations just made thab for some real b >- 0, for almost
every & eRyy,

n
I'+4 < bnd Zloga,l 19
=

whenever N is sufficiently large (recall that n--1 == hy(®)). Ilence (b)
follows from (a) of Theorem 1, (D), and (B).

Proot of (¢). By (A), for almost every @ e Ry, (i) = O(f?) for
j> 0. For each such @, for all g, 1eR, it 0 =1 <<s, thon (by (LB)) (90)
holds for some real K > 1. For each such # apply (94) with s and & replaced
by s' and &' respectively where 1 < §' < 8t <8, and 8 == gy

The proof of Theorem 5 is complete.

Tn Theorem 6 below we ghall estimate the sum in (1) with ¢ =1
and 0 < s < 1. (The cage t = 1 and s >1 is covered by (¢) of Theorem. 5.)

Waltisz ([9], D- 584) showed that for almost every x eRy,, for every
real ¢ >0,

2

VP eyt = O(NMA(log N (N 3 2),
k:

]
i

and it is implicit in Walfisz ([10], § 3) that tho exponent 2--¢ could be
replaced by 1-+-& The strengthened result of Walfisz tollows from. (7)
vis summation by parts; here one could replace k' and N by
% and N respectively with 0 < s< 1. A more precise resulf is
given in (a) of Theorem 6 (cf. also the note following the proof of
Theorem 7). ]
Recall from the discussion introducing Theorem 2 the (strengthened)
N
estimate of Walfisz for Y &~'Ckw)™". A more precise result is given
k=1
in (b) of Theorem 6.
THEOREM 6. Suppose that sy, s;¢R and (cn)¥.. 18 a nondecreasing
sequence of positive real numbers. Then (a) and (b) below hold.
(a) Suppose that 0 < s, <s:;<1. If 3 (N(logN)en) ! < oo, then for
N=2

almost every ©eRy,, relative to 8) < s <8 and N 2 2,

N
(121) DI Cay™t = O(N**(log N) ey) -

Ie=1

If 0o<s<1 and NZZ (¥ (log M)ey)™ = oo, then for almost no @eRy,
relative to N > 2, (121) holds. (Cf. the note following the proof of Theorem 7.)

N
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(b) For almost every %eRy,,

N

(122) D eyt < (log N (N > 2).
E=1

(Cf. the note following the proof of Theorem §6.)

Proof of (a). We shall use the notation of Theorem 1. By (a) of
Theorem 1, (8), (9), and (L), relative to @eRyy, New,n >0, and s, < s
< 81,

N
an+1!l;fa =0 (Zk_s<km>~l)r
k=1 -
N n—1 n
M eyt = 0( Y ¢~ (loggy) 073+ 6 (108 0) Q"+ 3 01.,10)7°)
k=1 =1

J=1

n
= 0((loggu )"+ 3" log g+ ) 61,16~")
=1

=0 (Nl“"logqn—}—Nl’ ‘3‘1 aj).

j=2

It Nﬁl (N (log N)ew)™ < oo, then lim oy = oo by [7], 3.7, p. 52, and, by

= Neroo
(J) (take s =1 in (J)), for almost every zeR,,, relative to s, <s < s,
=]

and N > 2, (121) holds. If 0 < s <1 and > (N(logN)ey)™' = oo, then,
N=1

by the note (with ¢, replaced by (1+logn)e,) following the proof of (I),
for almost every xeRy,, it is false that

nsa " = Of(log N)ey N'™%) (N =2),
and hence (121) fails relative to N > 2.

Proof of (b). We ghall use the notation of Theorem 1 with s =1
=1, whenece n+1 = hy(#). By (J) with s =1 and ¢y = (1+logN)*,
for almost every zeR),, .

41

(123) Do =o((logNP}) (¥ — oo).

F=al
Hence, by (83) in its context, for almost every zeRy,,

N
(124) 270‘10«10)”1 = O(log¥N)y) (¥ >2).

k=1

By (16) and (D), for almost every xeRy,,

(125) loggn(x) < m (m >=2).
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By (82) and (126) in their contexts and (1), for almost every weRy,,

(126) A=n?=(logN)* (n>1).

By (126), (125), (81), and (66) in their contexts and (D), for almost every
weRyy, for some integer 2, > 0, relative to 9 2 iy,
-1

(log N)* =< n® = O ((1039[”/21)72 logay, 1)
2[n/2)

N
o) =0 (IZlk ek ‘).

(127)

By (124) and (127) in their contexts, (b) holds.

The proof of Theorem 6 is complete,

Note. Ezamination of the proof of (b) of Theorem 6 shows that there
are positive real numbers o and f such that for almost every welRy,, for all
sufficiently large New,

~
(128) allog M < 'k k™" < flog V).
B =)}

Tor all real § > 0 and ¢ 3> 0, if either ¢ <X 1 or t < ¢, thon one of the
results in Theorems 4, 5, and 6 provides estimates for the sum in (1) for
almost every zeRy,. The case t > 1 and 0 < s < ¢ iy treabed in Theorem
7 below.

THEOREM 7. Suppose that ty,teR and 1 <ty <t,. Suppose that
(V%=1 ts a nondecreasing sequence of positive real numbers. I f

> (N(logN)eN)‘l < oo, then for almost every ®ely,, relative lo t, <t
N2

<t,0 <s<t, and N =2,

(129)

N
D oyt = 0 (N4 ((log M) ) )
k=1
If1<t, 0<s, and D (N(logN)ey) " = oo, then for almost no @eRyn,
N=2

relative to N > 2, (129) holds. (Cf. the note following the proof of Theorem T.)
Proof. In (g) of Theorem 1, if 0 & <,

n n
n I8 i-8 2
Z Gl <N 2 11

7=0 §=0

Hence the first conclusion involving (129) follows from (g) of Theorem 1
and (K). In (g) of Theorem 1, if ¥ = ¢,, then

W
-y
< 2“!4107 .

N = guyw-1() and N"%al,,
S

icm®
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Hence the second conlusion of Theorem 7 follows from (g) of Theorem 1
and the note (with & = 0 and with ¢, replaced by (1+logn)e,) following
the proof of (I).

Note. 4 glance at the relevant proofs shows that in those parts of The-
orems 6 and 7 using the hypothesis

D (¥ (log N)ey)™

N2

one may in this hypothesis, (121), and (129) delete log N without impairing
the validity of those parts of Theorems ¢ and 1.

o0,
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