bﬂ‘l@

AGTA ARITHMETICA
XIT (1967)

On Mahler’s classification of transcendental numbers.
II: Simultaneous Diophantine approximation

by

A. Baxur (Cambridge)

1. Introduction. The class of irrationals with bounded partial ¢uo-
tients has the cardinal of the continuum and hence there exist trangcen-
dental numbers 6 such that all rational approximations pfg (¢ > 0)
satisty

where ¢ is a positive number. In [1] we investigated the nature of
such transcendental numbers and proved a gtronger result, mamely
that there exist U-numbers with the above property and also there
exist either T-numbers or S-numbers of arbitrarily high type with this
property (V).

In 1954 Davenport [B] proved, for the first time, that there exist
continuum-many distinet pairs of irrationals 6,¢ such that all rational
fractions plq, r/g (g > 0) satisty

[4
>*é§,7;

where ¢ is a positive constant. Thus there exist pairs of transcendental
numbers 8, ¢ for which (1) holds. It is the purpose of the present paper
to investigate the nature of these transcendental numbers and go deduce

(1) max( 9—-%l,‘¢_%

(1) We take this opportunity to correct s few misprints and one minor mistake
on the last two pages of [1]. On page 119, AX on line 15 should be replaced by
Ad-A24.. .+ AK; the formula for N on line 20 should read N = 9AKFH(A-1); yaplaco
o*AX, 98 4F 5 occwrring on the penultimate line by A5, 2645 4 respectively;
and for ¥ > 4 on the last line read & > 16. On page 120 the factor 8 on the first line
shoﬂd;; replaced by 4 and 6*AX in the last displayed set of inequalities should
read ¢*4
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the analogues for pairs 6, ¢ of the results of the Drevious paper established
for a single irrational 6. Accordingly we prove the following

THEOREM. There exist U-numbers 0, ¢ such that (1) holds Jor all i ntegers
Py 4,7, 9 >0, where ¢ is a positive constant. Further, for any © > 1, there
exist transcendental numbers B, ¢, each of which is either a T-number or
an S-number of type exceeding 0, with this property.

Cassels [2]in 1955 proved Davenport’s results by a different method
and indeed was able to establish a geueralization for sets of » irrationals
01, 05,...,6,; he showed that there exist continunm-many  setg
015 03, ..., 0, such that

g,— 2%

max (

3 'Oz—gi\, ...,'()nhﬂ
: q

[
>?+T/77’

for all integers p,, p,, ooy Puy ¢ (4 >0), where ¢ is a positive constant,.
More recently Davenport [6], [7] (see also Schmidt [8]) has proved these
results, and further generalizations, using a much simpler technique,
which is itself derived from some earlier work of Cassels (see [3]). This
latter method, however, is, in a sense, non-constructive whereas the
methods of the original papers of Davenport and Cassels give the required
Trrationals as limits of certain specified sequences. As far as I ecan see,
of the three available techniques, it is only the principle behind the orig-
inal construction of Davenport that can be adapted for our purpose,
and it is to this that we shall return in the subsequent work.

It is probable that the assertions of the theorem are valid more
generally for sets of n irrationals 015 05y ...y 0, For n > 3, however,
I have only been able to prove slightly weaker results namely that there
exist U-numbers 01y 05y ..., 6, such that

4

2) max( ) e
> (logq) g™ 7

P Py "
61~j*,'02*? ’ "'7{071‘%

]for all integers P1yPoy-vey Pus @y ¢ > 3, where ¢ is a positive number depend-
ing only on n. Further, for ony O > 1, there ewist transcendental numbers
01,05, ..., 0, each of which is either o T-number or an S-number of type
exceeding O with this property.

The proofs of these results are long and rather complicated, and
we shall not present them here, It suffices to say that the basic ideas
are illustrated by the Present exposition, but it ig hecessary to work
from first principles with 3 general algebraic number field rather than
1.3he specifie cubie fields ugsed in Davenport [5]. Further we remark that
Just as Davenport’s method in the cubic case gives, in some respects,
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sifteati ranscendental numbers
On Maller's classification of transcen

I we have to a continued fraction process for a pair

e D dimensional case establishes

of irrationals 6, so the proof iIll the higher pi
gimilar algorithm for = irrationals 0y, 0y, ..., Oa(%).

v | . . PR s

The main construction. The purpose of this section is to give

't out ' 't [B mphasisi in

'2f tline of the construction of Davenport [5], eml.)hoummg, :

> ioolar, definitions of 0 and ¢ as limits of certain sequences.

ot explicit . - g
P‘utlmudagifl]ili;on; are implied but not stated (‘,Xpll('.l‘r/I.,Y in n‘nhe 011:‘g1{%1()‘§i
T;l;zs We have atterapted to retain, as far as possible, the notati
paper.

£ [5] so as to facilitate the reference to established resulbs.
of [5] ¢

We begin by putting

a = 2c08(2n/T), B = 2cos(4n/7), == 2008(8n/7),

A = —%c0s(8r[9), B = —2con(dn/9), I'== —3 08 (27 /9)
j [ a, I" are the conjugates of A
are the conjugates of a, and B, ugates of
i ;]ilea ZOQ};ﬁydreal cubic felds & and K generated by « and A respectively.
1]'_1?@'0 Iy, .-+, Ly be defined by the matrix equation

4 B W\ /L L L a f 1
BI 1| & L|=|p » 1
A 1/ \l; & 1 y a1l

and let Ly, ..., L, be defined similarly with «, f, y and A, B: I interchﬁvnfﬁg{;
| We tl’eno’te by S a sequence of units e, Hs, &y, By, ... s;:c e
ach z has the form (a—1)¥p* and each F; has the form B (];B/ ),
N g ’ " ’ ' . T -
where 7, s are positive integers. Let e, &, and I, By d'c.not;e thz gg; i
jugates ’of e, and B, in & and K respectively, corresponding to
jugates 8, y of a and B, I' of 4. We put

9(10) =0, A0 =1, M(lo) =0,

9(20) =0, )“(20) =0, “(20) =1,
and then define o, A1, u{®, of?, 280, ¥ (n =1, 2,...) inductively by
the matrix equations

@ gi-n-’- b Lol b\ [en Q'En)
A =1, 1 w|adp ] (=1,2)
s Loty Ty \en pd”

(?) Although the basic ideas are the same, several ditficulties MIS? i'n gmmr'sll;lg;
izi b0 hi i i d the methods I have used in provii
izing the work of [5] to higher dimensions ang s ot important Tepacts, As
the results for n > 3 differ from those of [5] in a num’ important xesp
re;ards the factor logg in (2), this is caused by the accumulation of constants during
the course of application of the algorithm.
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if # is odd and by the same equations with ¥, L in place of g lif n
is even. Further let

_( Ll \ (") +(uf)?
T ) PPy
if % is odd and let y, be defined similarly if » is even with I in place of 1.
Since o, f,1 and 4, B, 1 are bases for k¥ and K respectively there

exist rational integral matrices

Pgn) Pgn) Pgn)

En=100" @ @] (n=1,2,..)

Riﬂ) Rgn) Rgn)
satisfying the equation

(@ l)eg’ = (e p1)5,

if n is 0dd and the same equation if » is even with A, B, B in place of
¢ f, e. For each positive integer n we take @), & to be a, f or A, B
respectively according as » is even or odd and then define O, o
inductively for j =n—1,2—2,... ;1,0 by the equations
(3) o) = ¥RIPR, o = v e,
where, for brevity, we have put

PR = PEOOM QIO R (b =1, 2, 3),
The main result of [5] may then be stated as follows.

. LevMA 1. There are positive numbers 01y 05 such that if each wnit in
8 18 less than 6, and, further, the ratios of the conjugates of the units satisfy

4) I(en-g1/ensn)' —al < 8,

for all even n and a similar inequality with ¢ replaced by E for all odd n.
then the sequences 6%, O (n =1,2,...) converge to limits ¢ ¢ respec-’
tively and these satisfy (1) for all integers p, q, 7, ¢ >0, where ¢ i; a positive
constant.

Supp9se that § satisties the hypotheses of T.emma 1 and for each
noil-negamve integer j let 6;, ¢; denote the limits of the sequences @
P (n=1,2,...) Trespectively. Clearly we have § — By, ¢ = ¢, and "

(5) 0 =vnlpiss b5 = pifps,
where '
Vi = -P;Z“) 91+1+Q;Z+1)¢y+1+R [+ (h=1,2,3).

Th, i . .
and 6)‘6 following results are implied by the work of [5] (see Sections 4
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LEMMA 2. Suppose that § satisfies the hypotheses of Lemma 1 and that

n is a positive odd integer. Then
(i) The elements of 5y, have absolute values at most 2e; %

(ii) The minors of order 2 contained in the determinant of 5, have
absolute values at most T2e; "

(ili) Bach p,_1s has absoluie valuc at least (2e,)”".

(iv) Bach y, s less than 10.

(v) We have

Ona—al <366, |dua—pl < 365"
The same holds for even n with a, §, & replaced by A, B, i respectively.

3, Further lemmas. Suppose that § iy a sequence of units satisfying
the hypotheses of Lemma 1 with 4;, d, less than a sufficiently small
absolute constant. We prove

LEava 3. For each posilive even integer n, O and " are elements
of k& with field heights at most
(6) H, = 63("1-])(]0,&”_115‘,.,__2 E‘ael)_a‘

Also we have
(7) max (|0—6(9], |p—B) < 6°"V (eny 1 Bnen s ... Bpe)"

The same holds for odd n with K in place of k and other obvious changes.
Proof. We shall prove the assertions of the lemma for O with n
even. The proofs for ®{¥ and for odd » follow in a similar manner.
It is easily verified by induction, using the equations (3) and (i) of
Lemma 2, that @ has the form U/V where

U= Uya+U,p+U,, V="Vyat+V p+V,
and the U;, V; are rational integers with absolute values at most
6" (Bptny ... Bye)™m
Hence O is an element of K. Further it is clear that O satisfies an
equation W,W,W, = 0, where
Wy = (Vo—Us60") at-(V1— U,6{") B +-(V,— U, 6f")

and W,, W, are the factors which result on replacing a,  in W, by their
conjugates f, y and y, a respectively. Here W,W,W, is a polynomial
in OfY, of degree at most 3, with integer coefficients. By virtue of our
estimates for the U;, V; given above, and noting that |a| < 2, || < 2,

it follows that these coefficients have absolute values at most H,, where
H, is given by (6), and this proves the first part of the lemma.
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For the proof of (7) we again use induetion. Our object is to show
that for each integer j =n,n—1,...,1,0 we have

(8) max (|6;—6), |¢;— D)) < 6% T e, 1 .. Byyagy )",

when j is even, and that the same inequality holds with obvious changes
when j is odd. By (v) of Lemma 2 we see that (8) is certainly satisfied
for j = n. We assume that k is & positive odd integer such that (8) (or the
alternative form) holds for j = n, n—1, ..., i and proceed to prove that
(8) holds also for § = h—1. The corresponding result for % even follows
similarly. From (3) and (5) we obtain

(9) ehfl_@gj‘—)l = (4, B+ 4, By 4, B;) (‘Ph—l,ally}(ﬁl,s)“l

where 4., 4,, 4, represent minors of order 2 in the determinant of 5,
and B,, B,, B; are given by

Bl = oh"@#): B, = ¢h—¢§bn)7 By = ¢hB1*9th-

By our induetive hypothesis we see that B, and B, have abgolute values
at most B, where

B = Gsm_h“)(‘?n-HEnEn—l EhHEhM)S/zy

and since || < 3, |0, < 3, it follows that |B,| < 6B. Now from (ii) of
Lemma 2 we deduce that the first factor on the right of (9) has absolute
value at most (24)21?3’:1’2. To calculate bounds for the remaining factors
we observe first that

lpllﬁ?l,s = Yr—1,3 —‘Pgh) B, —“Qgh) B.

Hence from (i) and (iii) of Lemma 2, noting that B < 1/16 provided
b1, 0, are sufficiently small, we obtain

P}/h(.’i)l,sl > (2e5) " —4Bep ! > (dey) L

From this, (iii) of Lemma 2 and the estimates deduced above we see
that the inequality for § implied by (8) is satistied with § = h—1. Simi-
larly the inequality for ¢ is satisfied and then (7) follows by induction.
We shall require two further lemmas. The first is deduced by the
arguments of Seetion 11 of [3]. For a simple proof of the second see Cassels
[4], p. 286.
Lmnora 4. AT the OFY and all the &) (n =1, 2,...) are distinet.

Leaia 5. Let o, 8, v, 6 be real numbers with ad—py # 0. Suppose
that off is irrational. Then to every &> 0 there is an 1 — 7(a, B, v, 8, &)

with the following property. For any real numbers Ay u there are integers
m, n such that

Imatnp—i <e, p<mytnd< w9,
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4. Proof of Theorem. We suppose that the numbers d;, 8, indicated
in Lemma 1 are sufficiently small so that Lemmas 3 and 4 will hold for
any sequence § of units provided only that the hypotheses of Lemma 1
are satisfied. We distingunish two cases as in the enunciation of the theorem.

(i) First we prove the existence of a pair of badly approximable
U-numbers. Let &, < 8, be a unit in & (%) such that (4) holds with # = 0.
That such a unit exists follows from Lemma 5 on noting that

{log|(F~1)[(y—1)[} log|y[a| # {log|a—1]}/log|p]

and that the number on the left is a negative irrational(*). We proceed
to define the sequence § inductively. Let h be a positive even integer
and suppose that e, By, &3y ..., &1, 0 have been defined as units in &k
or K satisfying the hypotheses of Lemma 1. With y;, defined as in Section
2 and H, given by (6), we take &, t0 be a unit in & lesy than H;* such
that (4) holds with 7 == h. A similar definition applies for odd h. Then
clearly the sequence § satisfies all the hypotheses of Lemma 1.

The first part of the theorem now follows immediately from Lemmas
1,3 and 4. For the numbers 0,¢ given by Lemma 1 satisfy (1) for all
integers p, ¢, 7 (¢ > 0), where ¢ i a positive constant, Further, from
(6), (7) and the definition of S we see that

max (|0 —6}, |¢p —DM)) < Hy"

for all sufficiently large n. This implies that 0,¢ are U*-numbers with
degree at most 3 and hence algo U-numbers (5).

(ii) The proof of the second part of the theorem proceeds similarly
but there is less range in which to choose the successive terms of the
sequence S. Let 5 be the constant given by Lemma b corresponding to
the five numbers

dlog|(B—1))(y—1)|, 4log|yla|, —2logla—1|;, —2loglp|, &,/20.

For each positive even integer & we now choose &,y to be a unit in %
satisfying (4) with » =k guch that

e < g P < L.
That such a unit exists follows by applying Lemma 5 with 4 = logy,,
pu = 30log Hy, and noting also (iv) of Lemma 2. Again a similar definition
applies for odd h.

() It is understood that all units & or 7 have the form indicated in Section 2.

(*) We require that e, has the form (a—1)¥ % where r, s are positive integers,
On applying Lemma & the signs of » and s are undetermined. However » can corfiainly
be taken as positive and it then follows that s is positive provided 4, is sufficiently
small. We suppose that 5, is 8o chosen in the subsequent work.

(*) See Schneider [9], Satz 21, p. 73.
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Tt remains only to prove that each of the numbers 6,4 given by
Temmsa 1 is either a T-number or an S-number of type exceeding . From
Lemma 3 we obtain

max (6 —6, |p — @) < 67D IO,

and it follows that 8, ¢ cannot be S-numbers of type < ©(¢). Finally we
appeal to Theorem 1 of [1]. From Lemma 4 and the inequality

Hypy < HT (667)7
+

it follows that all the hypotheses of Theorem 1 are satistied with ¢ = O,
or o = @), provided j is sufficiently large (and similarly with the
superseript 2j4-1 in place of 2j), and hence 6, ¢ are neither algebraic nor
U-numbers. This completes the proof of the theorem.

(6) See Schueider [9], Satz 22, p. 82. Again we are assuming §, sufficiently
small so that HY*> 6"+ if n is sufficiently large.
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ACTA ARITHMETICA
X1 (1967)

On a conjecture of Davenport and Lewis
concerning exceptional polynomials*®

by
O. R. MacCrusr (Ann Arbor, Mich.)

1. Exceptional polynomials over arbitrary fields. Let I be an ar-
bitrary field. A polynomial f(x) in K [2] is said to be ewceptional over K
it the polynomial @(z,y)= (f(m)—f(g/))/(m'—y) has no absolutely irre-
ducible factors in K[, y1.

Tn the investigation into the average error term of the number of
golutions of congruence relations, Davenport and Lewis [1] were led to
propose the following conjecture:

Tae DAVENPORT-LEWIS CONJECTURE. For f(z) in Z[2] and for all
large primes p, if f(x) s exceptional over Z,, then the map

f: Z,— 1%,
is one-to-one and onto.

The object of this note is to show that the Davenport-Lewis Con-
jecture is indeed correct. In fact,

TaeoREM 1. Let K be an arbitrary field and let f(x) be a polynomial
in the ring K [2] of degree n. Suppose charK =0 or n < char K. If f(x)
is exceptional over K, then f(z) is a one-to-one ‘map of K into K.

The proof of Theorem 1 will follow some necessary observations
concerning the splitting fields of polynomials in two variables and
gome remarks on pure equations.

Tor the remainder of this note let K be an arbitrary field and let
A be the algebraic closure of K.

DeFINITION 1. If (s, y) in K[, y] is of the form

a(@, y) = adﬁn+P1(1/)mﬂ”1"}'- o Puly)
where each P;(y) is in X [y] and where 4 i8 a non-zero element of K, then
a(z, y) is said to be reguler in x. If, in addition, o =1, then a(z, y) i8
said to be monic in w.

* Research was sponsored by the National Science Foundation. Ann Axbor,
Michigan, T. 8. A.
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