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Density and multiplicative structure of sets of integers®
by

RALrr ALEXANDER (Urbana, Iil.)

0. Introduection. The main purpose of this paper is to extend the
theory, begun by P. Erdos together with H. Davenport, of the logarithmic
density of sequences of natural numbers. Iowever, our method will
give information on natural density, as well as on certain other asym-
ptotic densities. (The reader unfamiliar with density theory will find the
necessary definitions in Section One.)

Brdos and Davenport [3], [4] proved that for any set M of natural
numbers, the set D (M) consisting of all numbers divisible by at least
one member of M possesses a logarithmic density. Rarlier, Besicovitch
[2] had shown that D(M) need not possess a natural density. He also
proved that a sequence having the property that no member divides
another need not have zero natural density. Jrdos [5] and Behrend [1]
showed that such a sequence does possess zero logarithmic density,
hence zero lower natural density. Using their result on D(3), Erdds
and Davenport proved that any sequence which does not have zero log-
arithmic density contains a division chain, that i, an infinite subsequence
for which each member divides its suceessor.

The papers cited above tend to show that logarithmic density is a mo-
re accurate indicator of multiplicative structure than is natural density.

Section One of this paper consists of elementary results whose appli-
cation to natural density is well known. In Section Two, we introduce
a decomposition of a sequence which allows us to apply the ideas of Section.
One to logarvithmic density. Finally, in Section Three, we sharpen the
results of Erdos and Davenport on D(M) and on division chains, and
obtain new information on special division chaing which exist in sets
with positive natural density. For ingtance, if a sequence ¢ hag positive
natural density, then C contains a subsequence ¢y, ¢iqs, §1920s, ---
such that g, is divisible only by primes greater than ¢,g ... ¢; raised

* The material in this paper is part of the author’s doctoral dissertation sub-
mitted to Purdue University.
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to the power loglog(¢:1gz -- - &) Algo, our method will lead to a theorem,
which compliments a theorem of Erdss [7], on the irregularity of the
prime divisors of almost all integers.

1. Basic definitions and ideas of asymptotic density.

1.1. DeFINITION. Let {u;} be a sequence of countably additive
measures on the subsets of N, the natural numbers. Assume limit w; ¥ = 1.
Define 4* A = limsuppA and u,4 = liminfy A for 4 in N. I 4 *A
= p, 4, let ud denote this number, and say that A4 possesses u-density.

The following model will give all of the asymptotic densities which
will interest us.

1.2. DEFINITION. Let {¢;} be an arbitrary sequence of positive real
numbers. For 4 in N, define

k

1) ped = D'(o: Ged, i <k D

q=1

Natural density 6 is obtained when ¢, == 1 for each 4, and logarithmic
density ! is obtained when ¢; = 1fi. For 1 it is convenient to replace the
denominator of (1) by logk. We will always assume ‘that functions in-
volving the logarithmic function are suitably redefined for certain small
values of the argument.

The following theorem is stated without proof.

1.3. THEOREM. (a) If A < B, then u, A < B and u*A <u*B.
b) If C « A w B, u*C < p*4+u*B.

(c ) If A and B are disjoint sets with u-density, then u(A w B) = pA +puB.

(@) If A and B possess u-density amd A < B, then u(B—A)
= uB—pd.

In items 1.4 through 1.10 it will be understood that {E;} is a sequence
of sets, each having u-density. We will assume that F; = ij B; possesses
u-density for each j. Let F = ) F;. =

1.4. DEFINITION. The sequence {F;} will be called u-summable
if u¥ exists and pF = limituF;.

Since asymptotic densities are far from being countably additive
set functions, u-summability is a strong condition.

1.5. THROREM. We always have limit uF; < u,F.

Proof. Since uF; < uFy,,, limit puF; exists. By 1.3(a), ul; < wF
for each j. The result follows.

1.6. COROLLARY. If limituF; =1, uF =1.
Proof. Clearly, limit uF; < p F < p*F < 1.
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1.7. THEOREM. Suppose thal there is a sequence of constants {L;},
with 3 L; converging, so that for all i and k, pyB; < L;. Then {B;} is p-sum-
mable.

Proof. We only need show that u*F < limituF;, because of 1.5.
For any j and k& we have

e F—Fy) = w F—pp Fy < Z/‘kE'L < ZLL = R;.
J+1 F+1
Thus for each j, u*F—ulF; < R;. The result follows.

1.8. COROLLARY. Suppose that {I;} 18 a sequence of pairwise disjoint
sets. If welly < uB; for all © and k, then {E;} is u-summable.

Proof. Certainly Y uhH; <1. Put L; = uB; in 1.7.

1.9. Exameii. If A = {a; < a, <...}, then D(4), as defined pre-
viously, equals (J D(a;). It is easily seen that, for any J'\Lr and %, 6;(D(as))
< 1ja;. Thus if Y1/a; converges, 6{D(4)) = limité(iUlD(ai)) by 1.7.
In the special case where the a;’s are pairwise relatively prime, a routine
computation shows that 6(4) =1—[](1—1/a;).

1.10. TasorEM. Let {B;} be u-summable with’ G contained in F. If
u(G@ ~ By) = 0 for each i, uG = 0.

Proof. Let G; =& ~ F;. Certainly u@; =0. We have u*'¢ =

u(G—6) < p(F—F)) = uF—upl;. Since limit uly = pF, wG = 0.

1.11. TIIEORDM. Let {¢;} and {d;} be sequences of positive real numbers.

Let u and o be the asymptotic densities induced by these sequénces as in 1.2.

Suppose that (i) 3 ¢; and ' d; are divergent, and (ii) ¢;/d; is monotone non-
increasing as © increases. Then for any A,

a A <‘,u*A < prd < d%4.

Proof. This is a well-known theorem on N¢rlund means. A complete
discussion can be found in Hardy [8].

1.12. COROLLARY. For any 4, 6,4 <L A <U'4 < 4.

2. The properties of a certain multiplicative decomposition. In
this section we will always assume that ¢ = {¢; < ¢, < ...} is an infinite
set of natural numbers for which ‘¢, > 1. Any sequence of integers will
be increasing unless otherwise stated.

2.1. LeMMA. If p denotes a prime number, we have the inequalities
logo < n((l——l/p)‘l: P <z 022 < Mloga,

where M is an absolute constant,
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Proof. See A. E. Ingham [9] for a proof of this classical theorem.

2.9. DEFINITION. Xf 2 > 1, let P(x) be the set of all natural numbers
that are composed entirely of primes greater than x.

2.3. LEMMA. If a is any netural number and =2, then 5((LP((B))
= (1fa) [TA—1/p: p < %)

Proof. Note that B = N —P(z) consists of those numbers divisible
Dby a prime not greater than z. Hence, by 1.9, 08 =1~—[](1—1/p: p < ).
The result follows at once.

9.4. DEFINITION. Let I' be the family of all arithmetic functions
f which satisfy f(n) > g(n) for n =2, 3,..., where g(n) is the greatest
prime divisor of n.

9.5. DEFINITION. Let ¢ be a set of natural numbers and let f be an
arbitrary member of I. The f-primary part of O, denoted by A(f; 0),
is defined to be the collection {¢;:¢c;¢¢;P(f(¢e;)) for any j}. The f-secondary
part of 0, denoted by B(f, 0), is defined to be ¢—A (f, C). If there is no
possibility of eonfusion, the sets just defined will be called 4 and B,
respectively.

The decomposition of ¢ given in 2.5 together with the following
representation theorem forms the basis of our method.

9.6, THEOREM. Let ¢ belong to C and f belong to I'. Then either ¢ belongs
to A or ¢ may be uniquely represented as ¢ = as, where a belongs to A and
s belongs to P(f(a).

Proof. Suppose that ¢ is an element of B. Then ¢ = ¢;8;, where s,
belongs to P(f(ci)) for at least one ¢;. Let ¢; be the least member of C
which satisfies this condition. If ¢; does not belong to 4, then ¢; = ¢s,,
where s, is contained in P(f(cj)); and ¢ = ¢8,8,. Since f(n) = g(n), 88,
belongs to P(f(c)), and we have a contradiction. Thus ¢ has at least
one representation in the desired form.

To demonstrate the uniqueness of the representation, we prove
that if a; and a; are distinet members of 4, then the sets ;P (f(ay)} and
a;P(f(a;)) are actually disjoint. Suppose a;s;, = a;s, (this number need
not belong to C), where s, is in P(f(a;)) and s, is in P(f(a,)). We may
assume without loss of generality that g(a;) does not exceed g(a;). Then
a; and s, are relatively prime, and hence a; = a;8,. Since s, %1, 85 is con.
tained in P(f (a;)) because s, divides ¢,. This contradicts the definition of 4

2.7. Exampres. (i) Let ¢ = {2, 3, 4, ...} and f(n) = g(n). We easily
see that 4 consists of all powers of prime numbers. In fact for any ¢
and f, 4 will always contain the least member of ¢ and any prime powers
which happen to lie in C.

(ii) Let O be a sequence for which no member divides another.
Certainly 4 = C for any f.

icm®
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(iii) Let 0 = dN for an integer d > 1 and f(n) = n. It is seen that
A contains d together with numbers of the form ds where s is composed
of primes not greater than d. However, many other numbers belong
to A.

(iv) Let C = {2,3,4,...} and f(n) = g(n)-+2. Here A is made up
of powers of primes together with numbers p“¢” where p and g are prime
twins.

(v) Let ¢ = {rdst: t =0,1;...,(r,8) = 1}, f = g. In this situation
A cannot be described in a simple manner; Dirichlet’s theorem at least
says that A contains infinitely many primes.

1t is obvious that if f; (n) < fa(n) for each n, then 4 (f, 0) = A(f,, C)
for any C. Questions about the fine structure of A are very difficult, but
we can say quite a bit about the density of 4 under a wide range of con-
ditions.

The next theorem exploits an idea first used by Erdos [5].

9.8. TurmoreM. Let f belong to I, and let C be arbitrary. Then we have

D {(alogfla)) s aed) < M,

where M is the constant in 2.1.

Proof. In the demonstration of 2.6, we proved that if ¢ and j
are distinet, then aP(f(a;)) and a;P(f(a;)) ave disjoint sets. By 2.3,
8|aP(f(a)] = (1/a)[T(1—1[p: p <f(a)). Hence by 2.1 this number is
greater than (1/a)(2logf(a))™". Since the sum of the densities of a col-
lection of disjoint sets does not exceed one, we may conclude that for

any mn, N

D (@M log fan) ™t <1.

=1

If need be, we allow n to tend to infinity to obtain the result.

2.9. DEFINITION. We define I" to be those f in I' for which there
exigts a real number K = K(f) such that f(n) < n¥ for each n.

2.10. TusorsM. Let C be arbitrary set of natural numbers. If f belongs
to I", then 14 = 0. ’

Proof. Assume that A is infinite, and let K satisty f(n) < n%. Then
since logf(n) < Klogm, it follows that :

E {(aloga)™: aed} < KM.

Next choose % 5o that Y (a;logay)™* < &/2. Now if n is so0 large that

Tl 1 %
(1flogn) 3 1]a; < &/2,
i=
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then
hd = (1flogn) Y (Lja: a; <n) < o2+ ) (addoga)™ < e.
{mktl

It follows that ld = 0.
In many situations we will be able to analyze a larger family in I’
than I"; we work in that direction.

2.11. DEFINITION. Let 2 be the family of all arithmetic functions
b for which A(n)logn is positive and increasing (eventually), for =
=1,2,..., and for which ' {h(n)nlogn)* is a divergent series.
N=1

9.12. DEFINITION AND REMARK. In a natural manner we may associate
a density function 7 with each % in 2. We define

0 = 3 {(ch(e)loge)™s 0eCyo <K}/,

k
where 8 = 3 (¢h(4)logi)~"
i=1
We observe that the hypotheses of 1.11 are satisfied, and hence
for any sequence ¢ and function h in Q,
.0 < b0 < h*0 < V.
The functions h(n) = loglogn and h(n) = (logloglogn) (loglogn) are
two obvious members of Q.

2.13. DEFINITION. Let I"' be those f in I' for which f(n) < #'™
for some % in Q.

2.14. THEOREM. Lgt f belong to I'"' and let O be an arbitrary set of
natural numbers. Then hA = 0 and 1,4 = 0, where h and & are as in 2:13
and 2.12.

Proof. Let h in Q satisfy f(n) <n*™. By 2.8, 2((@10gf(u))"1:
aeA} < M, hence :
Z(h(a) aloga)™ < 1.

The convergence of the preceding series leads to the result that hd = 0,
where £ iy ag defined in 2.12. The proof follows the same line as that of

12.2.0 and is omitted. From the inequalities in 2.12 we conclude that
A =0.

) r
2.15. LeMMA. If Py, Doy ..y D, are prime numbers, then [ (1—1/p)™*
LA

=1+31/d where d represents the general integer whose prime factors are
o subset of those mentioned above.

Proof. Note that (1—1/p)™" = 141/p-+1/p®+... The result follows.

bm@
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The next theorem, which relates the decomposition to I-summability,
is our principal result on the density of B(f, c).

9.16. TuroreM. Let C be a set of natural numbers and let f be any element
in I'. Suppose that [ ~ a P(f(a))] exists for each a in A. Then the sequence
of sets [C ~aP(f (a))} ds l-summable. In other words, IB ewists and is
equal to 3 1[C ~ a P(f(a))]-

Proof. If A is finite, the result is clear by the finite additivity of L
Tf A is infinite, let a be a fixed member of 4, and consider the following
series of inequalities:

2{1/1): beC ~ aP(f(a)), b @L}
Z {1/as: asea P(f(a)), as < n} < (1/a) Z{‘l/s: seP(f(a)),s <n}

< @) [TH0-1/p)7: fl) <p <n}  (by 215)

VAN

< Mlogn{alog f(a))™"

Thus for any ¢ and =,
1[0 ~ P (f(a)] < M(aslog flas)™> = Li.

We know from 2.8 that > I; < M* We may now apply 1.7 to conclude
that the family of sets is l-summable.

2.17. COROLLARY. If 14 =0 and if 1[C ~ aP(f(a))] ewists for each
a in A, then 10 = Y 1[0 ~ aP(f(a)].

Proof. By 2.16, IB exists and equals the above sum. Since 14 = 0,
1B =10. .

The following is an obvious special case.

2.18. COROLLARY. If f belongs to I' and 1|0 ~ aP(f(@)] =0 for
éach a in A, then 10 = 0.

2.19. Remark. The above results give us a twofold attack on a se-
quence ¢ since the convergence of Y (alogf(a))™" gives information
on A, and the l-summability of the sets {aP(f(a))} gives information
on B.

3. Some applications of the decomposition.

3.1. DEFINITION. A set of natural numbers ¢ will be called a multi-
plicative set it ¢ = D (M) for a set of natural numbers M which does not
contain 1.

3.2. DEFINITION. An infinite set ¢ will be called a division chain
if ¢, divides ¢;,, for each 4.
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3.3. TaroreEM (Erdos, Behrend). If C has the property that no member
divides another, then 10 = 6,0 = 0.

Proof. Let f = ¢, a member of I". Here 4 = 0, and 10 = 0 by 2.10.

We can easily strengthen 3.3. The following is a simple example
of the method mentioned in 2.19.

3.4. THEOREM. If C has the property that each member of C divides
only finitely many members of O, then 10 = 0.

Proof. Let f=g so that 14 = 0. Note that 1[0 ~ aP(f(a))] =0
for each a in A since the set intersection must be finite. Apply 2.18.

3.5. Limmma. If O is a multiplicative set and f is any member of I
then IB = Zé(aP(f(A)): aeA).

Proof. Sinece C is multiplicative, O ~ aP(f(a)) == aP(f(a)). Now
HaP (f(a))] = 8[aP(f(a))], and we may apply 2.16.

3.6. TmrorEM (Erdés-Davenport). Let C be a multiplicative set. Then
10 ewists and equals 6,C.

Proof. Let f =g, so that 14 = 0; 1B exists by 3.5. Thus IC exists.
We know 6,0 <10 = Yé[aP(f(a))]. Also, 6,0 > 8,B > Ed[aP(f(a))].
The last inequality follows from 1.5.

3.7. COROLLARY. If C 4s @ multiplicative set and f is any member of T,
then 1A exists.

Proof. We know that 1B and IC exist by 3.5 and 3.6, respectively.
Hence 14 =10—1B.

3.8. Remark. Another proof of 3.6 can be made along the following
line: Any multiplicative set can be written as a disjoint union of arith-
metic progressions so that the collection of least members of these pro-
gressions has the property that any one divides at most finitely many
others. This eollection has zero logarithmic density by 3.3. It is an easy
consequence of 1.8 that this union possesses the desired density.

3.9. TerOREM. Lot C be a multiplicative set, and let f belong to I,
Then T4 = 0.

Proof. By 2.14 we know that l,4 = 0. Since ¢ is multiplicativo,
1A exists and therefore must be zero.

We now prove three theorems about division chains. The first two
sharpen the result of Erdis and Davenport mentioned in the introduction;
the third needs a stronger hypothesis, which certainly would be satisfied
by a set with positive natural density.

3.10. THBOREM. Lt K, K,, ... be any sequence of positive numbers.
If C does mot possess zero logarithmic density, then C contains a division

chm‘n.of the form q,, ¢, ¢a, 019295y ..., where Qip1 18 composed entirely
of primes greater than (91 s -~ g)5.
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Proof. For each i, f;(n) = n™i belongs to I". Now there exists a,
in A(f;,C) so that 1"C, # 0, where 0; =0~ &, P(f(ay)). Otherwise,
10 = 0 by 2.18. Likewise, there exists a, in A (fa, ¢;) so that I*C, 0,
where C, = 01 ~ a,P(fs(a,)). Continuing inductively, we construct the
sequence @, ,... 1t is seen from the construction that a;., = a8,
where s; belongs to P(fi(ai)). Set ¢, = a, and g¢;,, =s; for ¢ greater
than one.

3.11. TunoreM. Suppose that 1C 0, and that {f;} is an arbitrary
sequence of functions n I"'. Then C contains a division chain of the forq'fv,
Py Quy T2 Gay -+, Where g; belongs to P(fi(rs)) and v;q; divides 7o, for each 4.

Proof. If M = D(B) is any multiplicative set, then we know that
1A.(f;, M) = 0 for each 4, by 3.9. Thus therc exists a, in Alfs, D(G’)) such
that I*0, # 0, where O; = C ~ a;P(fi(ay)), or else i€ =0 by 1.10.
Likewise, there exists a, in A(fy, D(0y)} such that I"C, =0 where
C, = €y ~ 6, P(fo(a;)). Inductively we form the sequence a,,dy,...
By our method of construction, a;.; = a;8;7; where a;s; belongs to C
and s; belongs to P(fi(a;)), and n,; is some positive integer. Iij we put
r; = a; and ¢; =s$;, we obtain a division chain in ¢ that is of the
degired form.

3.12. TuworeM. If O is a st of natural numbers for which Z.*O is pos-i-
tive, and h is an arbitrary clement of Q, then C contains di/_tns'ion chain
of the form gy, @1Gs; G14slss -+ -5 Where Gy is composed of primes greater
than (¢, gs .- @) raised to the power h(qy gs --- 4a)-

Proof. Let f(n) = ™, and consider 4(f, C). In the proof of 2.14
we showed that A4 = 0, where % is the density function associated Wlt.h
% (see 2.12). Since the family of sets [aP(f(a)): aeA} is l-summable, it
must be %-summable. Thus there is an a, in 4 so that h*Cl_ # 0, where
0, = C ~ a,P(f(ay). Otherwise we would conclude that A(C) =0 by
1.10; this cannot be the situation since 0 < 1,0 <h,0. We may now
proceed by our usual inductive construction technique (repeated use
of 2.14 and 1.10) to form the division chain @y, s, @g; ... where Gy
= a;s; and 8; belongs to P(f(a;). The proper form is obtained by setting
a, = ¢, and gy, =8 for i =1,2,...

' Cé)l;w nﬁggllliglwonder whether the conclusion of 3.12 would follow
from the weaker agsumption that 1*C' > 0. The following theorem ghows
that 3.10 is a best possible result.

3.13. TEmOREM. Let ¥(n) be any arithmetic funciion which lends to
infinity with n. Then there is o sequence of integers with positive upper
logarithmic density which contains no division chm’w‘» of the form d.l <y < ...
where di,1|d; is composed of primes greater thamn ar@ for each. 1.

Proof. Let ¢ > 0 be fixed, and consider an integer » in the interval
(m, n'*%). The density of integers xs, where s is composed of primes greater
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than 2@, is less than M [a¥(z)loga]™", where M is as in 2.1. Thus if
we let @ range over (n, n'*), the density of all such multiples of x ig less

than
nlte

20 [ [@¥(z)loga] do.
w

Since ¥(n) becomes large with n, the integral tends to zero as n becomes
large. )

Let 6> 0 be fixed and choose the positive numbers ¢, gg, ... 80
that 2 3 ¢; < 6. For each ¢, choose 5;, so that

(1) the density of integers of the form s, where x belongs to (n;, nitey
and s is composed of primes greater than 2*™, is less than g;;

(2) the density of integers of the form s’ in (n;, n{'"), where a'
belongs to (n;, n}"*) for some j < ¢ and s’ is composed of primes greater
than 27, is less than 2 Y (g;: j << 9).

It we form a sequence by taking for each ¢ those members of (n;, 1j**)
which are not of the form »’s’ described above, then the sequence does
not have a division chain of the appropriate form. The upper logarithmic
density of the sequence is greater than [e/(1-4¢)]—d, a number which
can be made as close to one as is desired. '

However, we note that the methods used previously would produce
a division chain for which d; ,/d; is composed of primes greater than
dsogd: for any sequence ¢, < ¢, << ... where

2{(0i10g0i)'1: ¢; <&} = Klogloga (i.0.)

for some positive K.

3.14. DEFINITION. If ¢ = {2, 3, 4, ...} and f belongs to I', we will
denote A (f, C) and B(f, C) by A(f) and B(f), respectively. We call A(f)
the f-primitive integers.

It was noted in 2.7 that the g-primitive integers are the powers of
prime integers. The next few results show that in certain respects, primi-
tive integers are generalizations of prime (or prime power) integers.

3.15. THEOREM. Let f be any member of I and let n be greater than one;
then n possesses & unique factorization n = a; ay ... a, where each a; 48 an
T-primitive integer and a;,, belongs to P(f (ai)).

Proof. Suppose that n does not belong to A(f). Then n = a8,
where s, belongs to P(f(a,)). If s, is not in A(f), it may be tactored as
81 = 58, With s, in P(f(a,)). This process must terminate with some
8,_1 = a,. Thus » has at least one factorization in the disired form.

It we have two such factorizations n = aya,...a, = alaj... af,
then a,s = a;s" where s is in P(f(a,)) and s is in P(f(a)). Theorem 2.6

icm®
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demands that a, = a,. We may proceed inductively to show that a; = a;
for it =1,...,r =1

3.16. DeFINITION. The canonical factorization of n given by 3.14
will be called the f-faciorization of n.

3.17. THEOREM. If f belongs to I' and LA (f)) = 0, then 6{A(f)) = 0.

Proof. Since I(B(f)) = Xé{aP(f(a)): acd(f)) =1, we econclude
from 1.6 that the sets {aP(f(a))} are d-summable. Hence 6(B(f)) =1
and 6{4(f)) = 0.

3.18. TuroreM. Let f be a member of I" for which S(4(f) =0. If B,
is the set of all positive integers whose f-factorization has at most 7 factors,
then O(H,) = 0.

Proof. Suppose that the assertion is true when r = k. Note that
F = B, —By is the collection of all numbers that have precis.ely E-+1
factors in their f-factorization. Now observe that for any ¢ in A( s
F ~ aP(f(a))is of the form a@, where &' is a subset of B,. Hence 6(aG) = 0.
Thus F is contained in | {aP(f(a)): aeA(f)}, the union of a J-summable
tamily of sets. Since ¥ intersects each member of this family in a set of
zero natural density, 6(F) = 0 by 1.10. Hence 0(Bryy) = 0.

The mnext theorem concerns the irregularity of the prime factors
of almost all integers. Erdos [7] has obtained a related result.

3.19. TunorEM. Let r be an arbitrary positive inieger, and let f(n)
= g(n)"™ where L belongs to Q. Except for a set of zero natural density,
each positive integer n has the following property: If D1y Doy --ry Do are the
prime faclors of m in order of increasing size, then pi,, exceeds f(ps) for at
least r values of 1.

Proof. Consider C, = C—E,, where B, is as in 3.17. By 3.9, 1an)
= 0; hence 6(4 (f)) = 0 by 3.16. Therefore 6(B,) = 0 by 3.17. If n belongs
to C,, then n possesses an f-factorization m = @16 ... &y, s'>r. .If. Dy
is the largest prime divisor of a; and ps, 18 the smallest prime divisor
of a;,,, we see that p;,; is contained in P(f(ps)-

The final result shows that 3.19 does not hold for functions which
grow faster than those in I"".

3.20. TumorEM. Suppose f(n) = n'™ where 3 [nh(n)logn]™" conver-
ges. Then 1{A(f)) > 0.

Proof. Suppose 4 = 0. Then the ideas of 3.18 show that

Z(C) Ak) — 0 where A consists of those integers with precisely & factors
Foan

in their f-factorization. If I, is those integers with at least n factors
in their f-factorization, A(f, I,) = 4, and

UB(f, L) = 2{1/a”(1-—1/p: P Sf(a)):kaeAn} =1 for each m.
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However, as n becomes large, the least element in 4, becomes large;
and the sum, which is dominated by M Z{[ah(a)log(t]"lz aed,}, tends
to0 zero. This contradiction gives the result. Professor Erdds has pointed
out that it is possible to prove that (4 (f)) exists.

In conclusion, T wish to express my deep appreciation to my advisor,
Professor Robert Zink. Also, I wish to thank Professor Paul Erdés for
3 number of helpful discussions.
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m ACTA ARITHMETICA

XTI (1967)

(o] PAHOHAJBHLIX TOYKAX NEKOTOPbIX KPHBBIX BBICUHIEr0 PoOIa

B. A. Ispaurnaxo (Mockpa)

Crocof HAXOMRIEHWs Touek ajrefpamuecKoit Kpusoil poxa g > 1,
PANUOHANLHHX HAM 3AMAHLM LoieM I KOHEUMON CTEMelH, HeUBBECTEH.
CymecrByer JNMDb IPEIOIOMKEHHE, UTO TAKAT KPUBAS MMEeT B K TolbKO
HKOHEYHOE YHUCIO TOYEH.

3HAYNTENBLHO OONbINNE Pe3YIbTAThl MONYYEHB NPH HCCIENOBAHUN
RpUBLIX IepBoro poma. Mopmemwn [1] moxasaj, IT0 COBOKYIHOCTH TOYER
KPHUBOH IEepBOT0 pofa M3 aGcomoTHo#t oGiacTi panmonambroctH K (1)
00pasyer KOMMYTATHBHYIO [PYNITYy C HOMEYHBIM THCIOM o0pasyommx.
TaxuM 00pasoM, CyLECTBYET TAK0e KOHEUHOE YACTIO PAUMONAILHEIX TOUEH
P, P,,..., P, uT0o moBas panmoHAmbHAT TOYKA P mpemcraBuMa B BHTE

P =P+ 0Py 1Py

¢ HEKOTOPEHIMU ICIBIMH 7y, Mgy - -5 Ty 1103[(HEE TOKABATENLCTBO Mopnenna
GBITO HECKOMBbKO YIPONEHo I 3HAUMTEIbHO 0Gobweno Beitmem [2].
B macroameit paGore Mu GymeM paccMaTpUBATh KPUBEIE

(1) at oyt = A
n
(2) @’y = A

IPH OUPENeNBHHBIX OrPAaHMYEHUAX, HAKIAJLIBACMBIX HA DPAHTH KPYBHX
[epBOTo poja:

(3) w—A4 =
n
(4) Wl = Av?, 0241 = Au®, w0t = 4.

B 4acTHOCTH, MBI YCTANOBUM, 4TO €CIM PAHI ONHOM M3 HPUBLIX (4) mag

moiteM R(V —3) me mpesbimaer 2, To KpuBasg (2) He UMEET B BTOM TOLE
ToueK, 3a MckmouenmeM cayuaes: A =1, {w, y} = {e1, 0}, {0, &5}; A =2,
{@,y} = {e1, £2}, & = & = 1. Amamormunpii pesymuprar Gyfer Tawke mo-
mayven ® RuA Kpusoit (1), paccmarpuBaeMOi HAy THOIEM R(/-1).
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