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ACTA ARITHMETICA
XII (1967)

On certain additive functions
by
P. D. T. A. Brrrorr (Nottingham)

Towards the end of chapter 9 in his book [9] on the applications
of probability to number theory, J. Kubilius proves a result which inclu-
des the following:

Let »(m) denote the number of distinet prime. divisors of a positive
integer m. Let &, > 0 as & - co. Then for a constant ¢, > 0,

1) Z 1 < zexp(—e,eslogloga).
|1'(m)—loglo?;;(ﬁexloglog x

Obviously we can rewrite this as follows:

Tet 0 < a, < ay < ... be a sequence of integers which in the usual
notation (1) satisfies A (x)> sexp(—e,logloga). Then v(a;) is normally
loglogas.

This result is, in a certain sense, best possible as can be seen by
taking a; = p;, the ¢th rational prime. This shows that we cannot replace
e - 0 by &, = 1; in fact, it is not difficult to construct sequences A
satisfying 4 () > c,2(loge)™* for any given a with 0 <a <1, for which
»(a;) has no normal value. We give such an example later.

Broadly speaking, the aceuracy of (1) is obtained by considering
the appropriate Dirichlet series and evaluating, for an appropriate range
of 2, the sum
P zv(m) .

(2) ;

The evaluation of this sum was first carried out in detail by A. Selberg
[13]. In thig respect »(m) enjoys distinct advantages over other functions.
Tssentially this is because the value of »(p®) is the same for all powers
of primes p and so can be interpreted in terms of counting functions(?).

In this present note we seek to generalise (1) to cover more general
additive functions. Xn particular, we consider »(m) when m runs through

w‘) I(m) denotes the mumber of a; < @. .
(* Cf. the remarks near the beginning of the proof of Theorem 2.
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the values of a polynomial. To estimate sums of type (2) we have however
to truncate our functions and this introduces a weak but additional
restriction on their generality. We first state the result concerning »(m).
TamorEM 1. Let g(f) be o polynomial in ¢ with integer cocfficients which
is primitive and irreducible. Let 0 < ay <... be a sequence of integers
satisfying A (z) > wexp(—eglogloge). Then, for any integer k> 0,
ka(g(at)) ~ A(x)(loglogey* a8 @ ->oo.
a,,;gm
Really this is a corollary of our second regult. IHowever, we give
it as a separate theorem since it is the most interesting case and we shall
later consider »(m) in more detail. Clearly, by taking k = 1 and 2 wo gee
that v(g(ai)) is normally logloga;. By an earlier remark the result is
best possible. For convenience only we assume that g(t) > 0 for all inte-
gers t 3> 1. Then we prove more generally the following
THROREM 2. Let f(m) be a non-negative additive function. Let o(u)
denote the number of residue classés v satisfying g(r) = 0(modw). Let

Sy = D o@f(p)p™ and  py = Maxf(p®).
poe i<
Suppose that

3) luglogloglogw 0 as @ — oo.

Let A be o sequence of posiiive integers satisfying A (z) > 06Xp ( — &, otz -
Then, for any integer &k > 0,

(4) D M olas) ~ Aa) 8.
a<e
I\Isfturally, one would expect that the condition (4) could be replaced
by 8;'u, — 0. If we allow f(m) to take negative values the problem
appears to be more difficult to handle. One would then expect conditions

on

D e

i<
FEa.kJ'ng f(m) = »(m) in Theorem 2 we get Theorem 1. For, by the prime
ideal theorem (see, for example, Erdés [3], Lemma 7),

8= D o(p)p"+0(1) ~logloge.
1<z
We have used here the well-known fact that o (p®) < ¢, for some ¢, depend-
ing ogly upon ¢(t). In particular, Nagell [11] showed that if the degree
and diseriminant of ¢(t) are respectively I and D one may take ¢, = 1D

icm®
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Although we do not go into details it is easy to see that the following
regults can, without difficulty, be extended to cover sequences of the
Zy-distributed type considered by Barban [1]. We need various lemmas,
and, when no confusion is possible, we renumber constants oceuring in
them. We denote these by 6, ¢, ..., ¢ and they will always be positive.
We use sometimes the Vinogradov notation <.

Before we begin the proof we note that we may assume that f(m)
gatisties 0 < f(p*) < 1 and §, — oo with . For instead of f(m) we consider
the additive function f*(m) defined by

f* (pu) = f(pa)/?’/"m if 1’0 <o

and zero for other prime powers. Let a suffix 1 denote for the time being
that we count only prime powers p* <« in evaluating an additive funec-
tion. Then if we prove Theorem 2 for f*(m) it is easily seen that

St gtan) ~ X filgla) ~ @) X7 g@))*
[P < <z
~ (2410 A () (8o 20)" = A () 8.
Thus the general result will hold. Corresponding to this restriction on
f(m), our condition on A(x) becomes A(x) > wexp(—e:8)-
LeMMA 1. () is o multiplicative function of w and satisfies, for all
prime powers p°, o(p°) < ¢.
LeMmA 2. Let logy = logz/(loglogx)? > 3. If the ewact power of p
dividing m is & we write p¥|lm. The number of integers m < & for which

]—I pu > m1[2

2% |g(m),p<y
is OO(m(logm)‘a) for any fived € > 0.
Proof. This is Lemma 6 of Brdos [3], with trivial modifications.
For convenience, we use N, to denote the set of integers not exceeding
« for which Lemma 2 is false; also let B, denote the set of prime powers
p° satistying p <y, p" <. We now define

flp*) it
0 otherwise.

“eB,
n(p%) = ‘ P €ba,y
Lemma 3. Let
(s, v) = H (1_}_ Z Q(pG)H(pa)p—a(l-{-s)),
peall? LH“:Bm
where H(m) is the multiplicative function of m defined by H(pY = 200 _
MY, Then, if res > —1[2logy, |2 < es, we have

B (s, @)| < ¢ log y.-
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Proof. Clearly, |H(p%)| < ¢,. Hence by Lemma 1, for any p,> 0

Z @(pa)H(pa)p_a(l-}-s) < Zp—a(l—ll(ﬂlogu)) < p—2(1~—1/(210gy)).

a2

Thus, for a large enough but fixed value of p, which ensures that no
individual term of the product is zero,

relog [ (14 3 o(p") H(p")p 0+

1/2
Dy <P<T
0=F= 9%By,

< 2 p= (=1 @logn) - =2(1-1/(2logy))

Dy<D<Y

< Z p~"exp (logp [2logy) +1 < 2 7t < log logy

DLY Py
by well-known estimates and the fact that 0 < logp/(2logy) < §. The
lemma is now clear.
LEMMA 4. Let
rim) = D' h(p").
pYpm
Then, if z is real and 0 <z < 2,
2 Zm) < ¢ exp ((e—1)83),
ML
where
8=

%eB,,

Proof. We have

Z‘ H(») = n(1+2’]L(Pﬂ)__‘1+zh(io2)_zh(p)+.“+zh(pu)_‘zh(;)ﬂ»—1)) =

vin 2:,cz“n

In other words H(v) is the Mobius inverse of 2™, Hence

T= b = 3 g DL
B e e
For H(u) = 0 unless the primes p dividing g(m) do not exceed y and,

by Lemma 2, since meN,, we must then have that » < #% Thus the
inner sum is

 olw)+9o(u)+

2 L

mge
ulglm) mNy,

9 <1.

bm@
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Hence
U
T =g 2 e() H(u)—\~0( 2 9(11.)0’(“)) - 2 2 H(u)
w2 w2 M¢N, ulg(m)
ML y<al/2
=2 +2 2 + s

say. For any ¢ > 0, Z, clearly does not exceed
a(e)et Y 1< a(e)atr
w2
Moreover, by the Canchy-Schwarz inequality,
oy ol 2
Zr< D1 Y| Y Bl
MIN gy mse o ug(m)
ML w2
The second of these sums is at most (3)
2 ¢ Z 1< 2 (g (m)) < egw(logm)?),
ML w|i(in) M

by a well-known result of van der Corput [2]. Note that C(4) is indepen-

dent of N,.
Since
D1 < ep(d)a(loga)y™=C  for @ >a,(4,0)
MmINp,

from Lemma 2, we see that

|2l < €10(0)2(loga)™®
for any fixed ¢ > 0.
Similarly,
> mam»] < en(C)2(logm)~°
MW

MEN g

for any fixed ¢ > 0. Thus

S0 = g
P

Z % o () H () —|~00(m(1ogm)‘c).

w2

We note that a result of this type occurs in Barban [1], Lemma 4. In
that paper he considered sums of the type

2 t(g (ai)) 9
<

(® © denotes, as usual, the divisor function. 4 denotes a positive constant
depending at most on ¢ and the coefficients of g.

Acta Arithmetica XITL.4 %
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370
where a; Tuns over well distributed sequences and ¢(wm) is a multiplicative
function of m satistying t(p°*!) 2 t(p°), a=0,1,... He gets upper
and lower inequalities for these, generalising a result of Erdos. However,
he needs #(p) =1 and, in our case, since we intend to apply our result
for values of # < 1, the corresponding condition is clearly not satisfied.
We therefore use the following standard technique to evaluate Z,.
Consider F(s,#) expanded as a Dirichlet series:

Clearly if n <o a, = 'g(n)H(n) whilst i n> o' |a,| < "
for a certain constant ¢,, > 0. By a standard method of Perron (see,
for example, Titchmarsh [14], Lemma 3.12) we see that for any fixed
e>0and T =2,

3 v

u<wl/?

&40 8/2

@z
H(w) = 27, {T s w)—s-

ds+0,(T" ™).

Moving the contour over the simple pole at s = 0 where the residue is
F(0,z), we introduce further terms

1’ —1jalogy—iT  ~1/2logy+iT

s O R

2mi Y —1j210gy—iT

EENAA : %5/2
) B(s,®)— ds.
~1/2log y-+iT $

Clearly the first and third of these are, by Lemma 3, O,(z"T"?), whilst
for the second

~1/2logy+iT
ws/z
(s, w)—
8
~1/2logy—1iT

Here

dt
f ge———— === logm
J Vet+1/a(logy)e

sw—llﬂugu

ds’<c

Tog y1~1
it (log ¥)

. r
dat dt
— 2logy: — — L 2--1og(Togy).
JVt”+1/4(logy)2 < gy — -+ f p +log(T'logy)

(logw)~ 1
Choosing ¢ =1/2, T = «? we see that
D w o) H(u)—F(0,2) = 0

(@~ +0{exp(2 loglogw— oy (loglog)*))
ugal/2
= 0Og((logz)~%)
for any fixed C > 0. Now

FO,0) = [] (L+p " e@)E(@)+ Y p~elp

p<alf2 a2

Y H(p").

bm@
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By Lemma 1 and the fact that |H(p%)| < ¢; we obtain

F(o,0) < [] (1+p7 e H@) <exp( 3 5 o) Hp).

- p<at/2 pall?

ow
D plolp = D'pte(p) (P -1).
p<at/2 P<KY

In this sum we write 2 = (14+2~1) and apply the mean-value theorem
for |¢—1] < 1 to obtain for it the estimate

D 07 o) {(e—1)h(p)+ He—1)h(p){h(p) —1) (L +8)"-2},

LY

where |9 < 1. Now h(p) (h —1) <0, so that
2, P E D) < (5—1) Y'p7 e()h(p) = (=—1)85+0(1).
p<all? DY

Putting these results together we obtain the result stated in the lemma.
We define *(m) =15 (m) = r(g(m))—85.
LeMMA 5.
(r* (m))* < mexp (—ec, el S,).

r*(m)>a;/3»5‘;,

ak+ 21 — 1

Proof If 0 < 20 <1,
Lr¥(m) s (2k4-21+1)
o E ¢ & ac.

1
e r*(m)
Now 0 < ™ < ¢ < 2, s0 that by Lemma 4,

l 2 6cro(m)l < 2 FoTm) & exp(( ’°‘~1~reC)S*)

m<e
Moreover

[+ 1 (=~

6% 1 —1e?] < Z? relf < %Zoj <ot
Jmz V7 Jm2

Thus

2k+-21)!

(‘ ’H))M ( ]/.‘;+'y gl mexp( 28;)0_(2k+21+1)-
Il"‘(m)l>ﬁ1/35'w (Ew !sw)

Hénee, by applying Stirling’s formula to (2%-+21)! we have, for the right-
hand side, the upper bound

Cy L eXP (2 (k+1) {log (2% +21) —1} + ezlog (2% +21) 4-...

... —2llog (0e® 8,) +0 8— (2k+1)log o),

since 8 < 8.
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Now this holds uniformly for any integers I, & such that Ik > 1.
With % fixed, choose I = [}oel®8,]—k If o >2(k+1)e;""Sz", then
1> 0 and so our upper bound is less than

eywexp(—}oer 8y+o® 8p+-2klog (S, ) +eslog oS, e?).
Choosing 40 = £ we see that the exponent here does not exceed

3

__i__ silﬂsm_l_oﬁ( )1OgSZ 82/% 1/3 < — ZITS_“

since, without loss of generality, we may assume that &' < 8. Collecting
results we see that we have proved the lemma with ¢, ¢, depending upon k.

LEMMA 6. Let 0 < ay < ay... be a sequence of dndegers satisfying
the conditions of Theorem 2. Then for any fized & > 0,

D Flgla) ~ A@) 83,

=z

Proof. We split the sum into two parts according as |r(g(as))—Sj|
&2® 8, or not. For the first of these sums Y),, when & > 0,

i ata) = 3 rlotod) —S+83) —2('“)2 (rlo () — 55} (3"
LAy <
Ift>0

D)o @) 3| < wexp(—e e 8,) = o4 () 83),

G

by Lemma 5 and the Cauchy-Schwarz inequality.

Hence
Zl " (9(as))

@<z

= o{4(x)8%).

Note that if ¥ = 0 or ¢ = 0 in the above, we apply Lemma 5 with & = 0,
which states that all but o(4(z)) of the terms in A are counted in Z,.
Moreover, writing

k

So*ata) = 3 () 3, trloted) —sp)e sy,

a;<e =0 a; <z

we see that for any fixed s > 0,

12 (gai) S} R

et

<™ N1 =o(d(x)S.

<z

icm®
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Hence we obtain the result stated in the lemma with 8} in place
of §,. Finally, we can, however, replace §; by S, since

logx
¢y +¢ log{——| =
16 2 g 0g(10gy>
by the hypotheses of Theorem 2.

Y<p<e
This completes the proof of the lemma.
It remains now only to show that we can remove the truncation
in the definition of »(m) with a small error. Tor
%l i
> 3 s ~ 3ot
uhz: PUllgiag) <
2%By,

18— 83| < 0(8z),

1)) ~ A(z) S5

Indeed, it is now that we need the fact that f(m)
not used yet in a vital context.

LeMMA 7. Let P, be a set of at most k—s prime powers such that

(1) no prime occurs with more than one power,

(ii) #f 2 is the greatest member of Pg, then L g

Let w be the product of all members of Py, and m = 1 if P, is empty.

Define
)

peiim
p“(k‘i”l)gm Dt

Then, for a fixzed integer k> 0, and any integer s, 0 < s <k,

>0, which we have

Fp,(m) =

Hp%).

-y mo(n

Fpfg(m) <—— (824"
M
g(m)=0(mod n}
Proof. We prove this by induction on s for all P,, for all » > 1.
Tor s = 0 the result ig trivial. When s = 1 we have

=2 2 fu

Nimsw ap®lg()

2 I‘pl o m

ez
(1) w0 (mod ar)
Now pm < o. Thus, interchanging the order of summation, we see
that the sum we wish to estimate is not more than

PRSI Z P
P o P

g(myss0(mod p®a)

Suppose now that the result holds for s =0,1,...,r—1. Then

ZF}E»,(g(m)) = EF‘" (g(m)) Z f(p
mz

n<w p°|lo(m)
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where " indicates that p* satisfies the conditions stated in the definition
of Fp (m) in the statement of the lemma. Our double sum. is then

M@y Y Afe)+Ee, g m))

Pz ML
g(m)=0(mod p%)

= Yt 2(")0‘ ey

{Fp,(p7 (m))?

PO mes
o(m)y==0 (mod p“)
.

-1 1 -0 y
<X 30T el
po<z 8=0 m<e

g(m)=otmod p%)

where we have used the fact that f(p®) <1. Now
FP,.(P“ﬂg(m)) = FP,_I(g(m)); P,y =P, v {p}.

Note that p does not occur in P, by definition of Fp (g(m)). Further if
A1 is the greatest member of P,_, then

where

lec+1 < Ma‘x(lk-{-l,pu(lcnfl)) < .

Clearly each P, is a P, if s < r.

Thus we can apply owr induction hypothesis to the inner sums
(0 <8 <r—1) and obtain

3 (s, g}t < 20 28D (g 1,

m<e p

D e (") f(p"

o<
This completes our induction step and the lemma therefore holds.

Luvra 8. Let 4 be .a sequence of positive integers satisfying A (x)
> wexp(—e, ;). Let S;* logloglogs — oo, Then

2 {flgta)—r(glan)}* = o(A(

<z

Proof. Let

Hence
zg(m)

(T lam) <

ML, (m)=0(wmod =)

)[Se+ (r—1) +1)"7.

@) AS’;‘;) .

f®) i p°<
1} otherwise.

exp (87 ez *logw) and p >y,

Define j(m) additively. Then by Lemma 7 (with P, empty so that o~ o(m)
=1); we see that if (1-41)e '8,

it

m<

S** +t)

bm@
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where

8= D p " em")im"

o<z

Thus, taking ¢ = kI we see from Hblder’s inequality that
g - & i
@yt Y i(g@) < (@) Y iMg@)
;<

a<n
/A (w))lﬂ (m- 1 Z‘jlsl(g (m)))lll ,

mLe

< (w
which does not exceed
{w] A (@)} (854 R1)".

For any fixed %, let I =1(k) = [(&"S;—1)/k] >
admissible value of I if z is sufficiently large. Then

> 1. Clearly this is an

{o]A @) < exp(I exSs) < exp(o165™ 87 ea8e) < 1.
Also kl < &8 = 0(S;), so that
{A@)}" Y g(a) < o(85)+ (837"
<
Now
1
S < 2 Z <« logloglogs = 0(&,).
V<PLT
Moreover
|£(g(@s) —7(g (@) —i (g(aa))|
<| > 17| +|
2%1g(a;) p"na(ai),lp_,sv
P> Max(y,exn(s, _1/2S—1log:c)) P>
< > < al8, = 0(8a).-
2% \9(a;)
P >uxn(a”1/2:s"llog'a)
Hence, as in Lemma 6,
S {flgta) —rlgta)f = 'i*(g(a))+o(A (@) 85 = o(4 (0) ).

i
This completes the proof of the lemma.
Proof of Theorem 2. We have

a;sz(g(ai))= g( ) Z{f(y (a0) = (g (@)} (r(g @)}
= D{rlo(@)+ Zk( | 2 flote) —lotaltre ()}

@<z

t"i"
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By Lemmas 6, 8 and the inequality of Cauchy-Schwarz the double sum
does not exceed
k

SN S rlotaa) =) 3 1flota) —rlg (@)} =o(A (2) 85,
1 < d<w

8=

Moreover

D (gla)) ~ A) S5,
[y
and this completes the proof of Theorem 2.
The special case v(g(m)) can be congidered differently, as we have
already mentioned. Indeed, one can uge the ideas of MMardy and Rama-
nujan as used by Halberstam [6] combined with some of the ideas above

in order to obtain Theorem 1. For example, Hardy and Ramanujan [7]
showed that

_ ow  (loglogaw+e,)*?

& T logr (b—1)!
v(m)=Fk

(and ‘obtained an effectively similar result about the values of 2(m),
the total number of prime divisors of m). We can generalise these results
to estimate, for example,

1,
s
¥ (o(m)) =k

where »(m) is a truncated form of v(m). If 0 < 2 < ¢;, we arrive at an
analogue to

2 — )3 1 i "7____];_“ oy
é ;z 2 < Gy Toga Z =11 (zloglogw --¢,)

mse k=1
v(iny=k

< ¢sa(logm)™t.

‘We then link up with the above analysis at the end of Lemma 4. In order
to use this approach we must use a sieve process, as for example, A. Sel-
berg’s method.

Hooley [8] had occasion to introduce the integer sequence
@ ={mjdt<m<d,p Im=p > e’“}, where 0 < a < 1 is a constant.
We call these ‘quasi primes’ with exclusion up to ¢°. We now use Q; to
construet the example mentioned earlier which will give a limitation
on Theorem 1. For convenience, we denote summation over integers m
having no prime factors p < ¢ by 3.
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Now

Zv(m)= 2 2’ 1.

meQy efucpgel m=0(modp)
TFollowing the lines of Lemma 4 of Hooley [8] we see ﬁhat, for a constant
d >0 and any fixed &> 0, the inner sum is
Ap—1) 1 —e M (140,77 as - oo.
Thus
Zw(m) = d(1—cj % (L4+0,(5") ;l _fp—l-——l

jurisg '

= a(L—¢)j " (140, logj j*+0 (1)

. _ 1
{a(l—c 1)j'“c’(1——a)10gj}{1+0 (@\)},

Il

and it follows that
' Dlv(m) ~ =) (1—a) ' logj

IKN meQy J<N
~d(l—eY)(1—a)logV D] j%
<N
N(l——u.)logNZ 21 ag N - oo.
ISN meQ;

Here we have left out some easy calculations, it being necessary only
to consider values of j <3N and }N <j <N sepairaytely.
Varying the values of j clearly gives rise to disjoint sets @;, so that
=~}

if @ = |J@;, we have with the obvious definitions
Fe=1

Z p(m) ~ (L—a)Q{w)logloge
el

as @ — oo through integer multiples of e.
Equally we can prove that
2 »2(m) ~ (L—a)2Q (z)(loglogx)*.

Mt
Ma)

From these results wo clearly obtain
37 (v(m)— (1—a)logloga)* = o(Q (2) (logloga)).
ML

meQ

Now let QO = {m; m—1e@}. Then it is easy to checli that results cor-
regponding to the above hold with @ replaced by Q* and 1—a by 1.
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The calculations make use of the good distribution of quasi-primes in
arithmetic progressions with large differences. Thus as # - oo through
integral powers of ¢ we obtain

2 v(m) ~ QP (x)loglogw ~ @ (»)loglogs
1::5{1)

and
Z {v(m)—logloga)®

e
meQ(l)

= o(Q(z)(loglogx)¥).

Finally let us take 9 =@ o @O,

It is not difficult to check that infinitely often Q¥ (@) ~ ewv(logw)—®.
Moreover, we see from the above results that in a certain sense v(m)
behaves like (1—a)loglogm in @ and loglogm in Q. It is evident there-
fore that »(m) cannot have a normal value in @®. More general examples
can be given, related to Theorem 2, but the details are complicated and
the result no more enlightening. It is true that Q®(x) ~ ew(logz)™ has
only been proved to hold infinitely often but this is nevertheless a true
restriction to Theorem 1 since we need only prove that theorem for
running through the members of some infinite sequence.

An interesting result which follows from the above construction
is that »(m) is generally too small rather than too big. Indeed to find
& sequence 4 in which »(m) is always large demands that one should
make A very thin, say consisting of a; =11'I P4, the produet of the first

<i

¢ rational primes. Clearly, for such an 4,

6017 < “7’ < Gczy'
and

2 v(@) > o5(A (@) > ¢, 4 (w)logaw.
<

Actually from the prime number theorem oty ~ e, and we can find an
asymptotic estimate for the left hand sum.

In view of these facts, we make the following

CONJECTURE (1). There is an absolute constant 0 <0<l 8o that for
any sequence A whatsoever

Dlvla) < (1+0(1)) 4 () loglogm-+0 (af).
d<z
Similarly for Z’ (a:). Indeed perhaps we can replace O(x ) by

0,(«) for any ¢ >0 Let us, for example, consider the following model for

(*) Note added in

proof: Prof. Erdés has informed £ a result which shows
this o be Loes ed me of a result which show
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generating random sequences of integers used by Erdds [4] and Erdés
and Rényi [5](%). .

Let 2 be the cartesian product of a denumerable number of copies
of the set {0,1}. We define on the jth copy a measure which has value
p; on {1}, and 1—p; on {0}, where »; — 0 as j — oco. This induces & measure
on S in a natural way. We now map the set of all sequences of integers
1< a; < ay... into Q by taking (a,, as,...) into the point with 1 as
the a,th, a,th, ... coordinates and zeros elsewhere. Thus we have a measure
on the space of -all sequences of integers. Speaking probabilistically (as
we shall for convenience) we have independent random variables &, &,,...
agsuming the values 0,1 with probabilities 1—u;, g for &,j =1,2,...,
respectively. We denote ié’ﬂ wi by M(n).

We can now prove various results.
THEOREM 3. (i) Let
i (n) < Z Uy <

<n
af

hold for all n=1 and ¢ < (M n))ca (for some cg >0). Then almost all
sequences A (in the above measure sense) satisfy

2 ¥ (a5) < (L40(1)) 4 () (logloga)*.
a; <X
(ii) If in addition we assume that, uniformly for ¢
some ¢s > 0,

< (A (), and

Sy == +o{ (o)),
& !

then almost all sequences A satisfy

Z ¥ (ag) ~ A (@) (logloga)®.

In both cases we assumeo that

Ay = 00,

M (n) > exp(Alogn/loglogn),
COROLLARY. Given 0 < a <1 we can find a sequence of integers A
satisfying
(1) . Aw) ~a o
(if) (@) ~ 4 (@) (loglog)*.

s

(#) For a detailed account, see Sequences by H. Halberstam and K. F. Roth
(Oxford 1966).
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The proof of these results rests upon the following lemma which ig
perhaps of independent interest.

LemMmA 9. Let {u;} be a sequence of non-negalive real numbers with
M(n) =} w. Let

i<n
1
> i == (M 0)+0 (M ()))
i<nfg 4

uniformly for q < (M(n)), 0 < ¢, e, <1. Let M(n) > (logn)€s hold,
Then we can find a sequence of integers A satisfying

(M) Afx) = M(0) {10},
(if) 2 1= iq(—@ {1-+0(5),

aisoL(mod Q)

uniformly for ¢ < (M (w))’s. Here g can be restricted (for the iy and a; simul-
taneously) to a class of integers if desived. We may take

eng = Max ({2 (a))~%, 3 iy /D) ).

(4 (=04

Actually the proof can be made to.give errors involving O,(er:%)
for any fixed & > 0. We do not do this however since the result as stated

allows us to quote one of our previous lemmas.

Proof of Lemma 9. Let u(...) denote the probability that the event
... in brackefs occurs. Then if k < n/g,
k

( Z< ) 1<t <i .._j J<7_ - l 11 ,IML-rz l I (1"",L£yq)
a<n < o= <,
a;=0(mod g) 1<ha< RS 11’ % ﬂfl

i

R
”/"i,;q(l ",“"iiq)_l

1h) <g<n <Tpsnig i1

< T] A=) (697 3 (1 =)

r<nia i<nia

n (1 _qu)

r<njq

Hence if # is real and non-negative

o
zk 1=K < — ) €@ 2 . — )Y
g ’ (aiszéédq] ) - rga (b= ( 14%/% poalL =t )

Note that

D (=)' > D o> q'l(JlI(n)—-o(ll/I(n))”ﬁ) > (M (n))0

i<nfq i<nig

provided
¢ < (M (fn))cu'

bm@

On certain additive functions

381

Taking &nq = Min{M (n)™%, 3 uiof Y wy) in Lemma 5 we see that,

v<ng r<nfy

with trivial alterations, the proof shows that

w| X 1M, (n)| > exlg My (n)

1
<oy [[ (1—paexp ({1__§83,/,3} Mq('n)),

ap= 0"(}{\0(1(])
N

2 trg (L — i)™ L

renfg .
We note that g; — 0 as j - co; hence given & > 0 we ean find () > 0
50 that gy < e if j = C(e). Thus, uniformly for all ¢ under consideration,

2 ,u;%q = Z)H;‘T’{‘S 2 Moy

vIN [y 25 0(e SR

where M,(n) denotes

and 80 3 ull 3 pwy > 0 uniformly for all ¢ = g(n) satisfying 1 <gq
vimjg  vanfa ;

< (M (n)}". Now

JT (i—mdexp(My(m) < exsexp | 3 pia) = exaexplo el My(m)})-

r<nfg PE[Y
Hence the probability b, that | 3 1—M,(n)| > gz, (n) should hold
aEn
e

for any q < (M (n))14 does not exceed
e Z exp(— ey M, (n)[16) < e
a<<(B(my)°14

> exp(— (M (w))
(1<;(I\I(n))"1«1
< exp (—(M(n))“lfr/z)
< exp(—2logn) = n7?
provided that ¢, is sufficiently small. For if this holds

228 M, (m)[16 > (M, (n))27 3 (M (n)[g)" > (M (n))3 > 4logn.

Hence E P, < oo and by the Borel-Cantelli lemma (see [10] for example)
M=l

we have that with probability 1,

Y 1-Mm]| < m

g s
gt (modq)

uniformly for ¢ < (M(n))®, Taking ¢ =1 we obtain (i) ar.ul using this

for other values of ¢ we obtain (ii). Note that even if we restm.ct ¢ to a clags

of integers the result concerning Z/' tyg D018 trivially with ¢ = 1, 80
r<NJQ

(n > ny)

that (i) holds always. This completes the proof of the lemma.
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Proof of Theorem 3 (ii). We prove the case & = 1 for simplicity,
the higher powers being reached with only slightly more complication.

20

D v(w) =
[ R34 D@,

a=<n 1
PKOXD (J.,n/ lognfloglogn)

1+ 1) = 21'4”22,

Dl
202 0XD (AH g logn/log logn)
say. Using our Lemma 9, we see that with probability 1,

>

psexp(}.,y %ogn/loglogn) a,;-tai(fh?) an)

psexp(z:l/zlognllaglogn)

{14-0(1)) A (n) {log (4*logn/loglogn)+0 (1)} ~ A (n)loglogn,
13

sinee e,y — 0 uniformly for the primes indicated by >, namely those not
»

5=

2~ A (n) {140 (Mineyy)}
»

I

exceeding exp (A{*logn/loglogn) < (M (n)) if n > my(cy).
Moreover, the number of prime factors of a; which exceed
exp (4i*logn [loglogn) is clearly < 4*loglogn, 5o that X, = o (4 (n)loglogn).
The result (ii) is now clear.
Proof of Theorem 3 (i). This can be proved using a method on the

lines of Lemma 9. We adjust that proof to show that with probability 1
we have, uniformly for g < (M (n))®,

| 1-Mm)| < eeMyn) (1> ng)
a;<n
a;=0(mod q)
where ¢;, > 0 is absolute. Then by modifying Lemma 7, we see that,
for each such sequence 4,
D) (@) < 6 4 () (loglogw+ oy, b,
;<

where » (m) indicates that we count only those prime divisors of m not

exceeding #'/*“+1. Hence we see, by using Holder’s inequality with a high
exponent as in Lemma 8, that

20 X

1) < (L-+o(1) 4 () (loglog)*.
i< Pia;

zisexp(l}lzlogn/log logn)

Ole?mly we can remove this restriction on p since this introduces sums
which are typically

1l 3 (logloga)* = o(4 (a) (logloga)¥), %> 1.

@
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The practical value of (i) is that it is likely to be quite difficult to
find a {u;} which will satisfy the conditions of Theorem 3 (ii). In this
connection we note that if we weaken the hypothesis of Lemma 9 we
can still obtain asymptotic estimates of (i) and (ii)-type. If we aim only

for A(n) ~ M (n) and similar results, we can replace the condition on
3 g by ~ M(n)/q uniformly for g¢.

»<nlg

Proof of Corollary. We take u; = 4", Then

D=t Y

Ty TSy

= ¢" " (n)g)+0(1))

= (aq) 0" +0(q ) = (ag) 0" (1+0(n77),

provided g < 2% < (M (n))2. We can then apply Theorem 3 (ii). Indeed
if 2a > 1 here, our &,, is not more than '

q2a~2 2 izu_z/(,aqq%a ~ 04q2u—2(q~1ﬂ)2a_1/nuq~1 — c4nn——1
i<nja
if g < nfs.
We note that by modifying Lemma 9 (in the manner just indicated)
we can obtain for a given & with 0 < § < 1 a sequence A4 for which

¥ (ag) ~ A (@) (loglogx)¥,

aGy<e

k =1,2,...,

and
A(z) ~ exp(logz(loglogz)™'*’) as @ oo.

We are prevented from weakening our lower bound on M(n) by
the fact that we have to consider a truncated »(m) at some stage. How-
ever, since exp(i,logn/loglogn) is O0,(n%) for any fixed &> 0 provided
» = o{loglogn), the results ave in accord with the more general con-
jecture, and the method used here would appear not to shed any light

on the behaviour of 3 »(a;) for very thin sequences 4.
e

Note that we héve that in the sense of Theorem 3 (ii) almost all
sequences are well Xp-digtributed in the sense of Barban [1]. Hence,
we can apply a variant of the sieve of Eratosthenes as used by Hooley
[8], Lemma 4 and show for example that if P = [] p, where p runs over
the rational primes which satisty p < cxp((logn)ﬁ) for a fixed 8,0 <f <1
then .

> 1= A []@—p~)+00(4 (n)(logn)),
i i ~
for any fixed ¢ > 0. Then if M (n) > (logn)*® where A4(f) is a certain
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constant depending upon B, this and similar estimates show that we can
construct a subsequence B of 4 which satisfies, for an infinity of values
of =,

(i) B(n) ~ On*(logn)~" ~ A (n)(logn)™",

() 3 o) ~@—p B (loglogn)',

<
as & - oo through integral powers of e.

We do this by analogy with the earlier limiting example. Thus, we
can find such a snbsequence of almost all sequences A. Clearly the set
of sequences B has measure zero with respect to the measure indueced
by the u; corresponding to M (n).
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ACTA ARITHMETICA
XII (1967)

The cyclotomy of Kloosterman sums
by
D. H. and EmmMA LenMER (Berkeley, Calif.)

1. Introduction. Historically the Kloosterman sum arose as a coeffi-
cient in the expansion of cerfain series giving the number of representa-
tions of integers by various quadratic forms. Thus it was that questions
of the order of magnitude of the Kloosterman sums were uppermost in
the minds of writers of the many papers on these sums. In this paper
we try to indicate that Kloosterman sums have rather interesting intrinsie
properties not depending on their estimated magnitude. In particular
we show that there is a complete theory, parallel to the classical theory
of cyclotomy, in which the Kloosterman sums now play the role of the
roots of unity.

To be more precise some notation will be needed to which we adhere
throughout the paper.

Let p be an odd prime and let

(1.0) s(v) = exp {2niv[p}.

I

The ordinary Kloosterman sum will be denoted as usual by

P—1
(1.1) ‘S(h) = D) e(w+hz) (27 = 1(modp))
80 that
»n-1
(1.2) 8(0) = D) e(@) = —1.

In §3 we investigate sums of products of Kloosterman sums extending
the early results of Salié [10]. The methods used here apply equally well
to the more general Kloosterman sum

»--1

(1.3) Si(h) = Z &(o-+ha®)

L=1
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