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constant depending upon B, this and similar estimates show that we can
construct a subsequence B of 4 which satisfies, for an infinity of values
of =,

(i) B(n) ~ On*(logn)~" ~ A (n)(logn)™",

() 3 o) ~@—p B (loglogn)',

<
as & - oo through integral powers of e.

We do this by analogy with the earlier limiting example. Thus, we
can find such a snbsequence of almost all sequences A. Clearly the set
of sequences B has measure zero with respect to the measure indueced
by the u; corresponding to M (n).
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ACTA ARITHMETICA
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The cyclotomy of Kloosterman sums
by
D. H. and EmmMA LenMER (Berkeley, Calif.)

1. Introduction. Historically the Kloosterman sum arose as a coeffi-
cient in the expansion of cerfain series giving the number of representa-
tions of integers by various quadratic forms. Thus it was that questions
of the order of magnitude of the Kloosterman sums were uppermost in
the minds of writers of the many papers on these sums. In this paper
we try to indicate that Kloosterman sums have rather interesting intrinsie
properties not depending on their estimated magnitude. In particular
we show that there is a complete theory, parallel to the classical theory
of cyclotomy, in which the Kloosterman sums now play the role of the
roots of unity.

To be more precise some notation will be needed to which we adhere
throughout the paper.

Let p be an odd prime and let

(1.0) s(v) = exp {2niv[p}.

I

The ordinary Kloosterman sum will be denoted as usual by

P—1
(1.1) ‘S(h) = D) e(w+hz) (27 = 1(modp))
80 that
»n-1
(1.2) 8(0) = D) e(@) = —1.

In §3 we investigate sums of products of Kloosterman sums extending
the early results of Salié [10]. The methods used here apply equally well
to the more general Kloosterman sum

»--1

(1.3) Si(h) = Z &(o-+ha®)

L=1
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where & is an integer prime to p—1, 8o that 2" modulo P rung through
the numbers 1(1)p—1 as @ does. A still more general sum would be
p-1

8o)(h) = ;EZ: s(w-+ho(@))
where o(z) is a permutation of the numbers from 1 to p—1. For our pur-
poses however we would need to assume that the function o iy odd and
multiplicative, modulo p, that is

o(@) = —o(—w), o@)o(y) = o(xy) (modp).

It is easily shown that for every such permutation o there is an intoger
k prime to p—1 such that

o(x) = o(modp) (» =1(1)p—1).
In fact

k ==ind,; o(g) (modp—1)

for any primitive root gy of p. Thus we have adopted the notation (1.3).

The case k = —1 = p—2(modp—1) gives us the ordinary Kloosterman
gum as (1.1). The case k& = 1 is a degenerate exponential sum

-1
(14) 8y(h) = D s(@{l+h}) = —L+p&~

X=
where we use a Kronecker symbol modulo p,
o — ll it  a=b(modp),
‘o i as=b(modp).

Salié had already pointed out that the p—1 Kloosterman sums
8(h), for b = 0, fall into two classes according to the value of the Legendre

symbol
h
2 = (—-)
»

each set being the roots of an irreducible polynomial of degree (p—1)/2.
This is the beginning of a theory, developed in §§ 4-7, in which the p--1
Kloosterman sums fall into ¢ classes according to the value of ind s (mode),
where ¢ is some divisor of p—1 = ef.

In §4 and 5 we develop the basic relations between the Sy(h) and
classical cyclotomy that hold for a gemeral % prime to p—1, In § 6 we
restrict k& to be p—2 so we are dealing thereafter with the ordinary Kloos-
terman sum 8§ (h). For this case we have the well known alternative formula

»—1

D) 1@r—ah)e(@)

Lm0

(1.5)

(1.6) 8 (h)

icm®

The cyclotomy of Kloosterman sums 387
easily derived from (1.1). This allows us to utilize the so-called Jacobsthal
sums to investigate sums and sums of squares of Kloosterman sums over
eth power residue classes. Finally in § 7 we consider the equations satisfied
by such sums. These equations correspond to the so-called period equations
of cyclotomy. Rather than the usual enumeration of solutions of con-
gruences, the methods employed in what follows depend on the elemen-
tary theory of finite Fourier series, as set forth briefly in § 2. This theory
is gufficient to obtain as special cases all the previously known properties
of §(h) with one exception. This is the theorem

r-l o9p2y(—e)—p(p—2) if = 6n—1
w3 (s = pqx( )—p(p—2) fop=bn—l,
e dpAiy(—c)+p(p+2) i p=A*43B,

a rather difficult proof of which was discovered by us in 1959 [6]. Another
proof by Mordell [9] is equally sophisticated. This theorem is used in § 7.

Besides the notation Z defined in (1.1) we shall find it convenient
to use & defined by

(1.8)

The sum Sy (k) was noticed by Davenport [2] in 1933 but was dismissed
by him with the remark that Sy(k) for & prime to p—1 is essentially the
same a8 S(h) as far as obtaining estimates of magnitude is concerned.
We hope to convince the reader that Sz (k) has an important role to play.
As evidence we point to Theorems 4.1, 4.2 and 5.1. However there is no
denying the fact that the ordinary Kloosterman sum S(h) plays the
leading role. This appears to be due to the fact that

oz’ = 1(modp—1).

#(1+a%) = 14x(modp)

holds only for & = —1(mod(p—1)).
From the definition of §;(k) in (1.1) it follows that

b4 p—1 n-1
D Sy = Z s(w)z g(ha®) = 0
h=0

L=l

(1.9)

holds for all % prime to p—1.

2. General finite Fourier series identities. As Whiteman [13] has
pointed out, it is advantageous to employ the inversion and Parseval
relations of finite Fourier series to the study of exponential sums. For
our purposes we need only simple (i.e., not multiple) Fourier series but
we need a more general Parseval relation than that usually referred to
(see Schoenberg [11]).

Let. m be a positive integer and let

(2.1) { = exp{2nijm}.
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Any real or complex-valued numerical function F(¢) defined for

i = 0(1)m—1 and periodic of period m has as its generator

(2.2) @) = Z FE) (v=01)m-1).
The inversion formula

Mm-1
(2.3) Bi) = m™" ) G

follows at once from the orthogonality relation.

m-l m
;vi C—~ i —
2 0

The general Parseval relation for two functions 7y and F, and their
generators G, and G, is

=z y(mod m
(2.4) 14 ( ‘ )y
otherwige.

m—1 m—1

3 By (0) Fylaitb) =m™" 3] Ga(t)

1=0 fi=0

(2.5) Gy (L™ ¢,

This formula is a trivial consequence of (2.2) and (2.3) in case
a = 0(mod m). Otherwise it follows from (2.3) and (2.4).

In the traditional case of a = 1 and F(i) real, (2.5) reduces to the
familiar Parseval identity

—1

(2.6) 2 FE)F(E4D) = m‘IZ |G (242 E™.
i=0 pr=0
Another case, a = —1, gives the convolution type formula
m—1 m—1
(2.7 D PE)F(b—i) = m™" 3] {G(EPRE"

i=0 pe=0
3. Various applications to Kloosterman sums, In thig section for

the application of § 2 we set m = p, so that in the notation of (1.0)

(3.0) & =e(»).
If we et
L

(3.1) Gle(w) = pe(—u")  u == 0(modp),

: 0 4 = 0(modp),
where k&' =1(modp—1), then (2.3) becomes, for i = h,

p-1 21

B2 F®) = Y e{—p" —uh} = 3 e(-+a"h) = Su(h),

p=1 [

icm®
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using the substitution 2 = —u*(modp). Thus (3.1) is the generator
of the general Kloosterman sum Sg(h).

THEoREM 1. Let a and b be integers, a 5= 0(modp); then

Pp—1

> 81(6) Su(ai-+b) = pSi(b(1—a¥)F)4-p2 5355

1==0

(3.3)

Proof. Substituting (3.2) into (2.5) and using (3.1) gives us

n-1

2, Se(d) Si(ai+b)

=0

n—1

=97 2, e(u" — (na)*' + pb)
a=1
n—1

=P Z s(m—mak'—!—bmk).

=1

(3.4)

In case a == 1(modp) we set

(1—a™)o = y(modp)

so that the last sum becomes

7—-1

D ely+b(1—a")

Y=1

) = Sulb(1—a*)7").

To complete the proof we let @ = 1(modp). Then (3.4) becomes

n-1 P-1
N 8())Si(i+h) =p D) e(ud) = p{—1+pd}.
1=1 p=1

For the classical Kloosterman sum S(i) = S_
following interesting special cases

1(3), Theorem 1 gives the

p~1
(3.5) > 8(5)8(ai+b) = pS(b(L—a)+p* 8 %,
=0
n—1
(3.6) ) 8(0)8(ai) = —p+sap?, 2 S(3)8(i+b) = —p+ obp*
=0 1==0

For a = 1(modp), (3.6) give the result of Salié [10]

p-1
D 8i) =

i=0

(3.7)

Another special cage of (3.5) is the formula

p-1

D) 8()8(b—i)

i=0

(3.8) = p8(2b)
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which becomes the convolution

p—1

2 8@)8(p—i) = —p

when b = 0(modp). This is also a special case of (3.6).
Another application of §2 arises from (1.6) which can be written

(3.9)

-1

S(eir) = p7* Y prlprit—deit) o(—pi).
=0

From this we see by (2.3) that
GHe(u) = pr(ut—4o)

is the generator of F'(¢) = 8(0i?). By (2.2) we have inversely

-1
(3.10) D S(ei)e(ui) = py(pt—do).
) i=0
Pufting p = 0 gives
-1
(3.11) D) 8(ei?) = pr(—o),

=0
a result of Salié [10]. Using (2.5) with a = 1 gives, for ¢ s 0(modp),

-1

D) (i) 8(o(i-+0))

1=0

n-1

=p D e(bw) g (u—

=0

4¢)

= 85p* —p(L+x(c)) cos(dr bm/p)

where m is a solution, if any, of the congruence

2% = c¢(modp).
The important case of b = 0 gives Salié’s result [16]
p-1

2, SHei®) = p—p(L41(c).

i=0

(3.12)

We consider next the determination of the generator of

F(i) = 8(4)8(ad), a == 0(modp),
that is
»—1
= >"8(0)8(ai)e ().
=0

icm®
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If » = 0(modp) we have

(3.13) G(1) =D 8(i)8(ai) = —p+p°%;

7=0

by (3.6). For » = 0(modp) we have

n—-1 p-1 p-1
Gle() = D D sty ) D eli{@+ag+o})
Z=1 Y=1 i=0
=p e(@+y).
T+ayg=m—v
If we set y = —vas the condition of summation becomes
= —v(1—asv)(modp).

Since x = 0(modp), we must have szt av (mod p). Furthermore,

p4y = a(l—sv) = —»(1—s»)(1—as¥) = —¥(1-+a)+s+a"5(modp).
Hence
G(s(») = pe{—»(1+a)} Ze(s+a§2§)
sstay

= pe{—r(1+a)}[S(ar’)—e{p(1+a)}],
or finally
(3.14) Ge() = ple{—v(1+a)}S(@?)—1].

), we have by (3.13) and (3.14)

p—1
)+ ) elm)e(—pi)

Applying (2.3

Fi) = 8(3)8(ai) = p—l[G(l

p=1
~1 p—-jl
= —1+p8+ 2 B(L+a)—pi) 8 (ap’)— D) e(—pi)
n=1 p=1
Letting & = —iv we have
(3.15) 8(3) 8 (ai) = poL+ 7 ((1-+a)iv+7) 8 (ai2s?).

=l

This formula for the product of any two Kloosterman sums was
first given by Davenport [2] in the more symmetrical form (aé = j)
(3.16)

8(5)8(j) = poi+ 2 e{(6-+4)»-+7) 8 (ijp*).
v=1
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The possibility of obtaining (3.16) by the inversion (2.3) was pointed
out by Whiteman [13].

We now apply (2.6) with & = 0 to our current choice of I, By (3.13)
and (3.14) we have

p—-1 p--1
(817) ) S (ai) = p7 3 G(e0)6(e(—))
n=1 P-1
=p {(péi—l)?—{— Z S (av*)—2 2 e({1--a}») 8 (a5%) |- ,_.1}.
=1 Vo]

The first of the two sums on the right iy equal to

p2—(1+y(a)p—1

by (3.12). The second sum. on replacing » by 4 and wsing (3.10) becomes

-1

D) e{1+a)i}8(ai?)+1 = py((1+a)2—da)+1

=0
= pr*(a—1)+1 = p--1—pd;.

Substituting these values for the two sums into (3.17) and simplifying
we have

pP—-1
(3.18) ;‘ 8% () 8% (ai) = p*(1+088) —p* {2+ x(a)}—3p.
=0

For o =1 we get the result of Salié [10]

p-—-1

L

=0

(3.19)

As an application of (2.8) in which F, s F, we consider the sum

=1

D 8(6) 8 (ai) S (ei)

ie=0

(@0 5 0(modp)).

For this we set

Py(i) = 8()8(at), Ty(i) = 8(ci).

;J;ha generator ¢, of F, is given by (3.13) and (3.14). That of F,, by (3.1),

_ |pe(=m) =~ 0(modp),

Gale ()
o) 0 4 = 0(modp).

icm®
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Applying (2.5) (with ¢ = ¢ and b = 0) we have by (3.10)
p—1 =1 _ 10——11 o
7 5(i) 8 (ai) 8 (o) = p[— D e@+ e — o (1+a)} 8 (a5%5)|
1=0 u=1 p=1
.op—1
=ptp D et{l—(1+a)}) S (')
=1

= p+pfprl(L—3(1+a)2—az9 1]

= 2p+pPyl(e—1—a) —da]

or
-1

(3.20) Z 8(i) 8(ai)S(ei) = 2p+p*yl(a—0c)*—2(a+c)+1],
im0
2 form which exhibits the symmetry in & and c.
For ¢ = a we get the special case
Pp—1
D 8()8*(ai) = 2p+p*y(1—4a),

=0

which, for a =1, gives the result of Salié [10]

(3.21)

-1
D 8 = 2p+prx(—8)

=0

In order that the sum in (3.20) be exactly 2p we must have

(3.22)

(¢—1—a)? = 4a(modp),

g0 that y(a) = 1. Letting ¢ = s*(modp) we have

(c—1—s?) = 428 or ¢ =(s£1)?
Hence if s-L1 == 0(modp) we have
»—1
(3.23) D 8()8(s*) 8((s:£1)%) = 2p.
=0

For p = 6n-t1, examples of this are provided by s and (1+s) being
solutions of a?-+z+1 = 0(modp) and for p = 10n-+1, we can take for
s and 1 —s the Fibonacei roots of #2—z—1 = 0(modp).

4. Sums over eth power residue classes. In (3.11) and (3.12) we
ate in effect summing the Kloosterman sums and their squares over
the set of gquadratic residues or non-residues of p. More generally we
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consider now the problem of summing over e¢th power residue and non-
residue classes, where ¢ is some divisor of p—1 = ¢f. For this purpose
we need the following basic facts from the theory of cyclotomy ([1],
(2], [31). ‘
It will be convenient to introduce a Kronecker symbol mode as
1 it

4 =

o it

a == b(mode),

4.0
0 @ = b(mode).

Let g be a fixed primitive root of the odd prime p == ¢f--1 and let
C; be the class of all f incongruent #’s for which
ind,(#) == i(mode) (i = 0(1)e—1).

The so-called cyclotomic periods 7, are defined by

(4.1) m= Deh) (i=0(1)e—1).
. heCy

It is easily seen that
e—1

(4.2) D= D e(h) = —1.
LB h##0

The generator of the »'s is the Lagrange resolvent

e—1
o(@) = Y ma®,

=0

(4.3)

where a = exp(2wife), so that by (4.2)
(4.4) (1) = —1.
By inversion (2.3)

-1 ’
ny =6 2 ()™,
ym0
A well-known property of this resolvent is ([11, p. 87)

(=1yp it
1 if

(4.5)

v 2= 0(mode),
(mode).

(4.6) (o) e(a™") =

v ==

Similarly we define the corresponding K1 i
rescluont oy D g Kloosterman periods and

(4.7) 6 = 3 8 (h)

heCy

(i = 0(1)e—1)

icm®
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and
e-1
(4.8) Te(a) = D) 0.
1=0
In case k = —1 we write

oEN =6

By inversion we have

6 = ¢t 3 T(e)a™.

v=0

(4.9)

A connection between the 6§ and the #; is given by
THEOREM 4.1.

e~1
o == 2 i M4+
i=0

Proof. By definitions (4.7) and (1.3)

(4.10)

p—-1 61 -1
6 = > e(a) De(ath) =" e D e(a®h) = > D) > ey,
z=1 heC; =0 zeCy 1eC; ) i=0 XeCy VeChitf

since indy = ind,(a*h) = ki-Hj(mode).
The theorem now follows from (4.1).
For the Kloosterman sums we have simply

e~1

b; = Z Nithji-

=0

(4.11)

In the degenerate case & =1 we have by (4.7) and (1.4)

o) = D(—1+p").
heC;
Theorem 4.1 gives in this case

61

Z Mgy = —Ff +p AP,

i=0

(4.12)
a well-known identity of cyclotomy ([3], p. 395). The two kinds of re-
golvents are related by

THROREM 4.2.

(4.13) Ty(a’) = 7(a)7(a™).
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Proof. Applying (2.5) with m =e¢, F,(¢) = I,(i) = o, a =,
b =4 so that G;(d") = Ga(d') = v (), we find

e-1 e—1
Z NeMpigg = 0—1 2 T(a")r(a' ku) (l~—h - oyl‘r)
1=0

==
by (4.10). But T4(o') is the generator of 6. Hence the theorem,
For k = —1 we have the simple result
(4.14) T(o) = z2(dd).
As another example by (4.6)

o (=1p i v 0(mode),
Ty(a') = .
1 it = 0(mode).
The analogue of (4.6) is
THEOREM 4.3.
p?  if v == 0(mode),

(4.15) Ti(@) Ty(a™) = ll if v = 0(mode)

Proof. This follows from (4.6) and (4.13) and the fact that % is odd.
The analogue of (4.12) is

THEOREM 4.4.

e~1

(4.16) 2 0008 = —f(p+1)+p* 45.

i=0

Proof. Applying (2.5) we get

S = 5 ayeyne e

i=0 v=0
By Theorem 4.3 the right-hand side becomes
e-1
o149 Y o] = 67 [1—p*+ep* 4],
Vo=l )

The theorem now follows from the fact that p = ef 1.
Combining the 6’s with the »’s we have
THEOREM 4.5.

e—1 N .
(4.17) D 0, = ‘f TP if fis even,
=0 f+p77k’b+e/2 if f is odd;

e—1 .. .
(4.18) : 2 89y s = F+p70 if f is even,
= F+DMiren 4 f is odd.
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Proof. Chooging F,(i) = 6 and F,(4) = 7; we obtain from (2.5)

e—1 e—1
419) N 0P = D@D+ Y (e Tula™) ]
T=0 p=1

[1+2 o) 7(a ) r(a™) a].

=1

The two values @ =1 and a = —Fk permit the use of (4.6). Furthermore
(—1) = o V" Setting a =1, (4.19) becomes

62—:1 0%"’)‘)]@_,_1) = Eﬂl[ 14+p Z o (L“ (b-+p-1) ,2)]

40
[ 1+p2 a K eo=01) ).
v=0
By (4.5) we have
e-1
D 0 = f+pm
=0

where
kb it  fis even,

I _k'(b"l‘ p— 1)/ ) = ‘7{’1)-}—6/9 if fiS odd.

(4.18) follows in the same way by setting a = —k'".

5. Connection with Jacobi’s funetion. The function

[ZJZ‘Zav{inds—(n+1)ind(14-s)) v 0(mode)
(8.1) R,(d) = (&3
-1 y = 0(mode)
e—1
= 2 b(i, n)
i=0
‘where
e—1
b4, n) = —1
i=0

ig due to Jacobi and its properties are treated ip [11, [31, [4] and [7].
It is connected with = by the fundamental identity

v o B o | F 0(mode)
(8.2) Ra(a)7(a™) = v(a)7(a”) (n-+1)v == 0(mode)
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which also holds when » = 0. Another property we shall need is

BB (o p it 2» 5= O(mode),
(6:3) OB =11 4 9y = omode).
This follows from (4.6) and (5.2) with n = 1.
By inversion of (5.1)
e—-1
(5.4) bi,n) = ¢t 3 Rufa’)a™
Va0

A well-known property of the periods #; is that the product of any
two of them is linear combination of the n’s with integer coefficients.
By Theorem 4.1 it follows that 6§ is also a linear combination of the
7’8 with integer coefficients. More than mere existence can he proved
about these coefficients. If e is a prime we have

THEOREM 5.1. Let ¢ be o prime and let k = 1. Then

e-1

68 = 3 b(j+ilk—1), —H) s,
iz
where the b’ s are coefficients of the Jacobs Sfunction (5.1).
Proof. If in (5.2) we set n = —Fk and use Theorem 4.2 we have

Ti(@’) = t(¢ ) R_1(")

since ¢ is a prime.
We now use (2.5) with (4.8), (

(v = 0(L)e—1),

5.1) and (4.3) to obtain the theorem.

6. Kloosterman sums and Jacobsthal sums. In what follows we
restrict ourselves to the case of ¥ = —1, the classical Kloosterman sum
S(h). The Jacobsthal sums y and ¢ arve defined as follows [5]

P—-1
(8.1) ve(h) = D' glat+h),
L=l
—~1
(6.2) Z x (@) (2°+h).
Q]

These are related to the function R, () as follows [7]

e—1
(=176 Yy, (4g")a®

d==0

&1
e Yo (4g') o

=0

if ¢ iy even,

(6.3) Ri(d) =

if e is odd.
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Other properties of the Jacobsthal sums are [7]

-1
(64) % (0) = 5= (1 (1),
(6.5) o (19%) = (0},
) = z(h)p.(h) if e is even,
(6.6) VelB) =\ yge(hy i e ds odd.

Tor the expansion of §; as a linear combination of the »; we have,
for the general ¢, the following counterpart of Theorem 5.1.

THEOREM 6.1.

e} ywe

1 +E-DEf if ¢ is even,

g+ (—
6.7y b6; =
if e is odd.

o 2%(—49"”)771»
q==0

Proof. By (1.6) we have

—1

(6.8) = D8 Z e(2) D) y(at—4h).
heC; =0 heUi
Putting
b o= g7'+('t

and letting ¢ = 0(1)p—2 we get the class C; repeated e times over and
the inner sum becomes

ey (— 1)2

Returning with this result to (6.8) and setting, for @ # 0,

(¢ (g *—Fg~a?) = (=1 Oy (~p~Ta).

@ =g*® (i =0(1)e~—1, s =0{1)f-1)

we obtain from (6.5)

B = (—1Y =% [y, (0) + Zw

=0

(14(-1

21-—7 2 E(w)]
ze(.'
+ Z 771'%

=0

To get (6.7) it is convenient to separate the two cases,zf (;ven and ¢ odd,
and use (6.6) to reciprocate the argument of e (—4g"77)-

- (_1)14-(19—1)/2,,—1[1” —1
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We consider next the two sums

(6.9) o =D &),
1eCy

(6.10) Q=D 8(i)8(—
ieC’;,'

for which we have by (3.7) and (3.9)
c—1 e-1
(6.11) Do=p—p-1, Y 0=-p-1.
7=0 Fe=0
THEOREM 6.2.

e~—1
6"12‘l’a(~49'i)0i+y+pf if e 4s odd,
(6.12) Q= =

—1

_12% “ 6, y+pf  if e s even,

=0
e—1

Q= ”12%(49%) Biys—f.
=0

Proof. For the proofs it is convenient to use the following lemma
which is to be contrasted with (3.15).

Levma, For a 0

. »—-1
(6.13) 8(i)8(a8) = pai+ D) (1 +a—m)2—4a) 8 (mi).

Me=0

Proof. By definition (1.1),

P—1
8@)8(ai) = D' s[a-+y-+i(@+a7)].
2Y=1 |
Letting y = so and then ¢ = x(14-s) for s = p—1 we have
-1
S(0)8(ai) = > e[w(1+8)+iz(1+43)]
z,a=1
~1 P~2% P-1
= Z: e((l~a)iz)+ D' 3 e(t-+E(1+8)(1+08)9)
x: 8e=1 fe=1l

= ~1+psi+ 2 S[(1+8)(1+a3)i]

8z=a]1

-1
=p&i+ Y S[(L+s)(1+a5)i]

8=]
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Now if we ask for each m = 0(1)p—1 how many solutions s are
there of the congruence

(148)(14a8) = m(modp);
we find that the number is

1+y[(1+a—m)*—4a].
Therefore

S (1) 8 (as) = p&i+ 2 8(mi)+ Z (1+a—m)2—4a) S (mi)

Mm=0 M=0
The lemma is therefore a consequence of (1.9).
To prove the Theorem we use the lemma to write, (taking m =0
separately)

p—1
(6.14) 3 8()8(ai) = pfst+ ) x[(L+a—m)2—4a10; mam—Fz* (1 —0)

€Cy Mm=1

=/l (p+1>5a—1]+2 B4s D x[(1+a—m)T—da].
F=0 meCy
The inner sum can be evaluated in terms of Jacobsthal sums in
the two cases a = +1. In the flrst case we have with m = g% and
t=01)p—2

p—2

Dalmzim—a) = 3 (g x(g™ =4

meC; t=0

IEXg)x )
D—
=e'12
v

W) 2y —4g7)

=1
1%( 49“‘) if ¢ is even,
e (— -4 if e is odd.

The formula (6.11) now follows at once from (6.14). In case @ = —1 the
inner sum of (6.14) now becomes

e 2
D a(m*44) = 2 2@ 2 (g™ +4g7)
me0;

p—1

=07 3 g 407 = ¢ puldg™)-

Y=l

Tormula (6.12) now follows at once from (6.14).
Next we find the generator of the £;.

Acta Arithmetica XII4
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THEOREM 6.3. The generator of £y is

5—11!2 ” (=L R (T () v # 0(mode),
(6.15) e je = pr—p—1 v =2 0(mode).

Proof. In case » = 0 the result follows at once from (6.9) and (3.7).
Suppose now that » = 0. Then (6.12) can be written

1

Q =" D H(—4g") 0;_-+pf

(2=

where H is ¢, or y, according as ¢ is odd or even. Since —1 == ¢"*(modp),
we have

e—~1 e—1 [ 2%}
ZI o o = gt 2 H(4g‘f+é//2) 0;_s o'~ gr(rell2) o efv/2 +pf Z o,
=0 =0 im0

Summing firgt over j—¢ and then over i-+¢f/2 we have by (4.8‘) and (6.3)
e—1
D Qa’ = (=1 Ry(a) T(o) 0" = (— 10 R, () T(a").
i=0

‘We are now in a position to prove

THEOREM 6.4.
< Ton? s
(=1 fp* if e is even,
6.1 ;0 ; = Apd— 1)(9 1)—
(6:16) 3 28y = (f+4)p°~f (1) 2p+1) o e

Proof. We use the Parseval identity (2.5) with a =1, b = j, m = e,
and we use Theorem 6.3. This gives us

e—1 e—1
(617) e 3 %u0uy = (1 —p =17+ 3 Ry(a™) By (o) (") I(a™") .
=0

=1

Using (4.15) and (5.3) the sum on the right becomes
e—1 s ' I fn2 i : .

. (—1Yefp® it e is even

78 ) (p— (1) 45) ™ = p*(~1-+ted) . ’

A=1 it e in odd.

Substituting this into (6.17) and simplifying gives (6.16).

?. Period equations. The equation satisfied by the e quantities #;
isknown as the period equation. It is an irreducible monic abelian equation
with integer coefficients. Similarly the quantities 6§) and @, satisfy equa-

tions of degree ¢ with properties similar to those of the clagsical period
equation.
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It we let
Ly == en; 'i’l:
?/»gk) — eOW—-l,
& = eLi—p*+p+1,
then
e—1 e—1 €--1
(7.1) Da= g = Vo=,
.m0 im0 ey

go that the equations satisfied by @’s, ¥’s and &'s ave reduced. By (4.12),
(4.16), and (6.16),

pe(e—1) if f is even,
—pe if f is odd,
(13) DY = ¢ S0P —¢ = pPo(e—1),

2 2 2 2 pPe(e—1) ¢ odd,
7.4 2 = ¢ Q2 —e(p*+p—1) =
(74 D Qi—e(p*p—1) lpae(e_m_wg s oven

(1.2) Dot =6 Dyl—o = [

If ¢ is odd the three equations satisfied by the a's, y®s and #%s are
strikingly similar to begin with, In fact they begin, by (7.2), (7 3), (7.4)

(7.5) .«u“—(;) P2t =0,
(7.0) v (3) Py =0, ) (e is oda)
(7.7) 2t — (‘;) P =0,

When ¢ is even the equations in y and # gplit into two equations of
degree ¢/2 with integer coefficients.

Tor special values of ¢, more coefficients of the period equations
of g™ = y; are known in the following cases.

Case It ¢ == p-~1. From the previous discussion we known the
sums of nth powers of the §(i) for n = 0(1)4. Hence the equation (cor-
responding to o1 = 0) satistied by all the Kloosterman sums §(5),
including 8(0) == -1 begins

7= (8) v = L foa (-3 +2)9 -+ dp (0—8) (17 ~8p—2)yP 4. = 0

If wo remove the factor y—8(0) = y-1, the quotient is not irreducible
in the rational field but is the product of two polynomials of degree
(p~1)/2 with integral coefficients. Namely

oY) = —8(s
Qo(y) x(ﬂl(y (4))
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and

= [] y—80).

Ai)=—1

The first four coefficients of each of these factors are easily derived from
(3.11), (3.12) and (1.7). We have

Qu(y) = VP 1 (px(—1)+1)y®~ " — i {p* —2p (2 41 (~1)) =3} y* I
+5 [51) 2 (—1)+p* {85(3)—8x(—3) ~20x(—1)+3}
—p (1642 {5 —1)+x(3)}+92(—1) +28} 19" " +-...,

Quly) = ¥P I (py(—1) 1}y PR — 5 {p* -2y (—1) =3}y -

+5 [—8pox(—1)—p {8x )+8y(~-8) g (—1)—8}+
+p {1642 {y(—1)+7(3)}+9x(—1)—16}]y»~ V4.

where p = A%-+3B2, if possible.
Case II. ¢ = (p—1)/2. In this case we have

6; = 8(g)+8(—g", i=0(1)(p—3)/2.

The equation satistied by these 6’s corresponds to Sylvester’s cyclotomic
polynomial of the second kind [12]. Formulas (3.21) (with ¢ = —1) and
(3.22) enable us to find one more term in the equation (7.0) as follows

y(p_lm——ﬁ(_p;;ﬂﬂy(p—s)lz_
2(p—1
“%_)‘{[x(~3)+3l(5)](11 —1)24-2p 6}y P-4

Case III. ¢ = 2. In this case we may use (7.1), (7.3) and (7.4) to
obtain the quadratic period equations

yrpt =

22—pt = (.
These Tesults are obvious consequences of the more explicit statements
(78) Yo=2(=1p, 4= —x(~L)p,
(7.9) Y= —P, B =0

that follow from (3.11), (3.12) and the definitions of y; and #;. The cor-
responding cyclotomic period equation is, of course,

=x(~1)p =0

bm@
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and (7.8) and (7.9) correspond to the determination of the gign of the

Gauss sum

1

s

e(0i*) = Vpy (—1)(c).

&

Fam

Oase IV. ¢ = 3. The three period equations (7.5), (7.6) and (7.7)
in this case involve the integer defined unambiguously by the quadratic
partition of 4p,

4p = L*4+2TM* (L == 1(mod3)).

They are

(7.10) o' —3px—pL =0,

(7.11) ¥ —=3p'y—p*(L*—2p) = 0,
(7.12) 2 —3p* 2 —p*(L° —BpL*--Bp*L) = 0.

In the constant terms of these three equations one recognizes the Chebyshev
polynomials
0, (t) =2cos(narccost/2)

for n =1,2, and 5. Hence if we define
y = arccos(3L/Vp)

the roots of these three equations are

— — 2 - 4
&Ly = 21/19 cosnz;», By = ‘71/10 Co8 2«%—1, @, = 2Vpcos Z—E—F—,
2 i 2y 42 2y 4
Y1 = 2pcos - 2/“7 Yy = 2pcos yii ) Y3 = 2pcos ytin ’
3 3 3
5y -2 2 4
2, = 29" cos —32} 2y = 2p"*cos .)y—3|- T 4y = 2p™cos 7;— il

The discriminants of (7.10), (7.11), and (7.12) are
(2TpMY,  (27p"LMY, [27p' M (p"—3pL*+I"7,
respectively.

Case V. ¢ == 4. The three period equations, in this case involve the
integers a, b in the quadratic partition of p

p = a0 (a=1(mod4)).

In the clagsical case ([1], p. 230) it is customary to write the quartic
polynomial, in Lebesgue’s form, as a product of two quadramcs with
coefficients in the field % l/p namely

[@* 2V p -+ {1 —2 (2)} p 20V p] [0* -+2V o+ {1 —2x (2)}p —2aVp] = 0.
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In the case of y; and #; the two quadraties have rational integral coefficients
and are in fact
[y —2py+p* —4pa’] [y +2py +p° —4pb*] = 0
and '
[+ 2ps—4p® +p*+16pa? b [2* —2pz+p* —16pa’b*] = 0.
Actually solving for the 1’ and &’s we find
Yo Yo = P2V, Yy Yo = —DE20Vp,
2o, % :‘—;piZ(aZ——b“)l/ﬁ, 84y 8y = p-dabVp.
The discriminants of the 2's, ’s and 2’s are
2Uphe i p = 8n4+1  or  2"p°0(3p-Ha) if p = Su-fb,
{2101)3 0:3 b3}27

and
(2°p* ab (a*—D%) [p* (p —1)*—164"D* (o —1°) 1Y,
respectively.

Case VI. e = 5. Here we encounter for the first time the sums S;(h,
which are different from S(h) and nondegenerate, namely S;(h). These
sums, and their squares, lead to reduced “period equations” of degree
5 differing from the equations corresponding to S(h) and their squares

Both pairs of equations, like the classical equation for the five #;,
bave coefficients which depend on a certain quaternary quadratic parti-
tion of 16p [8]. Instead of finding these coefficients for a general prime
p'=Bn+1, we give as an example the five equations for p == 11. We
also define a parallel of (6.9),

o) = D8y, A =500—100.
73507
The five equations have discriminants D and coefficients as given in the
following table. '

Roots D:5~0 ‘ Coetficients

24 114 10 —110 55 +-2810 979
yi 118. 672 10 ~1210 —11495 --87610 - 24079
3 112 1 0 —1210 --18758 - 53240 - 145079
2 |118.23%-11282.04392} 1 0 —13310 17545 --20379210 - 174094679
40 1112.232.432.263% | 1 0 —10360 —508805 --68892K60 -} 2078701229

In conclusion we wish to point out that the classical results concerning
the period equation considered as a congruence modulo an arbitrary
prime also have their counterparts for the above period equations. These
will be the subject of another paper.
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