COLLOQUIUM MATHEMATICUM

VOL. XVII 1967 FASC. 1
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In this note™ we treat a set X with a total (linear) order <, provided
with its order topology. Our main interest is the possibility of extending
the order in X to compact spaces containing X.

Our usage concerning compactifications is basically that of Kel-
ley [2], p. 151, with the proviso that all spaces be Hausdorff and the
exception that a compactification and “its space” are not always distin-
guished. If X, is a compact space containing X as a dense subset, X,
provides an orderable compactification of X if the order of X can be so
extended to X, as to yield the given topology of X, as the order topology.
The last condition means precisely that the closed (open) intervals of the
order be topologically closed (open). A compactification is suborderable
if it is dominated ([2], p. 151) by an orderable compactification; these
compactifications have a neat characterization, as will appear.

We denote by F(X) the set of continuous, increasing functions f
on X to the unit interval I = [0, 1] for which inf f = 0, sup f = 1. We
assume as known that F separates X; a proof may be modeled on Ury-
sohn’s Lemma as presented in [2], pp. 114-115.

1. LemmA. If B < F and F separates X, the weak topology in X
determined by F coincides with the order topology.

Proof. Let aeX and Y = {s: 2 <a}, Z = {z: f(x) <f(a) for all
feE}. Clearly Y < Z and if xeZ — Y, then f(x) = f(a) for all feF, a con-
tradiction. Thus Y is closed in the weak topology and similarly the set
{x: x > a} 18 closed.

2. THEOREM. The closure, X, of X in I"X) is orderable and domi-
nates every orderable compactification of X.

Proof. Define a partial order in X by declaring z; <z, when

2, (f) < 2,(f) for each feF(X). If 2, # 2, we can suppose z,(f) < a < 2,(f)
for some feF(X) and real number a. Set A = {zeX:2(f) < a} and
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B ={2¢X:a <z(f)}. Then z,e(A ~ X), #,¢(B ~ X)~. But if €A A X
and z,e B N X, then f'(z,) < f'(x,) for every f' ¢ F, 80 2, < #,. This proves
the first part.

For the second, let X < X,, an orderable compactification, and
let E be the restriction to X of #(X,). Then from the embedding X, < 1”
it is clear that X, is dominated by X, as a compactification.

3. COROLLARY. If K < F and F separates X , the closure of X in IF

Jurnishes an orderable compactification; all orderable compactifications are
so determined.

In contrast to the general situation in which no minimal compacti-
fications need exist, there is a minimal orderable compactification which
we now construct. We define # to be the class of closed subsets 4 of X
such that if # <y, yeA, then always weA. (4 might be called a “closed
ideal.”) Z is totally ordered by defining A < B when 4 < B. If P — {F}
is a non-empty subfamily of %, ¢ = [v {F'eP}]” is the least upper bound
of Pin #, and D = ~ {F P} the greatest lower bound. Thus .% is compact
in its order topology.

4. THEOREM. Let X = X,, an orderable compactification of X. For
ain Xy, let pa) = {weX: 2 < a}. Then ¢ is a continuous Sfunction on X,
nto £ and a homeomorphism of X into &Z.

Proof. Let Ae# and A" = {weX,:p(x) < A}. To show that A’
is closed, it is enough to show that it contains its supremum x,. But if
@,¢ A’y A" is open and then g, is in the closure of (4’ n X) < X,. If gye X,
then @yeA’ inasmuch as 4 is a closed subset of X. But, if z,¢ X, ¢(a,)
= @eX: @ <@} = A since , is the supremum of A'. Similarly the set
{#e Xyt @(w,) > A} is closed and ¢ is continuous. Clearly ¢ is an open
mapping of X onto ¢(X) and is thus a homeomorphism.

To obtain the minimal orderable compactification of X , we take
the closure of ¢(X) in % and call this space X,; 1ts minimal character has
just been demonstrated. X, — % unless X has a first element.

5. THEOREM. X, is connected if and only if no element of X is an
tmmediate successor of another.

Proof. If b is an immediate successor of a in X , the open set ((p(a),
@(b)) of X, is void since it has void intersection with X. On the other
hand, a compact ordered space is connected if it contains no immediate
successors; let 4, be an immediate successor of 4, in X,. Then the diffe-
rence 4,—4, is a singleton {x,} < X and 4, = {w: v < x,}. We observe
that unless A, contains its supremum it is not closed, and this supremum
precedes x, immediately.

6. COROLLARY. If an orderable compactification s larger than X,,
it is disconnected.
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Proof. Suppose Y is connected and y, <y, in Y. Then (y,,y,)
intersects X so that ¢(y,) < ¢(y,) in Theorem 4.

7. LEMMA. Let W, Y, Z be compactifications of X, W <Y <Z. If
W and Z are orderable, so also is Y.

Proof. Let ¢,,¢,, 9, be the homeomorphisms of X into W, Y,Z
respectively, and f,, f, be the covering maps of Z onto Y, and Y onto
W, respectively; then g, = f,0¢, and g5 = f,0¢,. We claim that if f, (z,)
= f1(z,) for z;eZ, then (if, say, 2, < 2,) 2, is an immediate successor of
z,. For if (z,, 2,) is not void it intersects g, (X) in a dense subset of (2, 2,).
If xeX and z; < g,(v) < 2,,

foofi(z1) < frofi09:(®) < [fr0f1(22).

(Here we have used the fact that f,of, preserves order.) Thus [z, 2,] ~ X
is a singleton {g,(x,)}, and neither end-point of (z,,2,) can be equal to
g.(x,), since f,of, is a homeomorphism on ¢,(X). Since 2z, has an imme-
diate successor it is in the closure of ¢,(X) ~ {¢:2 < #,} and this last
set has no supremum in g,(X). But, since (2, %2,) = {g,(%,)}, the set
g1(X) ~ {2: 2 < 2,} contains g,(x,) in its closure. But g, is a homeomor-
phism; this contradiction proves the claim. Now Y = f,(Z) is ordered
by setting v, < v, when f; ' (y,) < fi'(y,), or, equivalently, in such a manner
that the images of closed intervals in Z are the closed intervals of Y.

We resort now to the use of uniformities to avoid certain well-known
logical difficulties. A compactification of X is identified with a totally-
bounded uniformity for X which yields the order topology as its uni-
form topology. Observe that for any set (this really i¢s a set) of unifor-
mities {U,: aeA} there is a strongest uniformity contained in each of
the U, and a weakest containing each of these; if each U, is totally-bounded,
so also is the sup. If also each U, yields an orderable compactification,
it is bounded above and below by the maximal and minimal uniformities
of this type, by Theorems 2 and 4. But then by Lemma 7 both the inf
and sup of any collection yield the order topology in X and have com-
pact, orderable completions. Less precisely, the orderable compactifi-
cations form a complete lattice, in which inf and sup are also inf and sup
among all compactifications.

8. THEOREM. The lattice of orderable compactifications of X is iso-
morphic to the lattice 2° of subsets of a certain set S.

Proof. The set S emerges from the map ¢ of X, onto X;, as in
Theorem 4. As in Corollary 6 and Lemma 7, it is seen that if y, # ¥,
and ¢ (y,) = ¢(¥,), then y;¢ X and (y,, ¥,) is void. Moreover, this is a suffi-
cient condition that ¢(y,) = ¢(y,). Evidently what is needed to complete
the proof is the fact that for any subset 7 of these doubletons, there is
a map of X, onto an orderable compactification which collapses the
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~

doubletons in 7 but identifies no other points; by Lemma 7 it is enough
to show that these points can be identified so that the quotient space is
Hausdorff.

More generally suppose an ordered space Y is partitioned into a col-
lection Z of disjoint closed intervals {D;} and we say D, < D, if d, < d,
for some d;eD; (i = 1,2). The quotient topology is Hausdorff if it is
stronger than the order topology. Now if D,eZ we have to show {(DeZ:
D << Dy} is quotient-open and {DeZ: D < Dy} is quotient-closed. The
first set contains exactly the members of 2 which include an element
<< inf I);; the second contains exactly those which include an element
< sup D,.

9. THEOREM. A compactification of X is suborderable if each monotone
sequence in X converges in the compactification.

Proof. Let f be a homeomorphism of X onto a dense subset of the
space X, and g the homeomorphism of X into X_, as in Theorem 2.
It is enough to show that if {x,} is a net in X such that g(x,) converges
in X, then f(x,) converges in X,. Also, it can be supposed that the limit
y of g(r,)¢g(X). We claim that the sets {g(x): g(x) <y} and {g(x):
g(x) >y} do not both contain y in their closure. For if neither set is empty,
set h(x) =0 for g(x) <y, h(x) =1 for g(x) >y; then heF(X) and so
can be extended continuously from ¢(X) to .X_. For this reason we can
suppose, say, that g(x,) <y for each index « and prove that {f(x,)} has
at most one cluster-point in X,.

If on the contrary there are distinet cluster-points 2, and z, in X,
~ these have neighborhoods U; with U; ~ U; void. On the other hand,
inasmuch as g(x,) -y and g(x,)<< y, there is a sequence of indices
oy < ay << azg < ... such that z,, < 2, < z,;... and flx,,)eU, for i odd,
f(@y;) e Uy for i even. Then {f (#4;)} must converge, which is a contradiction.

10. Corovrary. The Stone-Cech compactification of X, p(X), is or-
derable if and only if every sequence in X contains a subsequence converging
n X.

Proof. Clearly if the stated condition on sequences holds, monotone
sequences in X' converge in f(.X). In the reverse direction, we use the
fact that every sequence in X contains a monotone subsequence. Thus
In fact what has to be proved is that if, for example, »;, < ¥, < 3 <.
in X, the set {w,: n = 1,2,3,...} has a least upper bound in X. In any
case, writing I = {x: 2 <, for some n}, I is open and the supposed
least upper bound is the only possible boundary point of I.

There exist continuous functions f,, 0 <f, < 1, in the intervals
Iw = {&, <@ < a,,,} such that whenever f;(z;) is defined f;(x;) = 11+
+(—1)). Define f*in I to coincide with f, on I, and f*(x) = 0 if 2 < x,.
If the sequence x, < &, < x; < ... does not converge in X, 1 is then
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open and closed, and f* can be extended to all of X. But since f*(x;) does
not converge, the indicated sequence does not converge in A(X) and
then clearly # is not (dominated by) an orderable compactification.

11. COROLLARY. A funetion in C(X) is in the closure of the space of
functions of bounded variation in X if and only if it transforms monotone
sequences in X to converging numerical sequences.

Proof. The subset M of functions which transform monotone
sequences to convergent sequences evidently forms a closed subal-
gebra which includes all functions of bounded variation. The subal-
gebra M is C(Y) for some Y, and Yisa compactification of X by Lemma 1,
and by Theorem 9 an orderable compactification. By Theorem 2, howe-
ver, Y furnishes a maximal orderable compactification so that ¥ = X ..
But then the functions of bounded X.-variation are dense in C(X),
i.e. in M. This completes the proof.

We observe that we have proved that g(X) is orderable if and only
if every continuous function on X is bounded.

We wish to acknowledge much helpful criticism of this work by
Professor Kenneth Ross.

Addendum. After this work was done, we discovered that Bana-
schewski [1] treated a restricted case of the problem considered, but
by somewhat difterent methods.
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