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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

Spectral structures and uniform continuity*
by

S. Leader (New Brunswick, N. J.)

0. Introduction. The class &* of all bounded, real-valued,
uniform funections on a uniform space (X, U) need not characterize the
uniform gtructure, but corresponds to an &*-equivalence class of uniform
structures on X. A characteristic invariant of the S*-equivalence class
is the induced proximity relation ([4], [1], [6]). Now even the class S
of all real-valued, uniform functions on (X, i) need not characterize U,
but corresponds to an S-equivalence class of uniform structures [5].

The present work has its origin in the search for an intrinsic charac-
teristic invariant of the &-equivalence class. Such an invariant, the
“uniform spectral structure” introduced in Section 6 below, yields necessary
and sufficient conditions for an S-equivalence class of uniform structures
to have a pseudometrizable member (Theorem 13) and ‘or a unique member
(Theorems 14 and 15). The uniform spectral spaces under spectral mappings
correspond to the functionally-determined uniform spaces [5] under
uniform mappings. If & = &* then the uniform spectral structure reduces
trivially to the proximity structure. )

The uniform spectral structures suggest the more general “spectral
structures” introduced in section 2. Spectral structures form a natural
setting for the Urysohn construction (Theorem 2). They yield a Stone-
Weierstrass theorem (Theorem 3), a boundedness criterion (Theorem 5)
generalizing Atsuji ([2], [3]), Njastad [10], and Hejeman [7], and & concept
of uniform connectedness (Theorem 6) generalizing Pervin and Mréwka [9].

1. Basic definitions and lemmas. A specirum e in a set X

i @ sequence {4,} of subsets of X indexed by the inbegers —oo < n < oo

such that Ay C Apes for all n, (4 =6, and () 4, = X. Two points
n n

are separated by e if there exists n such that one point is in 4, and the
other in X— A,.;. Two points are separated by a family P of spectra
if they are separated by some member of P. A family P of spectra refines

* Research supported by the National Science Foundation (NSF GP-4413).
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a family Q if every pair of points separated by Q is also separated by P,
A spectrum b splits a spectrum a if Bo, = A, for all ».

A spectrum b in X is an a-spectrum for a psendometric o on X if
there exists & > 0 such that ’

(1.1) a(Bp, X—Bpy1) = ¢ for all m.

For U an entourage in X x X (that is, a reflexive, binary relation on X))
a spectrum b in X is called a “U-spectrum if

(1.2) W[By] C Bytr  for all n.

Note that (1.2) is consistent with (1.1) if W = a~[0, ¢).
For a spectrum b let % be the symmetric entourage consisting of
all (z,y) with # and y not separated by b. BExplicitly,

(1.3) ’ ' B = (Brt1— Bp-1)?

where the square is the cartesian product. It is easily seen that for a sym- »

metric entourage U,
(1.4) b is a W-spectrum if and only if WC B,

Lepva A. If a splits b, then in terms of (1.3), £ C 3.
. Proof. Given (z, 2) in A2, there exists y with both (%, y) and (v, 2)
in #. Choose n such that 4,—4,_, contains y. Then both @ and z are
in Apy1—A4,_, which since a splits b is Appy1— Byy for n = 2% and By, —
— Agp—y for m = 2k+1. In either case Apy1— Ap-y C Byyy— By for
k=[n/2]. 8o (»,2)is in B.

Lemnta B. For pseudometrics a and p on X the Sollowing are equivalent:

(i) Bvery B-spectrum is an a-spectrum.

(i) f(4,B) =0 for_all subsets 4, B of X with a(4, B) = 0.

(iii) B is uniformly comtinuous with respect to a.
. :.PI‘Of)f.‘ Thfs faquivalence of (i) and (ifi) is well known [8]. That (iii)
implies (i) is trivial. To prove that (i) implies (ii) let (A4, B) > 0. Then
any spectrum of the form {@, 4,X—B, X} is a f-spectrum, hence
an a-spectrum by (i). So a(4, B) > 0.

2. Spectra_l structures. A speciral structure M in a get X is
a non-void family of spectra in X satisfying:
Axtom I. Bvery member of M is split by some member of M.

Axtom IL. Hvery spectrum which is refined b :
belongs to M. ft by some member of M

We _ca.ll (x ) M) 2 sgfectml space. The space is separated if M separates
every pair of distinet points in X. A mapping f: (X, M)-(Y, N) between
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spectral spaces is a spectral mapping if {f B,) belongs to M whenever {B,}
belongs to N. An M-entourage is a symmetric entourage W such that
every ‘U-spectrum (1.2) belongs to M.

In a pseudometric space (X, a) we let M consist of all a-spectra (1.1).

‘Axioms I and II are readily verified.

3. Spectral functions. In the real line R we take the spectral
structure induced by the metric |x— y|. Hereafter (X, M) will be a spectral
space and & the class of all its spectral functions, the spectral mappings
on (X, M) into R. ' ) :

THEOREM 1. A real-valued function f on X belongs to & if and only
if given & > 0 there ewists a in M such that a separates all @, y for which
@)~ ()] > e. |

Proof. Given ¢ > 0 the spectrum b with B, = (— oo, n¢/2) belongs
to the spectral structure in R. So for f in & the spectrum a defined by
A, = f7'B, belongs to M. If @, y are not separated by a, then both f(z)
and f(y) belong to [(n—1)e/2, (n+1)¢/2) for some n. Hence |f(x)—f(¥)| < e.

Conversely, given any spectrum b in R satisfying (1.1) for the Eucli- .
dean metric ¢ we contend b belongs to M. In view of Axiom II we need
only show that f~'b is refined by some ain M. Such a spectrum a is offered
by the hypothesis since for x, y separated by f'b, (1.1) implies | f(z)—f(¥)|
> ¢ which implies that » and y are separated by a.

THEOREM 2. A spectrum a belongs to M if and only if there exists f
in & such that

(31) fAn C(—oo,n] and f(X—A4z)Cln, o) for all n.

Proof. Given f in & and (3.1), the spectrum b defined by
B, =f(— o0, n/2) belongs to M and refines a. So ¢ belongs to M by
Axiom II. The converse will be proved by a Uryschn construetion.

Using Axiom I with &, = @ we choose by induction a sequence {ax}
in M such that a; splits dy—,. Let 4 (k, n) be the nth term of az. Then
A(k+1,2n) = A(k,n). So An=A(k,2*n) for k=0,1,2,.. Define
f(z) = infn27* over all k,n such that A (%, n) containg . Clearly, f(x)
is finite for every # in X. For # in 4, = 4(0, n), f(2) <n. For zin X— A,
we have z outside A (k, 2"n) for all k. So if A(k, m) contains @, m > 2*n
and hence f(z) > n. We thus have (3.1). )

That f is in & follows from Theorem 1 since given &> 0, we can
choose & with 27*™ < & Then |f(#)—f(y)| > ¢ implies that # and y are
separated by ay.

THEOREM 3. A subclass T of & is uniformly dense in S if and only
if given a in M and &> 0 there ewists g in T such that :

(32)  gdn C (— oo, (n+1)e) and  g(X— A4n) C((n—1)s, o).
8*
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Proof. Given f is & and &>0, define a in M by setting
Ay = f7(— oo, ne). Choose ¢ in T subject to (3.2). Then for 4 in 4,—4,_,,
(n—1)e < f(z) < ne and (n—2)e < g(x) < (n-+1)e. So |f(@)— g(w)| < 2 for
all # in X.

Conversely, given T dense in &, d¢'in M, and > 0, choose f in &
subject to (3.1). Then f is in & by Theorem 1. So there exists g in T such

that
(3.3) lg(z)—ef(@)| < e for all & in X .

Then (3.2) follows from (3.1) and (3.3).
THEOREM 4. Given a non-void class R of real funclions on a set X,
let M consist of all specira a in X for which

(3.4) there emist g in R and 6 > 0 such that for all x,y separated by .a,
lg (@)—g ()] > 9.

Then M is a speciral structure and S s the class of all real functions
that are wniform with respect to R.

Proof. Given a subject to (3.4), define b by letting By, = 4, and
Bopy1 = {x: a(gr, g4s) < 8/2} where a is the Euclidean metric. Then b
splits a. Moreover, b is in M since (3.4) holds for b with 4/2. Hence
Axiom I.

If b is any spectrum refined by a spectrum a and (3.4) holds for a,
then (3.4) holds for b. Hence Axiom II. That every f in & is uniform with
respect to R follows from (3.4) and theorem 1.

Conversely, let f be uniform with respect to R. Given &> 0 choose
g in R and 6 > 0 such that

(3.5) lg(@)—g(y)| > 6 foralla,y with |f(@)—F(y)| > .
- Construct @ by defining 4, = g=1(— oo, #). Then

(3.6) a separates x,y if and only if |g(z)—g(y)| > 4.

By (3.6) and the definition (3.4) of M, & belongs to M. So f belongs to &
by (3.5), (3.6) and Theorem 1.

CoROLLARY 4(a). A class & of real functions on X is the class of all
spz_wtml Junctions for some spectral structure in X if and only if & is non-
“woid and contains every function wniform with respect to &,

4. Bounded subsets of a spectral space. We call a subset E
of E spectral space (X, M) bounded if for every gpectrum b in M there
emsts. n such that B,D H. Boundedness is preserved under spectral
mappings.

CPHEOREM 5. Let (X, M) be a spectral space and & its class of spectral
Junctions. Then for any subset E of X the Jollowing are equivalent:
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(i) B is bounded.
(ii) Bvery f in & is bounded on .
(ili) Given any M-entourage s there emists a finite subset K of B and
a positive integer n such that

(4.1) UKD E .

(iv) Given any b in M the conclusion of (iii) holds for the entourage (1.3)
induced by b. : ;

Proof. The equivalence of (i) and (ii) follows from Theorem 2
To prove that. (i) implies (iii) let U be any M- entourage. Then U™ D W"

gince U is reflexive. Let W™ = (J U", an equivalence relation on X
n

since U is symmetric. We call the equivalence class U™ [«] the Us-com:
ponent of X containing #. Clearly, a subset @ of X is a union of U.-com-
ponents if and only if

(4.2) WQI = Q.

We contend first that (i) implies # meets only finitely many “U-com-
ponents. For, given any sequence {P;} of distinct % -components, we
can construct a spectrum a by defining

k=zn

X—JPy for n>0,
g for n<g0.

(4.3) A, =

Then W[4n] = Ay by (4.2) and (4.3). So a is a W-spectram and thereby
belongs to M. By (i) some 4, contains H. So B n Pi = @ for all k> n.

Construct a finite set K by choosing exactly one point from P ~F
for each U-component P which meets E. Let @ be the union of all U-com-
ponents disjoint from H. Construct b by defining

@ for <0,
(4.4) B, ={

QuU'K] for n>0.

Then for n >0, W[Bs] = W[Q]w W"[K] = Bpx by (4.2). Moreover
UBn=0Q uWI[K]=X. So b is a W-spectrum. Hence (i) implies that
n

some B, contains X, which implies (4.1) since F and @ are disjoint.
(ili) implies (iv) a fortiori. .
To prove that (iv) implies (i) let b belong to M. Choose K and n
by (iv) so that (4.1) holds with U = B. Since K is finite, K C By for
some m. Thus B C WTK] C U'[Bn] C Bninby (4.1), (1.4), (1.2). Hence (i).
THROREM 6. For @ subset B of a spectral space (X, M) the following
are equivalent:
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(i) Given b in M and n such that B meets both By, and X—B,,
then X meets By— By_1.

(ii) f® is connected for cvery f in &.
(iii) Bvery f in S with a finite range is constant on H.

(iv) Given any M-entourage U, some W-component contains K.
That is, WD ExH. :
We call such a set B M-connected.

Proof. To prove (ii) given (i) we need only show that if f7 meets
both (— oo, (n—1)e) and [ne, co) for some ¢ >0 and some integer n,
then f¥ also meets [(n—1)e, ne). This follows directly from (i) if we define
By = fY(— oo, ne). ‘

That (i) implies (iii) is trivial since finite sets are closed, and a finite
connected set contains at most one point.

That (iii) implies (iv) is trivial for ¥ empty. For F non-empty consider
any U-component P which meets E. Let f be the characteristic function
of P, By (iii), f# =1. So EC P.

To prove (iv) implies (i) apply (iv) to the entourage (1.3).

THEOREM 7. A subset E of a spectral space (X, M) is bounded and

M -conmected if and only if for every M-entourage U, there ewi
exists 1
that W" D B x B. ! e el

Proof. Apply Theorems b and 6.

. 5_. Spectral lattices. We call a spectral structure M a laftice it
it satisfies '

(5.1) a b belongs to M for all @ and b in M,

yvhere an b = {4, n Bf'}' By Axiom IT we could equivalently use union
?hp]a((zg S intersection in (5.1) since the spectrum {H,)} refines {X— F_,}

us (5.1) says that M is a lattice with respect to.the partial ing
b < ¢ defined by B, C (, for all n. ' partial ordering

THEOREM 8. For a speciral space (X, M), M ; 106 1
. ! s o lattice 1
if &S 18 a function lattice. M wton i and onty
Proof. Throughout this prooflet h = fvg. Gi f i
ghou = fvg. Given fand ¢in & and (5.1
we neeq only ghow In view of Corollary 4(a) that k belongs to &. By [I!(heo2
rem 1 it suffices to find for a given ¢ > 0 some ¢ in M such that

(5.2) ’ [B(z)—h(y)| < 26 for all (2,9) in C.

gﬁﬁne; byA_,;: f“1(~oo,n_a) and b by By = ¢ (— oo, ne). Lot ¢ = a ~ b.
: en Op = h (—oo,'n,e)'. Given (z,y) in C there is some n such that
(n—1)e, (n+1)e) contains both h(z) and h(y). Hence (5.2)
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Conversely, let & be a function lattice and let @ and b belong to M.
Use Theorem 2 to choose f in & satisfying (3.1) for a. Similarly choose g
for b. Then % belongs to & and satisfies (3.1) for @ ~ b. So a ~ b belongs
to M by Theorem 2. .

The lattice property is of interest because every spectral structur
with this property induces a proximity relation and a fortiori a completely
regular topology. Namely, call C dose to D if no member of M separates
all (¢, d) in 0 x D. Dually, P € @ (P is remote from X— @) if any spectrum
of the form {@, P, @, X} belongs to M. In terms of &, ¢ and D are remote
if there exists f in & mapping ¢ into 0 and D into 1.

6. Uniform spectral structures. A spectral structure M is called
wniform if the following strengthening of Axiom IT holds:

Axiom II'. Bwery spectrum in X which is refined by some finite sub-
family of M belongs to M.

THEOREM 9. Given & uniform structure L on X, the family M of all
- spectra (1.2) with U in U is a uniform spectral structure. For every
uniform spectral structure M in X there exists a minimum uniform struc-
ture [M7 inducing M. So uniform spectral structures correspond to equivalence
cdlasses of uniform structures, two uniform structures being equivalent if
they induce the same spectral structure.

Proof. Given b in I and a W-spectrum a, choose UV in U with
Q2 C U. Define By = Ay and Buyr = V[ 4,] to get a U-spectrum b
which splits a. So Axiom I holds.

Let a spectrum a be refined by a finite family F of spectra induced
by U. Then each member of F is a Uz - spectrum for some k =1, 2, ..., .
Let U = Uy A ... » Uy in W Then a is a W-spectrum. So Axiom IT'
holds. ’

Conversely, given a uniform spectral structure M, Lemma A and
Axiom T imply that the entourages 3 defined by (1.3) with b in M form
a subbase for a uniform structure [M]. Explicitly, U belongs to [M]
if and only if
(6.1) By n By €U for some by, ...y b in M.

Bquivalently, there exists a finite subfamily of M which refines every
- gpectrum. Fence Axiom II' and (6.1) imply that every - spectrum
belongs to M. Olearly % belongs to [M] by (6.1) for every b in M. Since b
is a B-spectrum by (1.4), M is just the spectral structure induced by [M].

Finally, if a uniform structure 1! induces M, then $ belongs to U
by (L.4) for all b in M. So (6.1) implies Mjcw.

TemorEM 10. Let (X, W) and (¥, B) be uniform spaces with induced
spectral structures M and N, respectively. Then every uniform mapping
f: XX is spectral. The converse holds if B = [IN].
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Proof. Let b belong to N, a be the spectrum f™'b defined by
Ay =fTBy, and # and $ be the induced entourages (1.3). Then

(6.2) (z,y) belongs to 4 if and only if (fw, fy) belongs to B .

Clearly, 3 belongs to L since b belongs to IV induced by B. Hence, if f
is uniform, (6.2) implies that 4 belongs to 2 and therefore a Dbelongs
to M. So f is spectral. '

Conversely, if f is spectral then a belongs to M, hence + belongs
to U. So (6.2) implies f is uniform for B = [IN] since the entourages induced
by N form a subbase for [N].

7. Simple and pseudometrizable uniform spectral spaces.

THEOREM 11. Every pseudometrizable wniform structure W, on X is
the mazimum structure in ils spectral equivalence class.

Proof. Let i be any uniform structure which induces the spectral
structure M induced by U,. Since M consists of all a-spectra (1.1), every
U-uniform pseudometric § must satisty (i) of Lemma B, hence (iii). So
ucwu,. )

We call & uniform spectral space (X, M) simple if there is only one
uniform structure inducing M.

THEOREM 12. The real line R is simple..

Proof. By Theorem 11 we need only show that the metric uniforn
structure U, on R i3 the minimum. We must show that o is 2l -uniforn
for every uniform strueture 1 that is spectrally equivalent to 2,.

Given & > 0, consider the spectrum b with B, = (— oo, me). Since b
is an a-spectrum, it is a W-spectrum for some symmetric U in 1. There-
fore by (1.3) and (1.4), |z—y| < 2¢ for all (z, ) in UW.

o . We get the following two corollaries from Theorems 2,9, 10, and 12.

CoROLLARY (b). Let M be the spectral structure induced in X by
a uniform structure W. Then

(7.1) S is the class of all real W-uniform functions on X.

[M] is the smallest uniform structure 1 satisfying (7.1).

COROLLARY (c). 4 mapping g: (X » W) =>(X, B) between uniform spaces
i8 speciral relative to the induced spectral siructures if and only if the com-~
position fo g is W-uniform for every real B-uniform function f on Y.

We call a subfamily N of 3 Spectral structure M wuniform if every
spectrum refined by N belongs to M. A sequence {M,} of subfamilies of M
is called a splitiing -sequence if each spectrum in M; is split by some
Spectrum in M;.;. A spectral space (X, M) is pseudometricable it M ig
the family of all «-spectra (1.1) for some pseudometric q.
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TaEoREM 13. (X, M) s pseudometrizable if and only if M 4ds the
union of a splitting sequence of uniform subfamilies M.

Proof. Given a such that M is the family of all a-spectra, let M;
pe the family of all ‘spectra b such that

(7.2) a(By, X—Bu) =27°  for all m.

Tt is easy to verify that M; has the required properties.
Conversely, let M be the union of a splitting uniform sequence {Mq}.
Tet U consist of all (v, y) not separated by M;. That is,

(7.8) Wy =[] {: @ e My}.

Now every Aly-spectrum is refined by the uniform family M; and thereby
Dbelongs to M. Conversely, every spectrum in M belongs to some M;
and is therefore a %Us;-spectrum.

Given b in M; there exists @ in M, splitting b. By Lemma A, #* C 3
which together with (7.3) gives

(7.4) Ugps € Wy for all 4.

Henece {Us} is a base for a pseudometrizable uniform structure which
induces M. .

Given a uniform gpectral space (X, M) we call a subfamily N of M
admissible if N belongs to a splitting sequence {M;} such that

(1.8)  For every finite subfamily P of M and every 4, M; u P is uniform.

LeMMA C. N is admissible if and only if the entourage U consisti.ng
'of all (@, y) not separated by N belongs to some u.niform structure U whz‘ch
induces M. In particular, if W belongs to W and W induces M, then the family
of all W-spectra is admissible. .

Proof. Given N admissible choose a splitting sequence {M;} satisfy-
ing (7.5) with first term N. Define U by (7.3). "]Then (7.4) and Lemma,fA
imply that these U together with 4 for all ¢ in M forn:} aj‘subba;se? .or
a uniform structure I containing [M]. For W in IB there exist i and & finite
subfamily P = {ay, ..., ax} of M with »

(7.6) W A Ay A oo b W

Thus every W-spectrum is refined by My v P and by (7.5) belongs to M. .
So 90 induces M gince I3 contains [M]. Moreover U = Uy and so belongs
to . )

Conversely, if U belongs to ¥ and B induces M, choose {‘le} in
MW with U = Us, and (7.4). Let M; be the family o# all ‘\L‘i-s.pectra.’ Since
every “U:-spectrum is split by a U-spectrum, {M;} is a splitting sequence.
Since the entourage (7.6) belongs to B, (7.5) holds.
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THEOREM 14. A uniform spectral space (X, M) is simple if and only
if every admissible subfamily N of M is refined by some finite subfamaily
of M.

Proof. According to Lemma C the latter condition of the theorem
means that every entourage U belonging to a uniform structure [ in-
ducing M contains a basic entourage of [M]. That is, U = [M].

TazorEM 15. (X, M) is simple and pseudometrizable if and only if
there ewists a countable subfamily P of M such that every admissible sub-
Sfamily of M is refined by some fimite subfamily of P.

Proof. Given the former condition, Theorem 13 implies that M
is the union of the splitting sequence of uniform families M; defined
by (7.2). Bach M, is clearly admissible (7.5). By Theorem 14 we can choose
a finite P; which refines M;. Let P be the union over i of these P;. Since
the space is simple, Lemma C implies that every admigsible family ig
contained in some M; and is thereby refined by P;.

Conversely, given P = {p;} satisfying the latter condition of Theo-
rem 15, the space is simple by Theorem 14. Using Axiom I choose q; in M
splitting px. Let k, = 1. Having chosen % choose ki1 > ky such that the
family Q; of gz with % =1, ..., & is refined by the family P;., of py with
k=1, .., k. This is possible because finite subfamilies of M are ad-
missible by Axioms I and IT'. Let M; consist of all spectra refined by P;.
Then each M; iy uniform since every spectrum refined by M; belongs
to M;. Let U be the entourage (7.3) associated with M;, that is, with P;.
Let U be the entourage associated -with Q:. Since gy splits py, V% C Uy
by Lemma A. Now any a in M; is a Uy -spectrum and is therefore split
by some U; -spectrum b. Since V; 2 Wit1, b i8 & Wiyq-spectrum and hence
belongs to M;.,. So {M} is a splitting sequence. By hypothesis, since
finite. subfamilies of M are admissible, every member of M belongs to
some M;. So the space is pseudometrizable by Theorem 13.
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