

Table des matières du tome LX, fascicule 2

	r tipes
S. Leader, Spectral structures and uniform continuity	105-115
J. Auslander and F. Hahn, Point transitive flows, algebras of functions	
and the Bebutov system	117 - 137
E. S. Thomas, Jr., A classification of continua by certain cutting properties	139-148
R. A. Duke, Open mappings of graphs and manifolds	149-155
R. M. Brooks, On Wallman compactifications	157-173
E. S. Wolk, Partially well ordered sets and partial ordinals	175-186
B. Sodnomov, On a property of sets of positive measure	187-190
J. Płonka, On distributive quasi-lattices	191-200

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la *Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Algèbre Abstraite.*Chaque volume paraît en 3 fascicules

Adresse de la Rédaction et de l'Échange: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, Warszawa (Pologne).

Le prix de ce fascicule est 3.00 \$.

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA, Krakowskie Przedmieście 7, Warszawa (Pologne).

Spectral structures and uniform continuity*

by

S. Leader (New Brunswick, N. J.)

0. Introduction. The class \mathfrak{S}^* of all bounded, real-valued, uniform functions on a uniform space (X,\mathfrak{U}) need not characterize the uniform structure, but corresponds to an \mathfrak{S}^* -equivalence class of uniform structures on X. A characteristic invariant of the \mathfrak{S}^* -equivalence class is the induced proximity relation ([4], [1], [6]). Now even the class \mathfrak{S} of all real-valued, uniform functions on (X,\mathfrak{U}) need not characterize \mathfrak{U} , but corresponds to an \mathfrak{S} -equivalence class of uniform structures [5].

The present work has its origin in the search for an intrinsic characteristic invariant of the \mathfrak{S} -equivalence class. Such an invariant, the "uniform spectral structure" introduced in Section 6 below, yields necessary and sufficient conditions for an \mathfrak{S} -equivalence class of uniform structures to have a pseudometrizable member (Theorem 13) and or a unique member (Theorems 14 and 15). The uniform spectral spaces under spectral mappings correspond to the functionally-determined uniform spaces [5] under uniform mappings. If $\mathfrak{S} = \mathfrak{S}^*$ then the uniform spectral structure reduces trivially to the proximity structure.

The uniform spectral structures suggest the more general "spectral structures" introduced in section 2. Spectral structures form a natural setting for the Urysohn construction (Theorem 2). They yield a Stone-Weierstrass theorem (Theorem 3), a boundedness criterion (Theorem 5) generalizing Atsuji ([2], [3]), Njåstad [10], and Hejeman [7], and a concept of uniform connectedness (Theorem 6) generalizing Pervin and Mrówka [9].

1. Basic definitions and lemmas. A spectrum a in a set X is a sequence $\{A_n\}$ of subsets of X indexed by the integers $-\infty < n < \infty$ such that $A_n \subseteq A_{n+1}$ for all n, $\bigcap_n A_n = \emptyset$, and $\bigcup_n A_n = X$. Two points are separated by a if there exists n such that one point is in A_n and the other in $X - A_{n+1}$. Two points are separated by a family P of spectra if they are separated by some member of P. A family P of spectra refines

^{*} Research supported by the National Science Foundation (NSF GP-4413).

a family Q if every pair of points separated by Q is also separated by P. A spectrum b splits a spectrum a if $B_{2n} = A_n$ for all n.

A spectrum b in X is an α -spectrum for a pseudometric α on X if there exists $\varepsilon>0$ such that

(1.1)
$$a(B_n, X-B_{n+1}) \geqslant \varepsilon$$
 for all n .

For $\mathfrak U$ an entourage in $X \times X$ (that is, a reflexive, binary relation on X) a spectrum b in X is called a $\mathfrak U$ -spectrum if

(1.2)
$$\mathfrak{A}[B_n] \subseteq B_{n+1} \quad \text{for all } n.$$

Note that (1.2) is consistent with (1.1) if $\mathfrak{U} = \alpha^{-1}[0, \varepsilon)$.

For a spectrum b let $\mathfrak B$ be the symmetric entourage consisting of all (x,y) with x and y not separated by b. Explicitly,

$$\mathfrak{B} = \bigcup_{n} (B_{n+1} - B_{n-1})^2$$

where the square is the cartesian product. It is easily seen that for a symmetric entourage U,

(1.4)
$$b$$
 is a U-spectrum if and only if $U \subset B$.

LEMMA A. If a splits b, then in terms of (1.3), $A^2 \subset \mathcal{B}$.

Proof. Given (x, z) in A^2 , there exists y with both (x, y) and (y, z) in A. Choose n such that $A_n - A_{n-1}$ contains y. Then both x and z are in $A_{n+1} - A_{n-2}$ which since a splits b is $A_{2k+1} - B_{k-1}$ for n = 2k and $B_{k+1} - A_{2k-1}$ for n = 2k+1. In either case $A_{n+1} - A_{n-2} \subseteq B_{k+1} - B_{k-1}$ for $k = \lfloor n/2 \rfloor$. So (x, z) is in \mathcal{B} .

LEMMA B. For pseudometrics α and β on X the following are equivalent:

- (i) Every β -spectrum is an α -spectrum.
- (ii) $\beta(A, B) = 0$ for all subsets A, B of X with $\alpha(A, B) = 0$.
- (iii) β is uniformly continuous with respect to α .

Proof. The equivalence of (ii) and (iii) is well known [8]. That (iii) implies (i) is trivial. To prove that (i) implies (ii) let $\beta(A, B) > 0$. Then any spectrum of the form $\{\emptyset, A, X - B, X\}$ is a β -spectrum, hence an α -spectrum by (i). So $\alpha(A, B) > 0$.

2. Spectral structures. A spectral structure M in a set X is a non-void family of spectra in X satisfying:

AXIOM I. Every member of M is split by some member of M.

AXIOM II. Every spectrum which is refined by some member of M belongs to M.

We call (X, M) a spectral space. The space is separated if M separates every pair of distinct points in X. A mapping $f: (X, M) \rightarrow (Y, N)$ between

spectral spaces is a spectral mapping if $\{f^{-1}B_n\}$ belongs to M whenever $\{B_n\}$ belongs to N. An M-entourage is a symmetric entourage \mathbb{Q} such that every \mathbb{Q} -spectrum (1.2) belongs to M.

In a pseudometric space (X, a) we let M consist of all α -spectra (1.1). Axioms I and II are readily verified.

3. Spectral functions. In the real line R we take the spectral structure induced by the metric |x-y|. Hereafter (X, M) will be a spectral space and $\mathfrak S$ the class of all its spectral functions, the spectral mappings on (X, M) into R.

THEOREM 1. A real-valued function f on X belongs to \mathfrak{S} if and only if given $\varepsilon > 0$ there exists a in M such that a separates all x, y for which $|f(x)-f(y)| \ge \varepsilon$.

Proof. Given $\varepsilon > 0$ the spectrum **b** with $B_n = (-\infty, n\varepsilon/2)$ belongs to the spectral structure in R. So for f in \mathfrak{S} the spectrum **a** defined by $A_n = f^{-1}B_n$ belongs to M. If x, y are not separated by **a**, then both f(x) and f(y) belong to $[(n-1)\varepsilon/2, (n+1)\varepsilon/2)$ for some n. Hence $|f(x)-f(y)| < \varepsilon$.

Conversely, given any spectrum b in R satisfying (1.1) for the Euclidean metric a we contend $f^{-1}b$ belongs to M. In view of Axiom II we need only show that $f^{-1}b$ is refined by some a in M. Such a spectrum a is offered by the hypothesis since for x, y separated by $f^{-1}b$, (1.1) implies $|f(x)-f(y)| \ge \varepsilon$ which implies that x and y are separated by a.

THEOREM 2. A spectrum a belongs to M if and only if there exists f in \mathfrak{S} such that

(3.1)
$$fA_n \subseteq (-\infty, n]$$
 and $f(X - A_n) \subseteq [n, \infty)$ for all n .

Proof. Given f in \mathfrak{S} and (3.1), the spectrum b defined by $B_n = f^{-1}(-\infty, n/2)$ belongs to M and refines a. So a belongs to M by Axiom II. The converse will be proved by a Urysohn construction.

Using Axiom I with $a_0 = a$ we choose by induction a sequence $\{a_k\}$ in M such that a_k splits a_{k-1} . Let A(k,n) be the nth term of a_k . Then A(k+1, 2n) = A(k, n). So $A_n = A(k, 2^k n)$ for $k = 0, 1, 2, \ldots$ Define $f(x) = \inf n 2^{-k}$ over all k, n such that A(k, n) contains x. Clearly, f(x) is finite for every x in X. For x in $A_n = A(0, n)$, $f(x) \le n$. For x in $X - A_n$ we have x outside $A(k, 2^k n)$ for all k. So if A(k, m) contains x, $m > 2^k n$ and hence $f(x) \ge n$. We thus have (3.1).

That f is in \mathfrak{S} follows from Theorem 1 since given $\varepsilon > 0$, we can choose k with $2^{-(k-1)} < \varepsilon$. Then $|f(x)-f(y)| \ge \varepsilon$ implies that x and y are separated by a_k .

THEOREM 3. A subclass \mathbf{T} of \mathbf{S} is uniformly dense in \mathbf{S} if and only if given \mathbf{a} in \mathbf{M} and $\epsilon > 0$ there exists g in \mathbf{T} such that

$$(3.2) \quad gA_n \subseteq (-\infty, (n+1)\varepsilon) \quad and \quad g(X-A_n) \subseteq ((n-1)\varepsilon, \infty).$$

Proof. Given f is $\mathfrak S$ and $\varepsilon > 0$, define a in M by setting $A_n = f^{-1}(-\infty, n\varepsilon)$. Choose g in $\mathfrak T$ subject to (3.2). Then for x in $A_n - A_{n-1}$, $(n-1)\varepsilon \leqslant f(x) < n\varepsilon$ and $(n-2)\varepsilon < g(x) < (n+1)\varepsilon$. So $|f(x) - g(x)| < 2\varepsilon$ for all x in X.

Conversely, given \mathcal{T} dense in \mathfrak{S} , a in M, and $\varepsilon > 0$, choose f in \mathfrak{S} subject to (3.1). Then εf is in \mathfrak{S} by Theorem 1. So there exists g in \mathfrak{T} such that

$$(3.3) |g(x) - \varepsilon f(x)| < \varepsilon \text{for all } x \text{ in } X.$$

Then (3.2) follows from (3.1) and (3.3).

THEOREM 4. Given a non-void class X of real functions on a set X, let M consist of all spectra a in X for which

(3.4) there exist g in \mathfrak{R} and $\delta > 0$ such that for all x, y separated by a, $|g(x) - g(y)| > \delta$.

Then M is a spectral structure and \mathfrak{S} is the class of all real functions that are uniform with respect to \mathfrak{X} .

Proof. Given a subject to (3.4), define b by letting $B_{2n}=A_n$ and $B_{2n+1}=\{x:\ \alpha(gx,gA_n)<\delta/2\}$ where α is the Euclidean metric. Then b splits a. Moreover, b is in M since (3.4) holds for b with $\delta/2$. Hence Axiom I.

If **b** is any spectrum refined by a spectrum a and (3.4) holds for a, then (3.4) holds for b. Hence Axiom II. That every f in $\mathfrak S$ is uniform with respect to $\mathfrak X$ follows from (3.4) and theorem 1.

Conversely, let f be uniform with respect to \aleph . Given $\varepsilon>0$ choose g in \aleph and $\delta>0$ such that

(3.5)
$$|g(x)-g(y)| > \delta$$
 for all x, y with $|f(x)-f(y)| \ge \varepsilon$.

Construct a by defining $A_n = g^{-1}(-\infty, n\delta)$. Then

(3.6) a separates x, y if and only if $|g(x)-g(y)| > \delta$.

By (3.6) and the definition (3.4) of M, α belongs to M. So f belongs to \mathfrak{S} by (3.5), (3.6) and Theorem 1.

COROLLARY 4(a). A class \mathfrak{S} of real functions on X is the class of all spectral functions for some spectral structure in X if and only if \mathfrak{S} is non-void and contains every function uniform with respect to \mathfrak{S} .

4. Bounded subsets of a spectral space. We call a subset E of a spectral space (X, M) bounded if for every spectrum b in M there exists n such that $B_n \supseteq E$. Boundedness is preserved under spectral mappings.

THEOREM 5. Let (X, M) be a spectral space and \mathfrak{S} its class of spectral functions. Then for any subset E of X the following are equivalent:

- (i) E is bounded.
- (ii) Every f in \in is bounded on E.
- (iii) Given any M-entourage $\mathfrak U$ there exists a finite subset K of E and a positive integer n such that

$$\mathfrak{A}^{n}[K] \supseteq E.$$

(iv) Given any b in M the conclusion of (iii) holds for the entourage (1.3) induced by b.

Proof. The equivalence of (i) and (ii) follows from Theorem 2 To prove that (i) implies (iii) let \mathbb{U} be any M-entourage. Then $\mathbb{U}^{n+1} \supseteq \mathbb{U}^n$ since \mathbb{U} is reflexive. Let $\mathbb{U}^{\infty} = \bigcup_n \mathbb{U}^n$, an equivalence relation on X since \mathbb{U} is symmetric. We call the equivalence class $\mathbb{U}^{\infty}[x]$ the \mathbb{U} -component of X containing x. Clearly, a subset Q of X is a union of \mathbb{U} -components if and only if

$$\mathfrak{A}[Q] = Q.$$

We contend first that (i) implies E meets only finitely many \mathbb{U} -components. For, given any sequence $\{P_k\}$ of distinct \mathbb{U} -components, we can construct a spectrum a by defining

(4.3)
$$A_n = \begin{cases} X - \bigcup_{k \geqslant n} P_k & \text{for } n > 0, \\ \emptyset & \text{for } n \leqslant 0. \end{cases}$$

Then $\mathfrak{U}[A_n] = A_n$ by (4.2) and (4.3). So a is a \mathfrak{U} -spectrum and thereby belongs to M. By (i) some A_n contains E. So $E \cap P_k = \emptyset$ for all $k \ge n$.

Construct a finite set K by choosing exactly one point from $P \cap E$ for each $\mathbb U$ -component P which meets E. Let Q be the union of all $\mathbb U$ -components disjoint from E. Construct b by defining

$$B_n = \begin{cases} \emptyset & \text{for} \quad n \leqslant 0 \text{ ,} \\ Q \cup \mathfrak{A}^n[K] & \text{for} \quad n > 0 \text{ .} \end{cases}$$

Then for n > 0, $\mathfrak{U}[B_n] = \mathfrak{U}[Q] \cup \mathfrak{U}^{n+1}[K] = B_{n+1}$ by (4.2). Moreover $\bigcup_n B_n = Q \cup \mathfrak{U}^{\infty}[K] = X$. So **b** is a \mathfrak{U} -spectrum. Hence (i) implies that some B_n contains E, which implies (4.1) since E and Q are disjoint.

(iii) implies (iv) a fortiori.

To prove that (iv) implies (i) let **b** belong to **M**. Choose K and n by (iv) so that (4.1) holds with $\mathfrak{A} = \mathfrak{B}$. Since K is finite, $K \subseteq B_m$ for some m. Thus $E \subseteq \mathfrak{A}^n[K] \subseteq \mathfrak{A}^n[B_m] \subseteq B_{m+n}$ by (4.1), (1.4), (1.2). Hence (i).

THEOREM 6. For a subset E of a spectral space (X, M) the following are equivalent:

- (i) Given **b** in **M** and n such that E meets both B_{n-1} and $X B_n$, then E meets $B_n B_{n-1}$.
 - (ii) $f\overline{E}$ is connected for every f in \mathfrak{S} .
 - (iii) Every f in S with a finite range is constant on E.
- (iv) Given any M-entourage U, some U-component contains E. That is, $\mathbb{U}^{\infty} \supseteq E \times E$.

We call such a set E M-connected.

Proof. To prove (ii) given (i) we need only show that if fE meets both $(-\infty, (n-1)\varepsilon)$ and $[n\varepsilon, \infty)$ for some $\varepsilon > 0$ and some integer n, then fE also meets $[(n-1)\varepsilon, n\varepsilon)$. This follows directly from (i) if we define $B_n = f^{-1}(-\infty, n\varepsilon)$.

That (ii) implies (iii) is trivial since finite sets are closed, and a finite connected set contains at most one point.

That (iii) implies (iv) is trivial for E empty. For E non-empty consider any \mathfrak{A} -component P which meets E. Let f be the characteristic function of P. By (iii), fE = 1. So $E \subseteq P$.

To prove (iv) implies (i) apply (iv) to the entourage (1.3).

THEOREM 7. A subset E of a spectral space (X, M) is bounded and M-connected if and only if for every M-entourage U there exists n such that $\mathbb{Q}^n \supset E \times E$.

Proof. Apply Theorems 5 and 6.

5. Spectral lattices. We call a spectral structure \boldsymbol{M} a lattice if it satisfies

(5.1)
$$a \cap b$$
 belongs to M for all a and b in M ,

where $a \cap b = \{A_n \cap B_n\}$. By Axiom II we could equivalently use union in place of intersection in (5.1) since the spectrum $\{E_n\}$ refines $\{X - E_{-n}\}$. Thus (5.1) says that M is a lattice with respect to the partial ordering $b \leq c$ defined by $B_n \subseteq C_n$ for all n.

THEOREM 8. For a spectral space (X, M), M is a lattice if and only if \mathfrak{S} is a function lattice.

Proof. Throughout this proof let $h = f \vee g$. Given f and g in \mathfrak{S} and (5.1) we need only show in view of Corollary 4(a) that h belongs to \mathfrak{S} . By Theorem 1 it suffices to find for a given $\varepsilon > 0$ some c in M such that

(5.2)
$$|h(x)-h(y)| < 2\varepsilon$$
 for all (x, y) in C.

Define a by $A_n = f^{-1}(-\infty, n\varepsilon)$ and b by $B_n = g^{-1}(-\infty, n\varepsilon)$. Let $c = a \cap b$. Then $C_n = h^{-1}(-\infty, n\varepsilon)$. Given (x, y) in C there is some n such that $[(n-1)\varepsilon, (n+1)\varepsilon)$ contains both h(x) and h(y). Hence (5.2).

Conversely, let \mathfrak{S} be a function lattice and let a and b belong to M. Use Theorem 2 to choose f in \mathfrak{S} satisfying (3.1) for a. Similarly choose g for b. Then h belongs to \mathfrak{S} and satisfies (3.1) for $a \cap b$. So $a \cap b$ belongs to M by Theorem 2.

The lattice property is of interest because every spectral structure with this property induces a proximity relation and a fortiori a completely regular topology. Namely, call C close to D if no member of M separates all (c,d) in $C \times D$. Dually, $P \leqslant Q$ (P is remote from X-Q) if any spectrum of the form $\{\emptyset,P,Q,X\}$ belongs to M. In terms of \mathfrak{S} , C and D are remote if there exists f in \mathfrak{S} mapping C into 0 and D into 1.

6. Uniform spectral structures. A spectral structure M is called uniform if the following strengthening of Axiom II holds:

AXIOM II'. Every spectrum in X which is refined by some finite subfamily of M belongs to M.

THEOREM 9. Given a uniform structure $\mathfrak U$ on X, the family M of all $\mathfrak U$ -spectra (1.2) with $\mathfrak U$ in $\mathfrak U$ is a uniform spectral structure. For every uniform spectral structure M in X there exists a minimum uniform structure [M] inducing M. So uniform spectral structures correspond to equivalence classes of uniform structures, two uniform structures being equivalent if they induce the same spectral structure.

Proof. Given \mathfrak{U} in \mathfrak{U} and a \mathfrak{U} -spectrum \boldsymbol{a} , choose \mathfrak{V} in \mathfrak{U} with $\mathfrak{V}^2 \subseteq \mathfrak{U}$. Define $B_{2n} = A_n$ and $B_{2n+1} = \mathfrak{V}[A_n]$ to get a \mathfrak{V} -spectrum \boldsymbol{b} which splits \boldsymbol{a} . So Axiom I holds.

Let a spectrum a be refined by a finite family F of spectra induced by $\mathfrak U$. Then each member of F is a $\mathfrak U_k$ -spectrum for some $k=1,2,\ldots,n$. Let $\mathfrak U=\mathfrak U_1\cap\ldots\cap\mathfrak U_n$ in $\mathfrak U$. Then a is a $\mathfrak U$ -spectrum. So Axiom II' holds.

Conversely, given a uniform spectral structure M, Lemma A and Axiom I imply that the entourages \mathcal{B} defined by (1.3) with b in M form a subbase for a uniform structure [M]. Explicitly, \mathcal{U} belongs to [M] if and only if

(6.1)
$$\beta_1 \cap ... \cap \beta_m \subseteq \mathbb{U}$$
 for some $b_1, ..., b_m$ in M .

Equivalently, there exists a finite subfamily of M which refines every \mathfrak{A} -spectrum. Hence Axiom II' and (6.1) imply that every \mathfrak{A} -spectrum belongs to M. Clearly \mathfrak{B} belongs to [M] by (6.1) for every b in M. Since b is a \mathfrak{B} -spectrum by (1.4), M is just the spectral structure induced by [M].

Finally, if a uniform structure $\mathfrak U$ induces M, then $\mathfrak B$ belongs to $\mathfrak U$ by (1.4) for all b in M. So (6.1) implies $[M] \subseteq \mathfrak U$.

THEOREM 10. Let (X, \mathfrak{U}) and (Y, \mathfrak{D}) be uniform spaces with induced spectral structures M and N, respectively. Then every uniform mapping $f: X \rightarrow Y$ is spectral. The converse holds if $\mathfrak{B} = [N]$.

Proof. Let **b** belong to **N**, **a** be the spectrum $f^{-1}\mathbf{b}$ defined by $A_n = f^{-1}B_n$, and \mathcal{A} and \mathcal{B} be the induced entourages (1.3). Then

(6.2) (x, y) belongs to A if and only if (fx, fy) belongs to B.

Clearly, $\mathcal B$ belongs to $\mathcal B$ since $\boldsymbol b$ belongs to N induced by $\mathcal B$. Hence, if f is uniform, (6.2) implies that $\mathcal A$ belongs to $\mathcal U$ and therefore $\boldsymbol a$ belongs to $\boldsymbol M$. So f is spectral.

Conversely, if f is spectral then a belongs to M, hence A belongs to \mathfrak{U} . So (6.2) implies f is uniform for $\mathfrak{V} = [N]$ since the entourages induced by N form a subbase for [N].

7. Simple and pseudometrizable uniform spectral spaces.

Theorem 11. Every pseudometrizable uniform structure \mathfrak{U}_a on X is the maximum structure in its spectral equivalence class.

Proof. Let $\mathfrak U$ be any uniform structure which induces the spectral structure M induced by $\mathfrak U_a$. Since M consists of all α -spectra (1.1), every $\mathfrak U$ -uniform pseudometric β must satisfy (i) of Lemma B, hence (iii). So $\mathfrak U \subseteq \mathfrak U_a$.

We call a uniform spectral space (X, M) simple if there is only one uniform structure inducing M.

THEOREM 12. The real line R is simple.

Proof. By Theorem 11 we need only show that the metric uniforn structure \mathfrak{U}_a on R is the minimum. We must show that a is \mathfrak{U} -uniforn for every uniform structure \mathfrak{U} that is spectrally equivalent to \mathfrak{U}_a .

Given $\varepsilon > 0$, consider the spectrum **b** with $B_n = (-\infty, n\varepsilon)$. Since **b** is an α -spectrum, it is a U-spectrum for some symmetric U in U. Therefore by (1.3) and (1.4), $|x-y| < 2\varepsilon$ for all (x, y) in U.

We get the following two corollaries from Theorems 2, 9, 10, and 12.

COROLLARY (b). Let M be the spectral structure induced in X by a uniform structure $\mathfrak U.$ Then

(7.1) \cong is the class of all real \mathfrak{U} -uniform functions on X.

[M] is the smallest uniform structure \mathfrak{U} satisfying (7.1).

COROLLARY (c). A mapping $g: (X, \mathfrak{U}) \rightarrow (Y, \mathfrak{B})$ between uniform spaces is spectral relative to the induced spectral structures if and only if the composition $f \circ g$ is \mathfrak{U} -uniform for every real \mathfrak{B} -uniform function f on Y.

We call a subfamily N of a spectral structure M uniform if every spectrum refined by N belongs to M. A sequence $\{M_i\}$ of subfamilies of M is called a *splitting* sequence if each spectrum in M_i is split by some spectrum in M_{i+1} . A spectral space (X, M) is *pseudometrizable* if M is the family of all α -spectra (1.1) for some pseudometric α .

THEOREM 13. (X, \mathbf{M}) is pseudometrizable if and only if \mathbf{M} is the union of a splitting sequence of uniform subfamilies \mathbf{M}_i .

Proof. Given α such that M is the family of all α -spectra, let M_i be the family of all spectra b such that

(7.2)
$$\alpha(B_n, X - B_{n+1}) \geqslant 2^{-i}$$
 for all n .

It is easy to verify that M_i has the required properties.

Conversely, let M be the union of a splitting uniform sequence $\{M_i\}$. Let \mathfrak{A}_i consist of all (x, y) not separated by M_i . That is,

$$(7.3) \mathfrak{A}: \mathbf{a} \in \mathbf{M}_i \}.$$

Now every \mathfrak{A}_{i_t} -spectrum is refined by the uniform family M_i and thereby belongs to M. Conversely, every spectrum in M belongs to some M_i and is therefore a \mathfrak{A}_{i_t} -spectrum.

Given **b** in M_i there exists **a** in M_{i+1} splitting **b**. By Lemma A, $\mathcal{A}^2 \subseteq \mathcal{B}$ which together with (7.3) gives

Hence $\{\mathfrak{A}_i\}$ is a base for a pseudometrizable uniform structure which induces M.

Given a uniform spectral space (X, M) we call a subfamily N of M admissible if N belongs to a splitting sequence $\{M_i\}$ such that

(7.5) For every finite subfamily P of M and every i, $M_i \cup P$ is uniform.

LEMMA C. N is admissible if and only if the entourage U consisting of all (x, y) not separated by N belongs to some uniform structure U which induces M. In particular, if W belongs to U and U induces M, then the family of all W-spectra is admissible.

Proof. Given N admissible choose a splitting sequence $\{M_i\}$ satisfying (7.5) with first term N. Define \mathfrak{U}_i by (7.3). Then (7.4) and Lemma A imply that these \mathfrak{U}_i together with \mathcal{A} for all a in M form a subbase for a uniform structure \mathfrak{W} containing [M]. For \mathfrak{W} in \mathfrak{W} there exist i and a finite subfamily $P = \{a_1, ..., a_k\}$ of M with

$$(7.6) W_i \cap A_1 \cap ... \cap A_k \subseteq W.$$

Thus every \mathbb{W} -spectrum is refined by $M_i \cup P$ and by (7.5) belongs to M. So \mathfrak{W} induces M since \mathfrak{W} contains [M]. Moreover $\mathbb{U} = \mathbb{U}_1$ and so belongs to \mathfrak{W} .

Conversely, if $\mathfrak U$ belongs to $\mathfrak W$ and $\mathfrak W$ induces M, choose $\{\mathfrak U_i\}$ in $\mathfrak W$ with $\mathfrak U = \mathfrak U_1$ and (7.4). Let M_i be the family of all $\mathfrak U_i$ -spectra. Since every $\mathfrak U^2$ -spectrum is split by a $\mathfrak U$ -spectrum, $\{M_i\}$ is a splitting sequence. Since the entourage (7.6) belongs to $\mathfrak W$, (7.5) holds.

THEOREM 14. A uniform spectral space (X, M) is simple if and only if every admissible subfamily N of M is refined by some finite subfamily of M.

Proof. According to Lemma C the latter condition of the theorem means that every entourage $\mathfrak U$ belonging to a uniform structure $\mathfrak U$ inducing M contains a basic entourage of [M]. That is, $\mathfrak U = [M]$.

THEOREM 15. (X, M) is simple and pseudometrizable if and only if there exists a countable subfamily P of M such that every admissible subfamily of M is refined by some finite subfamily of P.

Proof. Given the former condition, Theorem 13 implies that M is the union of the splitting sequence of uniform families M_i defined by (7.2). Each M_i is clearly admissible (7.5). By Theorem 14 we can choose a finite P_i which refines M_i . Let P be the union over i of these P_i . Since the space is simple, Lemma C implies that every admissible family is contained in some M_i and is thereby refined by P_i .

Conversely, given $P = \{p_k\}$ satisfying the latter condition of Theorem 15, the space is simple by Theorem 14. Using Axiom I choose q_k in M splitting p_k . Let $k_1 = 1$. Having chosen k_i choose $k_{i+1} > k_i$ such that the family Q_i of q_k with $k = 1, ..., k_i$ is refined by the family P_{i+1} of p_k with $k = 1, ..., k_{i+1}$. This is possible because finite subfamilies of M are admissible by Axioms I and II'. Let M_i consist of all spectra refined by P_i . Then each M_i is uniform since every spectrum refined by M_i belongs to M_i . Let U_i be the entourage (7.3) associated with M_i , that is, with P_i . Let U_i be the entourage associated with Q_i . Since q_k splits p_k , $v_i^2 \subseteq U_i$ by Lemma A. Now any a in M_i is a U_i -spectrum and is therefore split by some U_i -spectrum b. Since $U_i \supseteq U_{i+1}$, b is a U_{i+1} -spectrum and hence belongs to M_{i+1} . So M_i is a splitting sequence. By hypothesis, since finite subfamilies of M are admissible, every member of M belongs to some M_i . So the space is pseudometrizable by Theorem 13.

References

[1] E. M. Alfsen and J. E. Fenstad, On the equivalence between proximity structures and totally bounded uniform structures, Math. Scand. 7 (1959), pp. 353-360.

[2] M. Atsuji, Uniform continuity of continuous functions on metric spaces, Pac. J. Math. 8 (1958), pp. 11-16.

[3] — Uniform continuity of continuous functions on uniform spaces, Can. J. Math. 13 (1961), pp. 657-663.

[4] V. A. Efremovich, The geometry of proximity I, Mat. Sborn. N. S. 31 (73), pp. 189-200.

[5] J. E. Fenstad, On 1-groups of uniformly continuous functions, II. Representation theory, Math. Zeit. 83 (1964), pp. 45-56.

[6] I. S. Gàl, Proximity relations and precompact structures, Nederl. Akad. Wetensch. Proc. Ser. A 62 (1959), pp. 304-326.

[7] J. Hejeman, Boundedness in uniform spaces and topological spaces, Czech. Math. Jour. 9 (1959), pp. 544-562.

[8] S. Leader, On completion of proximity spaces by local clusters, Fund. Math. 48 (1960), pp. 201-216.

·[9] S. G. Mrówka and W. J. Pervin, On uniform connectedness, Proc. A. M. S. 15 (1964), pp. 446-449.

[10] O. Njastad, On uniform spaces where all uniformly continuous functions are bounded, Monatshef. Math. 69 (1965), pp. 167-176.

RUTGERS - THE STATE UNIVERSITY

Recu par la Rédaction le 4. 8. 1965