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" A classification of continua by certain cutting properties

by
E. S. Thomas, Jr.* (Ann Arbor, Mich.)

Introduction. By a continuum We mean a compact connected
metric space. A subcontinuum of 2 space X is a closed connected subset
of X and by S(X) we mean the collection of subcontinua of X,

Let M be a continuum and U, V open subsets of M. A collection
C C 8(M) cuts between U and V in M provided no member of ¢ meets’
U oV and every member of S(M) which meets both U and V meets
a member of C. A subcollection ¢ of § (M) separates M in case M— Ue
is disconnected. Thus, in general, cutting is weaker than separating.

With each nondegenerate continuum M we agsociate a cardinal
number % as follows: » is the smallest cardinal # such that some subcollec-
tion O of §(M) with cardinality » cuts between 2 pair of open sets in M.
We say that M is of type n. Thus an arc ig of type 1 and a simple closed
curve is of type 2.

The initial motivation for the work presented here was a conver-
sation with F. Burton Jones in which the question aroge: Is every con-
tinuum of type n, 2 <n < ¥y, separated by n of its subcontinua? We
show that the answer is yes (cf. Corollaries 2.2 and 3.2 below). This follows
from some structure theorems for such continuia. Our major results (Theo-
rems 2.3 and 3,1) say that if M is of type n where 2 < n < 8, then by
collapsing » subcontinua of M points one obtains a continuum of type n
consisting of two indecomposable continua meeting at » points. No neat
analogues of the results for finiten have been found for continua of
type §,, in fact, we give an example of a continuum ¥ of type x, every
indecomposable subcontinuum of which is nowhere dense in 2.

Throughout the paper we use the notation X° and X to denote,
respectively, the interior of X and the closure of X in M. Relative in-
terior and closures will be writben out in words.

1. Throughout sections 1 and 2 let M denote a continuum of type n
where 3 <{n < 8, and let {4y, ..., 42} CS(M) cut between the open,
sets U, and V, of M. Let P denote the collection of ordered pairs (U’, V')
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o
where U’,V’ are open sets containing U,, V, respectively, and 4, ..., . lm

cut between U’ and V'. Order 8 in the natural way: (U, V') < (U"”, V")

provided U’ C V", V' C U”; by Zorn’s lemma there is a maximal pair

in P. In sections 1 and 2 (U,V) denotes some fixed maximal pair.
We now list some useful facts.

Levma 1.1, (a) If K € S(M) meets at'least two of the A, then K con-
tains U or V.

(b) If Ky, K, are in S(M) and K3, K3 meet U and V, respectively,
then (B v K,)° contains at least n—1 of the A,. :

Proof. Part (a) is obvious. To prove (b) suppose K, K,e S(M)
and 4,, 4, contain points a,, a,, resp., not in (K, u K,)°. Since K, K,
do not cut between any pair of sufficiently small open mneighborhoods
of @, and a,, there is, for each positive integer i, a 5 ¢ §(M) such that
Cin (K, v K,) = @ and each of dist(a,, 0;), dist(a,, C4) is less than 1/2.

Then O = () U{Ci| 4> j} is a subcontipuum of M containing a; and a,
j=1

and missing K7 and K3 . Since C meets 4, and A,, it contains U or V (by
part (a)); say UC C. Thus both of K? and K miss U.

Levmva 1.2. U and V are connected.

Proof. Since no subcontinuum of M separates M, it suffices to
show that M—U and M—V are connected. We first show that some
component of M— U contains all the 4;. If this is not the case, then
M—U = E+F, separated sets, where we may assume 4, CEH, 4,CPF.
We may also assume F° ~V 5= @. Since 4,, ..., 4, do not cut between
any pair of open sets in M, there is K ¢ §(M) such that K joing U to
F° ~'V and K misses each A; which lies in . There is a subcontinuum K’
of K which meets U.and F° ~ ¥V and misses F. Then K’ misses every 4
but joins U to V, a contradiction.

Thus there is a component 4 of M— U containing' all the 4;. By
part. (a) of Lemma 1.1, VCA. If 4 £ M— U, wiite M—U=BuF
nonvoid and separated, where 4 C B. It is easily shown that (U v F,V)
is a member of P; this contradicts maximality of (U, V) in PB. Thus
A=M—-T,ie M— U is connected. Similarly M—V is connected.

In the remainder of section 1 and throughout section 2, Pand @

will denote the continua U and V, respectively. We remark that since

n>3, M—(PvQ) is connected, whence M—(M—P < ) — (P u Q)°
is connected. In particular P u @ is connected.

Levwva 1.3, One of P,Q is indecomposable.

Proof. Suppose to the contrary that each of P and @ is the union
of two proper subcontinua: P — PyvPyy @Q=@,vQ,. Bach of Py @
has nonvoid interior relative to M ; thus by part (b) of Lemma 1.1; P, v ,
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containg #—1, hence at least two, of the A;. By part (a) of Lemma 1.1,

P, v @, contains U or V,say UCP, v @Q,. Since Q ~ U = 3, we have

U C.P; ‘which implies that U =P C P,, contradicting P, C P.
TurOREM 1.4. Both P and Q are indecomposable.

Proof. By Lemma 1.3 we may assume that P is indecomposable.

Before proving the theorem we establish the following auxiliary result.
(A) @ is indecomposable if there is a subcollection {41, ..., 45} of S(M)

satisfying:

(i) 4:C 4}, i=1,..,n,

(i) Ai—P° =@, i =1,..,n,

n
(ili) U (Z‘.L_JIAQ )
(W) VAadi=0,i=1,..,n

For suppose such a collection exists and @ is the union of proper
subcontinua @, and @,. Denote by K the subcontinuum M— (P o Q)
of M. Since @, is properin @, V ¢ K. Also U ~ K = g, so by (iii) and (iv)
above, K v A] U ... v A} contains neither U nor V. By (i) and part (a)
of Lemma 1.1 we conclude that K meets at most one A}. Hence, reordering
the 47 if necessary, we have: 4{ v ...v A, CM—K = (P v )P CP U
v ;. From (ii) it follows that @, meets at least two of the 4; and since Qs
is proper in @, this contradicts part (a) of Lemma 1.1. Thus, statement (A)
is proved. o
* To prove Theorem 1.4 we construct a family 4f,.., 4, having
properties (i)-(iv). The construction splits into two cases.

Case 1. All the Ay miss Q. In this case P° contains at least n—1
of the A, otherwise the continuum M— (P o Q) meets at least two of
the 4; contradicting Lemma 1.1, part (a). Let ¢ be an integer, 1 < ¢ < .
It 4,C P° construct A7 as follows. Pick K e §(M) meeting U and V and
missing |J {4;]j #4}; thus K ~ A4, # @. There is a component ¢ of
K ~ P° meeting 4; and we let 4; = 4;u C. Since P contains at least
two of the 4, each A; constructed in the above way lies in some com-
posant of P. If A;—P° + @ we merely set A; = A;. Properties (i), (ii)
and (iv) are easy to verify for the A; we have detined, and property (iii)
follows from the fact that each 4} either lies in a composant of P or is
one of the original A, (hence misses U).

Case 2. Q meets some 4;. We may assume Q@ ~ 4, £ B. 2 <i<n
and 4,C.P° then construct 4; as follows. Let K e §(M) join U to V
missing | J {dy] j 544, § # v} v {4} where u, is some point of U. If K
migses A, then it must meet A; and we construct’AQ as we did in Case 1.
(Here A; will lie in a composant of P because K does not contain u,.)
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Suppose then that K meets 4. Now V—K # @ since @ meets 4; and

K ~ A, = @. Hence there is L ¢ §(M) meeting V—K and U and missing

U {44 j #14,§ #n} v {K v An}. Now L meets 4; and does not contain U
since K ~ U + @ and L ~ K = @. We now define 47 as in Cage 1, using L
in place of K. Again 4} lies in & composant of P. As before, if 4;—P° # @
we let A, = A;. The A} satisfy (i)-(iv). This completes the proof of the
theorem.

Before proceeding we briefly describe what happens if M 5 P v Q.
For the next result we assume M— (P v Q) #* @ and denote by K the
continnum M— (P v Q). By Lemma 1.1, part (a), (P v @)° contains
at least n—1 of the Ay say 4, v ... w 4,1 C(P v @)

The main facts about K are summarized in the following theorem.

TreEoREM 1.5 (a) If K is of type m then m = n—1.
(b) K is irreducible about each of the sets K ~ P and K Q.

(¢) If K, ¢ 8(K) has nonvoid interior relative to I, then K, meets each
of the sets Q— P, P—Q and A,.

Proof. (a) Suppose that X and ¥ are nonvoid sets open in K and
that K, .., K,eS(K) cut X from ¥ in K. Then X—(P v @) and
Y— (P v Q) arenonvoid open subsets of M and the »+-1 continua K, ..., K,,
P U Q cut between them. Hence r+1 >n and if K is of type m then
m+1 = n.

(b) Suppose that K, were a proper subcontinnum of K and K ~ P C K,.
(We do not exclude the possibility that K ~ P = @.) Then the subcon-
tinua @ and K, would separate M, contradicting n > 3.

(c) Let K, ¢ S(K) have nonvoid interior in K (hence also K7 # @).
Suppose K, ~(@—P)=9 and consider the set D = M— (P v K—K,).
@° is an open subset of D. It is also closed in D, for if « is a point of D
which is a limit point of Q° then € Q and » ¢ P so that 2 ¢ K,. Since also
v¢ K—K,, we have x¢ PUK v (K—K,) =P U K, ie., v e@° So Q° is
open and closed in D. Since D contains points not in @° (namely, points
of K?), D is disconnected. Since K— K, ¢ S(M) (by part (a) of this theo-
rem) there is a contradiction to n > 3.

. Finally we show K, ~ 4, # 0. If K{— 4, = @ we are done, 80 agsume
Ki— A, # 9. 8ince (U, V) is a maximal pair, we may choose L;, Ly ¢ S (M)
joining K7— A, to U and V respectively and missing 4, ..., A,. Then
Ly v Ly v K, meets some Ay; since L,, L, migs all the 4,, K, must meet
this A4;. Since 4; v ... v A,y lies in (P v @) and hence misses K,, we
must have j =n as asserted. _

There are several natural questions we.might ask about the way
in which 4, ..., 4, and K (if it exists) are situated in a continnum M
of type n. For example: Do some (or all) of the 4, meet P ~ Q% Must
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each of P and ¢ meet some 4% (i.e.: Is Case 1 -in the proof of Theorem 1.4
impossible?) Is the number of components of P ~Q (or K ~ P or K ~ Q)
restricted by n? Does 4, v A, v ..U 4, U K separate M?

The following example shows that the answer in each case is no.
Let & > 2 be an integer; we indicate how to construct a continwum M
of type 3 in which 4,, 4,, 4; may be chosen so that:
(1) A]_U.A.zc_Po a:ndAsf\(_P\JQ)::.g,
(2) K is nonvoid and each of P ~Q, K ~ P, K ~ @ has %k components.
38) M—(4;v A4,v 4, K) is connected.

The continuum M may be obtained as the union of three indecom-

posable continua P, @, K in the plane which intersect as indicated in
figure 1.

Fig. 1

P,Q and K are to be chosen so that the following conditions hold:
PrQ={e, ..o}y EnP={fi,., e}y KnQ@={gh 0}

a, and @, lie in P—(Q v K), and a, is in E— (P v @). 41 and 4; le in
Somposants of P; A} contains a, and e, while 4; contains a,, 6, ..., éx.
Let €, be the composant of P containing As; then (, contains none of
61y fuy -ory fr. Finally, if ¢ is a composant of P, @ or K and ¢ # O, then C
containg at most one of ey, fi, vy Sy Grs ooy Gr-

For ¢ ==1,2,3 let 4; = {as}; then M is of type 3; the subcontinua
4, 4,, A, cut between the pair P—(4]iv Aju K) and Q—(P v K)
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and if (U, V) is a maximal pw corresponding to 4, 4,, 4; then (modulo
a relabeling) U = P and V = P. It is easy to verify (1), (2) and (3).

As is indicated by property (3) of this example some additional
work is needed to show that a continuum of type n-is separated by
of its subcontinua.

2. Before proving the main theorem of this section we introduce
some notation and establish some basic facts.

For each point # of P [resp., Q] let P(x) [@(2)] denote the z-com-
posant of P [Q]. If ¢ P ~ @ then there is a unique integer ¢, denoted
by i(z), such that P () v Q(») meets A;. (There is at least one such integer
because the A; cut U from V, and at most one because of Lemma 1.1,
part (a).)

Observe that if  and y are in. P ~ @ and 4(») # 4(y) then (P(m) v
v Q@) ~ (P(y) v Q(y)) =9, for otherwise there would be a continuum
not containing T or V bub joining Aiq to Ay. For j =1, ..., n, denote
by C; the set of z in P ~ @ such that i(x) = j. As before we may assume
Ay v v Ay C(P U Q). Tt follows that each of Oy, ..., Cp_; is nonvoid.
(As the example of the preceding section shows, C, may be void.) In any
case, the (; are disjoint and their union is P ~ Q.

THEOREM 2.1 Assume the above notation. There ewist continua K, , ..., K,
n M such that: .

(8) Ciw A; CKy for i=1, .., n—1;

(b) Cp v An v K C K,y (where Cn or K may be v0id);

(¢) KsCM—(UVV) fori=1,..,n

Proof. (In what follows, if O, = @ the corresponding definition
will be vacuous.) Fix ¢ < n and let # be a point of Cy; it is easy to verify
that exactly one of the following occurs:

(p) There is a continuum P(m) lying in P(z) missing U and irre-
dugible from x to 4.

(q) There is & continuum ¢ (x) lying in @ (x) missing ¥ and irreducible
from =z to A;.

Correspondingly, we define C;(P) and Cy(Q) to be the set of z in O
‘enjoying properties (p) or (q) respectively. Thus C; is the union of the
disjoint sets Cy(P) .and Ciy(Q). '

Let :

EyP) = A¢v U{P(a) o ¢ O(P)} and K@) = 4iv U {§(@)] 2 < 0Q))-
Since each P () misses U and lies in P, Ky(P) is & subcontinuum of M
missing U v V; similarly for Ky(Q). Let Kq = Ky(P) v Ky(Q) for i<n

and let K, = Kx(P) v En(Q) U A, w K. Properties (a), (b) and (c) follow
immediately from the construction.
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COROLLARY 2.2. Bach continuum of type n, 3 < n < Ry, 18 Separated
by n of its subcontinua. More specifically, if K, .., K, are the continua
given in Theorem 2.1 then M— (K, © ... U K,) is the union of two connected
open sets one containing U and the other V.

Proof. This follows immediately from properties (a), (b) and (
the fact that P~ @Q = C, v ... u 0.

By a basic continuum of type n (3 < n < 8,) we mean a continuum M
of type n for which the 4, ey be ehosen so that each A; is a singleton,
gay Adi={a; P~@Q={a]i=1,.,n and M =P u Q. Clearly these
conditions on the A4, determine U and V uniquely; U = P—Q, V = Q—P.

Intuitively, the basic continua of type n are the prototypes for
arbitrary continua of type n. This idea is expressed more precisely in the
next theorem.

TusorREM 2.3. Let M be a continuum of type n. Then there is o basic
continuum N of type n and a monotone continuous function q mapping M
onto N.

Proof. Using the notation of this section, let K,..., K, be the
continua given in Theorem 2.1. Let D denote the decomposition of M
whose nondegenerate elements are K, ..., K,. Then D is monotone and
upper semi-continuous. Let N denote the quotient space of M modulo D
and ¢ the quotient map.

N is a continuum. and using the fact that the K; separate M and the
monotonity of ¢ it iy easy to verify that N is of type =.

Let U' = q(U) and V' = ¢q(V); then U’ and V' are open in N and
the points ¢(K,), ..., ¢(Kx) cut between (in fact, separate) these two
sets in M. Since N = U’ v V' v (¢(Ky) v ... v ¢(Kq)) the pair (T, V') is
maximal. Now the closures in N of U’ and V' are just ¢(P) and g{Q),
respectively (where M = P v @ v K in the usnal way). Since ¢ is monotone
and continuous, ¢(P) and ¢(Q) are indecomposable. Thus ¥ = ¢(P) v
v ¢(Q) is basic. '

¢) and

3. Let M be a continuum of type 2. If 4,, 4, cut between a pair
of open sets then again there is a maximal pair (U, V), As in section 1
one can show that M— U, M—V, U and V are all connected, and, as
before, we let P = U, @ = V.

Since. a simple closed curve is of type 2, neither P nor @ need be
indecomporable. If P and @ are mdecomposable P ~Q = {m,a,} where

= {a}, ¢ = 1,2; and P w @ = M, then we say that M 4s a basic con-
tinuum of type 2.

In view of the wide range of possibilities for the structure of continua
of type 2 the most satistying theorem seems to be the following analogue
of Theorem 2.3. We omit many details in the proof.

-
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TeEoREM 3.1. Let M be of type 2; there is a monotone continuous
image of M which is either a simple closed curve or a basic continuum of

type 2. .
Proof. One of the following three possibilities holds:

(@) M— (P v @) is disconnected and nonvoid;

(b) M—(P v Q) is connected and nonvoid;

(e M =PuqQ.

If (a) or (b) holds then there is a monotone continuous image of M
which. is of type 2 and for which (c) holds.

To see this, suppose that (a) holds. Then M~ (P v @) has exactly
two components whose closures we denote by H and K. Bach of H and K
meets both P and Q. Let D be the decomposition of M whose nondegenerate
elements are H and K, let # be the quotient space of M modulo D and
let ¢ be the quotient map. -

No subcontinuum of # cuts between a pair of open subiets of M
since ¢ is monotone and continuous. M is of type 2; indeed, let 4, = q(H),
Zz = g(K); then fi'l R A, cut between the open seNts ¢(U) and ¢(V) (because
10 continuum separates H° from K° in M) If (U, V) is the corresponding
maximal pair and 13', Q~ are the closures of UN, f in M thex~1 P == (f)
and § = ¢(Q) and P ~ § is the pair of points 4,, 4,. Finally #f =P u @,
ie., (c) holds for M.

If (b) holds for the original continuum M, then a similar result is
obtained wusing the decomposition whose nondegenerate element is
M—~(P v Q).

To sum up, we may assume at the outset that (c¢) holds for M. Using
the process of the preceding section one constructs continua K,, K, « S(M)
such that 4; C Ky, 4= 1,2, and M— (K, v K,) = U' v V', disjoint open
sets, with U C U’ and V C V'. Moreover, each of P, @ is irreducible from K,
to K,. .

Now suppose that one of P, @, say P, admits the unit interval [0, 1]
a8 3 monotone continuous image via a map k. Let D be the decomposition
of M whose elements are @ and the point inverses {h-'[7]| 7 ¢ (0, 1)}
Then D is monotone and upper semi-continuous, the quotient space is
a simple closed curve and we are done.

If neither P nor @ maps into [0, 1] in the above way, then by Theo-
rem 10, section 1, of [1], each of them containg an indecomposable sub-
continuum with (relative) nonvoid interior, say PcCcp gcCy.

If M =Py @ then the quotient space modulo the decomposition
whose nondegenerate elements are K, and K, is a basic continuum of
type 2.

If M—(P v @) is nonvoid then it has either one component, whose
closure is denoted by L, or two, whose closures we denote by H and XK.
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In the first case I meets exactly one of K, and K,, say L ~ K, # 3. We
then factor M by the decomposition whoge nondegenerate elements are
L K, and K,. In the second case each of H and K meets exactly one
of K, and K, and vice versa, say H ~K, # @ and K ~ K, # @, and
we factor by the decomposition whose nondegenerate elements are
Hu K, and K v K,. In either case the quotient space is basic of

type 2. ‘
As in the preceding section we have:

CoROLLARY 3.2. Tvery continuum of type 2 is separated by a pair of
its subcontinua.

4. Much. of the theory developed for continua of type Ny 2K n < Ky
fails to have any counterpart in the study of continua of type s,. Some
regults, too complicated and incomplete to give here, have been obtained
by modifying the idea of a maximal pair. To illustrate the differences
encountered in passing from finite cardinals to x, we construct an
example of a continuum M of type &, and a collection {a;] ¢ =1,..} of
points of M whose union A separates M such that each component of
M— A hag void interior in M. In particular every indecomposable sub-
continuum, of M has void interior.

The continuum M is obtained by identifying pairs of points of a Cantor
set of indecomposable continua.

Let § denote an indecomposable subcontinuum of the plane; let
{0i]i=0,1,2,..} be a countable pairwise disjoint eollection of com-
posants of §; and let @, be a point of C,. Let K denote a Cantor set in [0, 1];
let E denote the set of endpoints of the components of [0,1]— K; and
let {p;, ps,..} denote the collection of ordered pairs F xE. Write
pi:(‘“).ﬁ); im.l,Z,... .

Let I' = K x 8; we think of T and all the arcs constructed below
a8-lying in Hueclidean 3 - dimensional space. Let 4, be the arc [0, 1] x {a,}.
Having chosen 4,, 4y, vy Ap—1, 7 = 0, lot Ay be an arc with endpoints a,
and b, such that Ay ~(Tw by . v dyy) = {an,bu}; One{n} X Cn;
by € {fn} X On, and diﬂt(.ﬁin, Ao) £ 1/2”.

Lot NV = T'w Cj An; then N iy a continuum. Let D denote the de-
nw0

composition of N whose nondegenerate elements are the ¢, ¢ = 0,1, 2, ...
then D is monotone and wupper semi-continuous. The quotient space M
is a continuum of type s, and the points of M corresponding to the 4.
separate M. It is not difficult to see that M has the properties stated in
the opening paragraph of this section.

In addition to the general problem of getting a structure theory
{and, perhaps, finding a reasonably simple class of prototypes) for con-
tinua of type s, there are at leagt two questions which should be answered.
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Does every continuum of type 8, contain an indecompbsable subeontin-
wum? Is every continuum of type &, separated by a countable collection

.of its subcontinua?
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Open mappings on graphs and manifolds *
by
Richard A. Duke (Seattle, Wash.)

1. Introduction. In [3], pp. 182 and 197, Whyburn has shown
that the image of a finite graph under a (light) open mapping is again
a finite graph and also that the image under & light, open mapping of
a 2-manifold is a 2-manifold. The purpose of this paper is to investigate
the conditions under which an open mapping f(@) = H defined on a graph G
can be extended to a light, open mapping F(M) = N defined on & 2-mani-
fold M when @ and H are imbedded in M and N, respectively.

In section 3 it is shown that if f(G) = H is such an open mapping,
then there exist imbeddings of G and H in some orientable 2-manifolds M
and N respectively, and an extension of f to a light, open map # (M) = N.
The imbedding of H may be taken to be any orientable, 2-cell (and hence
any minimal) imbedding of H. Further, any light, open map F(M) = N
on a closed orientable 2-manifold M can be obtained as an extension
of such a map f(@) = H on a graph G minimally imbedded in M. In
gection 4 it is shown that for each positive integer # there is an open
mapping of a planar graph onto some graph of genus %, and this is used
to show that the imbedding obtained for G in the above result may nee-
essarily be non-minimal.

2. Background. The ferm mapping will be used to denote a con-
tinnous transformation. A mapping f(X) = ¥ is said to be open provided

_that every open set in X maps onto & set open in Y. If for each y in ¥,

() is totally disconnected, f is said to be a light mapping. The term
graph will denote a finite, connected 1-complex. )

If f(@) = H is an open mapping on a graph @, then H is also a graph.
Further, f is a light mapping and it is possible to designate certain interior
points on the edges of G and H as additional vertices in such a way that f
maps each edge of G topologically onto an edge in H. In light of these
‘facts, we shall assume for the remainder that any open mapping on a graph
is a simplicial transformation. ' :

* This research was supported in part by a grant from the National Science
Foundation.
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