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On convergence groups and convergence uniformities

by
D. C. Kent (Pullman, Washington)

Introduction. Some non-topological convergence structures en-
countered in analysis exhibit properties reminiscent of uniform spaces.
An investigation of such structures has been made by Cook and Fischer [2].
We give a somewhat more lattice-oriented development of the same
subject.

We denote by C'(8) the complete lattice of all convergence structures
on a set 8, and by W(S) the smallest sub complete lattice of ¢'(8) that
contains all of the completely regular topologies on 8. A member g of W (S)
is said to be “weakly uniformizable”, and to each such structure there
corresponds an equivalence class [¢] of “weak convergence uniformities”
which contains both & finest and a coarsest member. We extend the
notion of completeness and show that each weak convergence uniformity
has a ‘“‘completion”. A convergence group is a special type of weakly
uniformizable convergence structure. A simple characterization is given
for the smallest sub complete lattices of C’(S) that include, respectively,
the set of all convergence groups and the set of all topological groups
defined for a given Abelian group (8§, +).

Finally, we mnote that our weak convergence uniformity and the
corresponding (somewhat stronger) structure used by Cook-Fischer are
both too permissive, in the sense that they describe as “uniformizable”
all T, topologies. A criterion consisting of three conditions is suggested
as a measure of suitabiﬁty for future efforts to define the notion of “con-
vergence uniformity”.

I. Convergence structures. A convergence function ¢ on a set §
is a mapping of the set F(8) of all filters on § into the set of all subsets
of § which is order-preserving (finer filters map into larger sets) and
has the property @ ¢ q(#), all x ¢ 8, where & is the ultrafilter generated
by {z}. If 2 eq(F), then we say that ‘“the filter ¥ ¢-converges to 2.
The filter U,(z) obtained by intersecting the collection of all filters that
g-converge to # is called the g-neighborhood filter at x. If Uy(®) g-con-
verges to x for each x e S, then g is called a pretopology.
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A partial order relation among convergence functions on the same
set § can be introduced as follows: p < g means that ¢(F)C p(F) for
each ¥ ¢ F(S). The set C(8) of all convergence functions on S is then
a complete lattice, whose greatest element is the diserete topology and
whose least element is the indiscrete topology. The set T'(S) of all topo-
logies on S is regarded as a subset of C(8); the former is a complete lattice
in its own right, but not a sub complete lattice of C(S). Since a number
of different lattices are considered in this paper, it will be convenient
to use “inf’ and “sup,”’ to represent, respectively, the operations infimum
and supremum in C(8).

Let geC(8). There is a finest pretopology w(g) coarser than g,
defined by Unp(x) = Uy(z), all ¢ S. We may also associate with ¢ the
set function 7, defined for a given 4 C 8 by I (4) = {x e d: 4 ¢ VUyx)}.
The set {U: I(U)= U} is a topology on 8 which we designate A(g);
A(q) is the finest topology coarser than g. The set {I,(4): 4 C 8} is a base
for the topology ¢(g) on S. 1(¢) < ¢(¢); ®(g) and ¢ are in general not
comparable; A(g) = ¢(q) if and only if =(g) is a topology.

A convergence function ¢ on S will be called a convergence structure
if and only if it satisfies the following additional condition: w e q(F)
implies # € ¢(F ~ ). The set of all convergence structures on § is denoted
C'(8). The two theorems that follow are not difficult to prove.

THEOREM 1.1. A convergence function ¢ is representable as the inf,
of a set of topologies if and only if q e O'(S).

THEOREM 1.2. ('(8) is the smallest sub complete lattice of C(S) that
includes T'(S).

If q is a-convergence structure, then one can show that the associated
topologies o(q) and o(q) (see [3]) coincide with A(g).

Henceforth, we shall restrict our attention to convergence structures
rather than convergence functions. The pair (S, ¢), with ¢ e 0'(8), will
be called a convergence space. The separation axioms 7, and 7, can be
introduced into a convergence space in an obvious way. (8, q) is T, if,
for each x in 8, & ¢-converges only to x; (8, ) is T, if every filter in 7(S)
¢-converges to at most one point.

II. Weakly uniformizable convergence structures. A wni-
formity on a set 8 is considered in this paper to be a filter on § x § whiel.
is symmetric, envelops the diagonal 4, and has the “square root property”’.
Such a filter iy more often called a ‘“‘uniform structure”, but this term
might easily be confused with some of our later terminology.

We denote by Ty(8) the set of all completely regular topologies
on 8, and by U(S) the set of all uniformities on S. Both Ty(8) and T(S)
are complete lattices in their natural orderings.
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Some additional notation will be needed. Let A denote the filter
on Sx 8 generated by the diagonal 4. If U is a filter on & x § which is
coarser than 4, then U[x] designates the filter on § generated by {V[x]:
V eV}, where VE&] ={y: (#,9)eV}. I VeV, then V7= {(y,z):
(2,9) € q?}, and V' = {7 Ve V}; thus U is symmetric if U = U™
Finally, if ¥ and § are in F(8), then F G is the filter on & & generated
by {(Fx@G: FeF,qeC).

DEFINITION 1.1. A convergence structure q is weakly uniformizable
if and only if there is a set @ of completely regular topologies such that
¢ = inf.Q.

Prorosirion 2.1. If F is any filter on 8, then A ~ (F xF) is a uni-
formity on 8.

PROPOSITION 2.2. Assume that ge C'(8), & q-converges to x, and
Wgp= 4~ ((F ~E)X(F A fn)) Then § converges 1o x in the topology
compatible with g .

PROPOSITION 2.3. If W e U(S) and U[z] converges to y in the topo-
logy © compatible with W, then W[z] = W[y].

Proof. Since ze U[y]eWlyl,y e U[x] e W[z] for all symmetric
entourages U in W; thus ¢ £-converges to z. If U « U is symmetric, then
choose symmetric 7 in AU such that V2C U. If z¢V[xz], then y ¢ V[x]
implies (y, #) € V?, and hence z ¢ V2[y] C U[y]. This argument is reversible.

THEOREM 2.1. A convergence structure q is weakly uniformizable if
and only if F q-converges to y whenever y ¢\ F and q(F) # @.

Proof. Let g=inf. P, P C Ty(S). With each p e P, associate a uni-
formity U, compatible with p. If & g-converges to @, then there is p ¢ P
such that 5 p-converges to @. If y e[| &, then ¥ > F implies 5 p-con-
verges to #. By Proposition 2.3, Uy[2] = Uy[y], and F > U,[y] implies F
p-converges to y; thus, & ¢-converges to ¥.

Conversely, assume the given condition and let w = {Wg,: F ¢-con-
verges t0 #, x e §}. We shall show that ¢ is the inf. of the set of those
topologies compatible with some uniformity in w. By Proposition 2.2,
it suffices to show that the topology p associated with an arbitrary U,
is finer than ¢. Assume for # s y that there is G ¢ '(S) which p-converges
to y, with § 7 9. Then § > Ug [y] implies y e F w {z}, all F ¢ F. Thus
Ye[)F implies ¥ g-converges to y. Since Wg [y] > F ~ 4, it follows
that G g-converges to y.

Let W (S) be the set of all weakly uniformizable convergence structures.

THEOREM 2.2. W(S) is the smallest sub complete lattice of C'(S) that
includes Ty(8).

Proof. Let QC W(8); r=sup.Q. If F r-converges to «, then F
g-converges to x for all ¢geQ. If y e[| F, then F g-converges to ¥, all
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¢ €@, and hence F r-converges to y; thus » is weakly uniformizable. The
proof that inf,Q is weakly uniformizable is similar. The theorem now
follows from Definition 1.1 and the fact that sup. of a set of completely
regular topologies is a completely regular topology.

Since each completely regular topology is the sup. of a set of pseudo-
metrizable topologies, W(S) can be regarded as the lattice-theoretic
closure of the set of all pseudo-metrizable topologies in the complete
lattice of all convergence structures on S.

If p is a convergence structure, let Vp = ") {VUp(®) X Vp(®): 2 ¢ §}.
When p is a topology, Uy is the filter of ‘“‘neighborhoods of the diagonal”.

TEEOREM 2.3. For a pretopology p, the following statements are equiv-
alent: (1) p is weakly uniformizable; (2) y € [} Up(w) implies Up(x) =Vp(y);
(3) Vplz] = Uy(w), oll = in S.

Proof. (1) = (2). y €[ VUp(z) implies Vp(z) p-converges to y. Thus
3 > V) > Vp(y), implying @ e ) Up(y), and Vy(y) > V().

(2) = (3). Uyp(w) = VUp[z] in any case. Let V e Up(x). If y € () VUp(z),
let Vy==V; if y is not in () VUp(z), choose Vy e Uy(y) such that z is not
in Vy. I W= {J{VyxVy: ye8}, then WeUp, and Wz]="V.

(3) = (1). Let & p-converge to x, and y <[ | F. Then ¥y [ ) VUp(x)
= [} Uplz]. It is easy to see that U,[y]C V,[#]. Thus we have F >

V2] = VUyp(y), and F p-converges to y.
' It is an interesting fact that =(g) (the finest pretopology coarser
than ¢) may fail to be weakly uniformizable when ¢ is weakly uniformiz-
aple. This is not the case, however, if ¢ is a limitierung, i.e. it F ~ 6
¢-converges to # whenever both & and § ¢-converge to x.

THROREM 2.4. If g« W(S) is a limitierung, then m(q) and ¢(q) are
wealkly uniformizable.

Proof. Let ye[) Vyx); then § g-converges to . If F g-converges
to «, then 5 ~ g g-converges to @, and ye() (F ~¥), which implies
J ~ 9 g-converges t0 ¥, and so F ¢-converges to y. Thus Uy(a) > Vyy).
Since & e[| V,(y), we can repeat the previous argument with the roles
of » and y interchanged. It follows, by the previous theorem, that z(g)
is weakly uniformizable. From the fact that V(@)= U,(y), it follows
easily from Theorem 3, Section II, [3] that the @(g)-neighborhood filters
for # and ¥ coincide, and hence that ¢(g) is weakly uniformizable.

On the other hand, A(g) (the finest topology coarser than g¢) can
fail to be weakly uniformizable, even when ¢ is a weakly uniformizable
pretopology.

IIl. Convergence groups. Let (8, +) be an Abelian group
with identity element 0. If & and G are filters on 8, then —F = {—F: F ¢ 5},
and & +6 ig the filter generated by {F+&: FeF, G« G}. The notations
¥ —6 and 2+ & will usually replace F -+ (—8) and £+ F. For a filter F
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with the property 0 ¢ ¥, all F e F , it is convenient to write nF for & —
+ ...+ F (n times); in general, if a is an ordinal number with an immediate
predecessor a—1, af = F+(a—1)F, and if « is a limit ordinal (an in-
finite ordinal with no immediate predecessor), aF = 7\ {BF: B < a}.

DEFINITION 3.1. Let (S, +) be an Abelian group and ¢ € C’(S). Then
(8, +,9) is a convergence group if and only if, for each pair of filters
F,8 on 8, (¢(F)~q(8)) Cq(F-9).

This definition is the natural one in the sense of “making the group
operation continuous”. The straightforward proof of the first proposition
is omitted.

Prorosirion 3.1. If (8, +, q) is a convergence group, then:

(1) & g-converges to 0 if and only if &+ F q-converges to x;

(2) 2+Vg(0) = Vylw);

(3) —Vg(®) = Vy(—n).

PROPOSITION 3.2. A convergence group (S, --,q) is a weakly uni-
formizable convergence structure.

Proof. Let F ¢-converge to 0, and y ¢ [} F. Then —y+F > —F + F,
and since —F 4 F ¢-converges to 0, so does —y-+F. But then —y4F+
4y =& ¢-converges to ¥.

ProrositioN 3.3. Let (S, ++) be an Abelian group, ¢ a pretopology.
Then (8, +, q) is a convergence group if and only if the following conditions
are satisfied. (1) Vg(0)—Ug(0) = Ug(0); (2) V() = -+V0), all © in S.

Proof. Let (8, -+, ¢) be a convergence group. Then (2) follows
from Proposition 3.1, and (1) follows from Definition 3.1. Conversely,
given (1) and (2), let 2,y €8, and V(z—y)= 2—y-LV(0) ¢ Ug(z—1),
where V' (0) € Uy(0). Choose Ve Ug(0) such that V,—V, CV(0). Then
#+Vy e Uglw), y+Vy e Vo(y), and a+V,—(—y—V3) CV(z—y).

ProrosiTioN 3.4. If (8, -+, q) is a convergence group and q a pretopo-
logy, then (S, +, q) is a topological group.

Proof. If Ve Uy 0), let V*¥= {(x,y) e S x8: z—yeV}. It follows
easily that {V*: V e U,(0)} generates a uniformity U on 8. Since U[x]
= Vy(z) for all z in §, g is a topology. The rest is clear.

ProrosrtioN 3.5. Let QC C'(8),Q # @, such that qeQ implies
(8, +, q) is a convergence group. Let p = sup,Q. Then (8, +, p) is a con-
vergence group.

Proof. Let zep(F),y ep(8). Then @ e q(F), y «q(8) for all g in @,
and, by the given condition, ¥—¢ g¢-converges to 2—y. Thus F—§
p-converges to x—y.

If (8, +,¢) is a convergence group, then 4(g), the finest topology
coarser than ¢, is both homogeneous and weakly uniformizable.
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For a given Abelian group (8§, +), let T'(S8, +) be the set of all
topologies ¢ such that (8, 4-, ) is a topological group, and let C(S, )
be the set of all convergence structures ¢ such that (8, -+, ¢) is a con-
vergence group. It is easy to see that neither T'(8, +) nor C(S, ) is
closed under the operation inf;. We seek the smallest subcomplete lattices
of C'(8) that include T'(8, +) and C(§, +) respectively.

DEFINITION 3.2. (8, +, q) is a weak convergence growp if and only
if the following conditions are satisfied: (1) F g¢-converges to 0 if and
only if x4+ 3 g-converges to #; (2) F g-converges to 0 implies F— &
¢-converges to 0.

Every convergence group is a weak convergence group. Also, a weak
convergence group is a weakly uniformizable convergence structure,
since the proof of Proposition 3.2 requires no alteration if “convergence
group” is replaced by ‘“weak convergence group’.

TrEOREM 3.1. (8, +, q) is a weak convergence group if and only if ¢
4¢ the inf, of the set @ = {p « O(8, +): p = ¢}

Proof. If ¢ = inf.Q, then it is not difficult to show that ¢ satisfies
the two conditions specified in Definition 3.2; thus (8, +, ¢) is a weak
convergence group. Conversely, assume that (S, +,¢) is a weak con-
vergence group. If p = inf.@, then p > ¢ is clear. Let ¥ ¢-converge to 0,
and let "= F—§F. Let r be the convergence structure defined by:
(1) 8 r-converges to 0 if and only if § > nF’ for some positive integer n;
(2) 8 r-converges to = if and only if —246 r-converges to 0. It is easy
to see that » €@, and that & r-converges to 0; thus F p-converges to 0,
and p = q.

Let W(S, +)={ge C"(8): (8, +, ¢) is a weak convergence group}.

CoroLLARY. W (8, 4-) is the smallest sub complete lattice of C'(8) that
includes C(S, +).

Proof. The verifieation that W (S, +) is closed under sup, and inf,
is straightforward. The result now follows from Theorem 1.

DerFinitioN 3.3. (8, 4, q) is a pseudo convergence group if and only
if it is a weak convergence group with the property that, for all ordinal
numbers a, aF ¢-converges to 0 whenever § ¢-converges to 0.

Let P(8, +) = {g « 0'(8): (8, +, ¢) is a pseudo convergence group}.
One can find examples of & convergence group that is not a pseudo con-
vergence group and of a pseudo convergence group that is not a con-
vergence - group.

TEEOREM 3.2. ¢ ¢ P (S, +) if and only if ¢ = inf.Q, where Q = {p:
peT(8, +) and p > ¢}

Proof. If ¢ = inf.Q, then ¢ s clearly a weak convergence group. Let F
¢-converge to 0; then there is p ¢Q such that F > VUp(0). But. oF
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= aUp(0) = Vp(0), and hence aF p-converges to 0. Thus aF ¢-converges
to 0, and geP(8, +). Conversely if geP(S, +) let p = inf,Q, and
let & g-converge to 0. Let ' = §—F. Consider the convergence struc-
ture 7 defined by: § r-converges to 0 if and only if § > a¥’; where a is the
least ordinal number such that oF' + aF’ = oF'; § #-converges to z if and
only if —x+-§ r-converges to 0. It is easy to see that r is a topological
group, and » € §). Since » « r(F) implies e p(F), p = ¢.

It can be shown that a pseudo convergence group ¢ is a convergence
group if and only if the set Q defined in the preceding theorem is a dual
ideal in the lattice T'(S, +).

CoROLLARY. P(S, +) is the smallest sub complete lattice of O'(S) that
wncludes T (8, +).

Let (K, +) be a subgroup of (8, 4); let (8, +) be the quotient
group whose elements are cosets of § modulo K; let 0’ denote the identity
element of §'. If g: §8’ is the canonical homomorphism and ¢ a con-
vergence structure on §, then the quotient convergence structure ¢’ on S’
iy defined by: § ¢'-converges to y if and only if there is & ¢ F(§) g-con-
verging to 2 such that g(s) =y and § > g(5).

THEOREM 3.3. If (S, +, q) is a weak convergence group (respectively,
convergence group, pseudo convergence grouwp, topological group) and ¢ the
quotient convergence Structure corresponding to a subgroup (K, ), then
(8's 4, ¢') is a weak convergence group (respectively, convergence group,
pseudo convergence group, topological group).

Proof. Let (8, 4, g) be a weak convergence group, 8’ = S/K, and
assume that 0’ e ¢'(S). Then there is # in X and ¥ in F(S) such that
F q-converges to » and § > ¢(F), where g is the canonical homomorphism.
But §,= —x+F g-converges to 0, and g(F)= ¢(F,). Since (F,—F)
g-converges to 0, and §—§ > ¢(F,)—g(F,) = g(F1—F1), (8—9) ¢'-con-
verges to 0'. Translations are preserved under homomorphisms, and it
follows that (8', +, ¢') is a weak convergence group.

The analogous result for convergenece groups is known (see [4]). For
pseudo convergence groups, the result follows from the fact that g(aF)
= ag(F).

Next, let @ C W (S8, +), and ¢ = inf.Q. Let (§', +) be a quotient
group of (8, +) with kernel K and canonical homomorphism g. For each
pe@, let (8, 4+, p’) be the quotient weak convergence group correspond-
ing to (8, +,p), and let @' = {p’ ¢ C'(8'): p eQ}. X ¢ = inf,Q’, then
the following conclusion can he drawn.

THEOREM 3.4. (8, 4, ¢') 48 the quotient weak convergence group of
(8, +,q) under the canonical homomorphism g.

Proof. If § g-converges to 0, then & p-converges to 0 for some p
in @; thus g(F) p’-converges to 0, and g(¥) ¢ -converges to 0’. Con-
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versely, let § ¢'-converge to 0’, i.e. for some p in @, § p’-converges to 0.
Then there is F p-converging to # in K such that § > ¢(F); as in the
proof of the previous theorem, there is also F, p-converging to 0 with
g(F) = g(F.)- But F, also ¢-converges to 0, and the theorem is proved.

A corresponding result ecan be established for quotient pseudo con-
yvergence groups.

In the lattice diagram that follows, the order relation is set inclusion.
Each entry is a complete lattice in the order relation defined on C(8);
underlined entries are sub complete lattices of O(S).

DEFINITION 4.1. A weak convergence wniformity w is an anti-residual
set of uniformities on §j; i.e., if U e w and VU is a uniformity finer than W,
then U ew.

For economy in writing, “weak convergence uniformity” will be
shortened to “weak uniformity”.

Any uniformity U can be regarded as a weak uniformity if we
identity W with wq, = {Ue U(8): VU > W}

With each weak uniformity w, there is an associated weakly uni-
formizable convergence structure ¢,. If U e w, we denote by tq, the topo-
logy compaitible with U; then g, = inf;{tq),: W ew}.

Approaching from another direction, let ¢ be a weakly uniformizable

convergence structure, and let [¢] be the set of all weak uniformities -

compatible with ¢ (i.e., [q] = {w: qw = ¢}). We single out two members
of [q] of particular interest:

(1) wi = {Wg,: F g-converges to x};
(2) wi = {W € U(8): 1y, > g}.

Remark. If a weak uniformity w is defined as a non-anti-residual
set of uniformities on §, then it will be assumed without further comment

that w includes those additional uniformities needed to satisfy the anti-
residual property.

@
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T'h.e following partial order relation among weak uniformities will
be utilized: w, < w, means that for each ¢ » € W, there iz Uy e w, such
that Uy, < W,. We now show that [q] contains both a greatest and
a least element.

THEOREM 4.1. If w €[q], then wy < w < wk.

Proof. If U e w, then W e w} is obvious, and thus wy< w. ITf U} e wi,
then we can assume that there is a filter F g-converging to 2 such that
W = Wy, Since ¢ = g, there is W ew such that F tqy-converges to .
Thus, & X § > W, implying Wgy = W, and w < wk.

DErINITION 4.2. Let w be a weak uniformity on §. 7 is a w- Cauchy
filter it and only if there is U in w such that F % 5 > U.

DEFINITION 4.3. A weak uniformity w is complete if and only if each
w-Cauchy filter g,-converges to some point in S.

If ¢ is in W(8), then there is always at least one complete weak
uniformity compatible with ¢, namely w}. A uniformity, regarded as
a convergence uniformity, is complete in the usual sense if and only if
it is complete in the sense of the preceding definition.

The pair (8, w) consisting of a set § and a weak uniformity w on S
will be termed a weakly uniform space. A definition of a completion for
a weakly uniform space which generalizes the standard definition can
be given in several different ways, from among which we choose the
following.

DEFINITION 4.4. (§ , W) is a completion of the weakly uniform space
(8, w) if and only if there is a one-to-one function o: §—§ with the follow-
ing properties: (1) for each y in S, there is a filter on o(8) which con-
verges to y relative to a topology compatible with one of the uniformities
in @; (2) if W= w, and U=[) %, then o(W) coincides with the
restriction of U to o(S).

THEOREM 4.2. Each weakly wuniform space (8,w) has a completion.

Proof. Let w= {Wa: aed}, § be the set of all w-Cauchy filters,
and §, = {F €8: FXF > U,}. The uniformity U, on §, is defined as
follows: for each symmetric entourage U in W,, let U = {F,8): F,8e8, .
and U e F x 8}; let 4L, be the uniformity generated by {(U: Ue U,}. For
each o in A4, (8,, Al,) is a complete uniform space, and if o: §—8, is
defined by o(x) = £, for all ain 4, then o(S) is dense in §,. (See Chapter 2,
Section 3, Theorem 2, [1]). Next, let Vy= 4 ~ ‘TLQ, where 4 is the
diagonal of §. We now regard o as a mapping of § into 8.1t wis generated
by {Uq: aeA}, then it is routine to verify that (8, %) is a completion
of (8, w).

DerFINITION 4.5. A weak uniformity which is a dual ideal in the
lattice U(S) is called a directed convergence uniformity.
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A convergence group which is also a pseudo convergence group is
compatible with a directed convergence uniformity; this result is clear
from the remark following Theorem 3.2. A directed convergence uni-
formity is a “uniform convergence structure’’ in the sense of Cook-
Fischer [2]. Any convergence structure compatible with a directed con-
vergence uniformity is 7, whenever it is T,.

From Theorem 2.1 it follows that every T, topology is a weakly
uniformizable convergence structure. This may be compared with

TamoREM 4.3. Hvery T, topology p is a convergence structure compatible
with & directed comvergence umiformity.

Proof. Let Uy = 4 ~ (Vp(@) xVp(#)), and w = {Ws: @ in S}. It is
easily seen that w is a weak uniformity compatible with p. But the set w’
of finite intersections of members of w is a directed convergence uni-
formity, and w’ € [p].

Concluding remarks. A meaning has not yet been assigned to
the term ‘“‘convergence uniformity”. It would seem appropriate to reserve
this name for a weak convergence uniformity satisfying the following
conditions: (1) A convergence group is a uniformizable convergence
structure; (2) If a topology is uniformizable as a convergence structure,
then it is uniformizable in the usual sense; (3) A T, uniform convergence
space has a (unique?) Hausdorff completion. A definition that meets
the first two conditions is the following: w is a convergence uniformity
if and only if w is a weak uniformity and A(gw) is uniformizable. I do not
know of a definition that will satisfy all three conditions.
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Some relational systems and the associated
topological spaces
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The aim of this paper is to investi i
‘ L . igate relational systems <, R
(8 is the field of a binary relation R), and associated algebras: &

@) A8, B) = (P(8), v, m, —, O

where P(8) is the set of all subsets of 8, <P(8), v

3Ny > 18 the BOOlea’n
algebm: Of Subsets Of S’ and the Operatlon C 1 ed on 1he elelnel].[}s
S defln d
Of I (S) as fOuOWS.

(2) CX={y: V a(zeX A sRy)}.

It is easy to see that if the relation R is i : L.
s 2 quasi-ordering, i.e. if i
satisfies two conditions (see [1]): 4 g Le. if it

(3) a. 2R (reflexivity) ,

b. @Ry A yRBz)—> xRz (transitivity),

fohen the algebra £(S, R) is a topological field of sets (this means that
it satisfies the equalities: A. XCCX; B. CXuY)=CXu(CY:
C. CCX=CX; D. CO=0 (@ is the empty set)). ‘ ’
) The purpose of these investigations is to characterize the topological
tields of sets and related pseudo-Boolean algebras for some special re-
lational systems, e.g. systems satisfying some additional equalities, having
a logical meaning (cf. Theorem 1 and Corrolary 3).

This is a continuation of the well-known papers of Tarski and
McKinsey [5] and Rasiowa and Sikorski [6].

1 Representgtion of totally distributive topological
Spaces. A topological space: (P(8), u, n, —, CD is totally disiributive
if and only if for every set X e P(S)

(4) CX= U Cla}.
zeX

Hence every finite topological space is totally distributive.
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