

On convergence groups and convergence uniformities

hv

D. C. Kent (Pullman, Washington)

Introduction. Some non-topological convergence structures encountered in analysis exhibit properties reminiscent of uniform spaces. An investigation of such structures has been made by Cook and Fischer [2]. We give a somewhat more lattice-oriented development of the same subject.

We denote by C'(S) the complete lattice of all convergence structures on a set S, and by W(S) the smallest sub complete lattice of C'(S) that contains all of the completely regular topologies on S. A member q of W(S) is said to be "weakly uniformizable", and to each such structure there corresponds an equivalence class [q] of "weak convergence uniformities" which contains both a finest and a coarsest member. We extend the notion of completeness and show that each weak convergence uniformity has a "completion". A convergence group is a special type of weakly uniformizable convergence structure. A simple characterization is given for the smallest sub complete lattices of C'(S) that include, respectively, the set of all convergence groups and the set of all topological groups defined for a given Abelian group (S, +).

Finally, we note that our weak convergence uniformity and the corresponding (somewhat stronger) structure used by Cook-Fischer are both too permissive, in the sense that they describe as "uniformizable" all T_2 topologies. A criterion consisting of three conditions is suggested as a measure of suitability for future efforts to define the notion of "convergence uniformity".

I. Convergence structures. A convergence function q on a set S is a mapping of the set F(S) of all filters on S into the set of all subsets of S which is order-preserving (finer filters map into larger sets) and has the property $x \in q(x)$, all $x \in S$, where x is the ultrafilter generated by $\{x\}$. If $x \in q(\mathcal{F})$, then we say that "the filter \mathcal{F} q-converges to x". The filter $\mathcal{V}_q(x)$ obtained by intersecting the collection of all filters that q-converge to x is called the q-neighborhood filter at x. If $\mathcal{V}_q(x)$ q-converges to x for each $x \in S$, then q is called a p-retopology.

A partial order relation among convergence functions on the same set S can be introduced as follows: $p \leq q$ means that $q(\mathcal{F}) \subset p(\mathcal{F})$ for each $\mathcal{F} \in F(S)$. The set C(S) of all convergence functions on S is then a complete lattice, whose greatest element is the discrete topology and whose least element is the indiscrete topology. The set T(S) of all topologies on S is regarded as a subset of C(S); the former is a complete lattice in its own right, but not a sub-complete lattice of C(S). Since a number of different lattices are considered in this paper, it will be convenient to use "inf_c" and "sup_c" to represent, respectively, the operations infimum and supremum in C(S).

Let $q \in C(S)$. There is a finest pretopology $\pi(q)$ coarser than q, defined by $\mathfrak{V}_{\pi(q)}(x) = \mathfrak{V}_q(x)$, all $x \in S$. We may also associate with q the set function I_q defined for a given $A \subset S$ by $I_q(A) = \{x \in A : A \in \mathfrak{V}_q(x)\}$. The set $\{U : I_q(U) = U\}$ is a topology on S which we designate $\lambda(q)$; $\lambda(q)$ is the finest topology coarser than q. The set $\{I_q(A) : A \subset S\}$ is a base for the topology $\varphi(q)$ on S. $\lambda(q) \leqslant \varphi(q)$; $\varphi(q)$ and q are in general not comparable; $\lambda(q) = \varphi(q)$ if and only if $\pi(q)$ is a topology.

A convergence function q on S will be called a *convergence* structure if and only if it satisfies the following additional condition: $x \in q(\mathcal{F})$ implies $x \in q(\mathcal{F} \cap \dot{x})$. The set of all convergence structures on S is denoted C'(S). The two theorems that follow are not difficult to prove.

THEOREM 1.1. A convergence function q is representable as the \inf_{σ} of a set of topologies if and only if $q \in C'(S)$.

THEOREM 1.2. C'(S) is the smallest sub complete lattice of C(S) that includes T(S).

If q is a convergence structure, then one can show that the associated topologies $\sigma(q)$ and $\varrho(q)$ (see [3]) coincide with $\lambda(q)$.

Henceforth, we shall restrict our attention to convergence structures rather than convergence functions. The pair (S,q), with $q \in C'(S)$, will be called a convergence space. The separation axioms T_1 and T_2 can be introduced into a convergence space in an obvious way. (S,q) is T_1 if, for each x in S, \dot{x} q-converges only to x; (S,q) is T_2 if every filter in F(S) q-converges to at most one point.

II. Weakly uniformizable convergence structures. A uniformity on a set S is considered in this paper to be a filter on $S \times S$ which is symmetric, envelops the diagonal Δ , and has the "square root property". Such a filter is more often called a "uniform structure", but this term might easily be confused with some of our later terminology.

We denote by $T_U(S)$ the set of all completely regular topologies on S, and by U(S) the set of all uniformities on S. Both $T_U(S)$ and U(S) are complete lattices in their natural orderings.

Some additional notation will be needed. Let Δ denote the filter on $S \times S$ generated by the diagonal Δ . If $\mathfrak V$ is a filter on $S \times S$ which is coarser than Δ , then $\mathfrak V[x]$ designates the filter on S generated by $\{V[x]: V \in \mathfrak V\}$, where $V[x] = \{y: (x,y) \in V\}$. If $V \in \mathfrak V$, then $V^{-1} = \{(y,z): (z,y) \in \mathfrak V\}$, and $\mathfrak V^{-1} = \{V^{-1}: V \in \mathfrak V\}$; thus $\mathfrak V$ is symmetric if $\mathfrak V = \mathfrak V^{-1}$. Finally, if $\mathcal F$ and $\mathfrak S$ are in F(S), then $\mathcal F \times \mathcal S$ is the filter on $S \times S$ generated by $\{F \times G: F \in \mathcal F, G \in \mathfrak S\}$.

Definition 1.1. A convergence structure q is weakly uniformizable if and only if there is a set Q of completely regular topologies such that $q=\inf_c Q$.

Proposition 2.1. If F is any filter on S, then $\Delta \cap (\mathcal{F} \times \mathcal{F})$ is a uniformity on S.

Proposition 2.2. Assume that $q \in C'(S)$, \mathcal{F} q-converges to x, and $\mathbb{U}_{\mathcal{F},x} = \Delta \cap ((\mathcal{F} \cap \dot{x}) \times (\mathcal{F} \cap \dot{x}))$. Then \mathcal{F} converges to x in the topology compatible with $\mathbb{U}_{\mathcal{F},x}$.

PROPOSITION 2.3. If $\mathfrak{U} \in U(S)$ and $\mathfrak{U}[x]$ converges to y in the topology t compatible with \mathfrak{U} , then $\mathfrak{U}[x] = \mathfrak{U}[y]$.

Proof. Since $x \in U[y] \in \mathfrak{U}[y]$, $y \in U[x] \in \mathfrak{U}[x]$ for all symmetric entourages U in \mathfrak{U} ; thus \dot{y} t-converges to x. If $U \in \mathfrak{U}$ is symmetric, then choose symmetric V in \mathfrak{U} such that $V^2 \subset U$. If $z \in V[x]$, then $y \in V[x]$ implies $(y,z) \in V^2$, and hence $z \in V^2[y] \subset U[y]$. This argument is reversible.

THEOREM 2.1. A convergence structure q is weakly uniformizable if and only if \mathcal{F} q-converges to y whenever $y \in \bigcap \mathcal{F}$ and $q(\mathcal{F}) \neq \emptyset$.

Proof. Let $q=\inf_c P$, $P \subset T_U(S)$. With each $p \in P$, associate a uniformity \mathfrak{U}_p compatible with p. If \mathcal{F} q-converges to x, then there is $p \in P$ such that \mathcal{F} p-converges to x. If $y \in \bigcap \mathcal{F}$, then $\dot{y} \geqslant \mathcal{F}$ implies \dot{y} p-converges to x. By Proposition 2.3, $\mathfrak{U}_p[x] = \mathfrak{U}_p[y]$, and $\mathcal{F} \geqslant \mathfrak{U}_p[y]$ implies \mathcal{F} p-converges to y; thus, \mathcal{F} q-converges to y.

Conversely, assume the given condition and let $w=\{\mathbb{Q}_{\mathcal{F},x}\colon \mathcal{F}\ q\text{-converges to }x,\,x\in S\}$. We shall show that q is the \inf_c of the set of those topologies compatible with some uniformity in w. By Proposition 2.2, it suffices to show that the topology p associated with an arbitrary $\mathbb{Q}_{\mathcal{F},x}$ is finer than q. Assume for $x\neq y$ that there is $\mathbb{G}\in F(S)$ which p-converges to y, with $\mathbb{G}\neq y$. Then $\mathbb{G}\geqslant \mathbb{Q}_{\mathcal{F},x}[y]$ implies $y\in F\cup \{x\}$, all $F\in \mathcal{F}$. Thus $y\in \bigcap \mathcal{F}$ implies \mathcal{F} q-converges to y. Since $\mathbb{Q}_{\mathcal{F},x}[y]\geqslant \mathcal{F}\cap x$, it follows that \mathbb{G} q-converges to y.

Let W(S) be the set of all weakly uniformizable convergence structures.

THEOREM 2.2. W(S) is the smallest sub-complete lattice of C'(S) that includes $T_U(S)$.

Proof. Let $Q \subset W(S)$; $r = \sup_{Q} Q$. If \mathcal{F} r-converges to x, then \mathcal{F} q-converges to x for all $q \in Q$. If $y \in \bigcap \mathcal{F}$, then \mathcal{F} q-converges to y, all

 $q \in Q$, and hence \mathcal{F} r-converges to y; thus r is weakly uniformizable. The proof that $\inf_c Q$ is weakly uniformizable is similar. The theorem now follows from Definition 1.1 and the fact that \sup_c of a set of completely regular topologies is a completely regular topology.

Since each completely regular topology is the \sup_{c} of a set of pseudometrizable topologies, W(S) can be regarded as the lattice-theoretic closure of the set of all pseudo-metrizable topologies in the complete lattice of all convergence structures on S.

If p is a convergence structure, let $\mathbb{V}_p = \bigcap \{ \mathbb{V}_p(x) \times \mathbb{V}_p(x) \colon x \in S \}$. When p is a topology, \mathbb{V}_p is the filter of "neighborhoods of the diagonal".

THEOREM 2.3. For a pretopology p, the following statements are equivalent: (1) p is weakly uniformizable; (2) $y \in \cap \mathfrak{V}_p(x)$ implies $\mathfrak{V}_p(x) = \mathfrak{V}_p(y)$; (3) $\mathfrak{V}_p[x] = \mathfrak{V}_p(x)$, all x in S.

Proof. (1) \Rightarrow (2). $y \in \cap \mathcal{V}_{\mathcal{D}}(x)$ implies $\mathcal{V}_{\mathcal{D}}(x)$ p-converges to y. Thus $\dot{x} \geqslant \mathcal{V}_{\mathcal{D}}(x) \geqslant \mathcal{V}_{\mathcal{D}}(y)$, implying $x \in \cap \mathcal{V}_{\mathcal{D}}(y)$, and $\mathcal{V}_{\mathcal{D}}(y) \geqslant \mathcal{V}_{\mathcal{D}}(x)$.

 $(2)\Rightarrow (3).\ \mathfrak{V}_p(x)\geqslant \mathfrak{V}_p[x]\ \text{in any case. Let}\ V\in \mathfrak{V}_p(x).\ \text{If}\ y\in \bigcap \mathfrak{V}_p(x),\\ \text{let}\ V_y=V;\ \text{if}\ y\ \text{is not in}\ \bigcap \mathfrak{V}_p(x),\ \text{choose}\ V_y\in \mathfrak{V}_p(y)\ \text{such that}\ x\ \text{is not}\\ \text{in}\ V_y.\ \text{If}\ W=\bigcup\{V_y\times V_y\colon y\in S\},\ \text{then}\ W\in \mathfrak{V}_p,\ \text{and}\ W[x]=V.$

(3) \Rightarrow (1). Let \mathcal{F} p-converge to x, and $y \in \cap \mathcal{F}$. Then $y \in \cap \mathcal{V}_p(x)$ $= \cap \mathcal{V}_p[x]$. It is easy to see that $\mathcal{V}_p[y] \subset \mathcal{V}_p[x]$. Thus we have $\mathcal{F} \geqslant \mathcal{V}_p[x] \geqslant \mathcal{V}_p(y)$, and \mathcal{F} p-converges to y.

It is an interesting fact that $\pi(q)$ (the finest pretopology coarser than q) may fail to be weakly uniformizable when q is weakly uniformizable. This is not the case, however, if q is a *limitierung*, i.e. if $\mathcal{F} \cap \mathcal{G}$ q-converges to x whenever both \mathcal{F} and \mathcal{G} q-converge to x.

THEOREM 2.4. If $q \in W(S)$ is a limitierung, then $\pi(q)$ and $\varphi(q)$ are weakly uniformizable.

Proof. Let $y \in \cap \mathcal{V}_q(x)$; then \dot{y} q-converges to x. If \mathcal{F} q-converges to x, then $\mathcal{F} \cap \dot{y}$ q-converges to x, and $y \in \cap (\mathcal{F} \cap \dot{y})$, which implies $\mathcal{F} \cap \dot{y}$ q-converges to y, and so \mathcal{F} q-converges to y. Thus $\mathcal{V}_q(x) \geqslant \mathcal{V}_q(y)$. Since $x \in \cap \mathcal{V}_q(y)$, we can repeat the previous argument with the roles of x and y interchanged. It follows, by the previous theorem, that $\pi(q)$ is weakly uniformizable. From the fact that $\mathcal{V}_q(x) = \mathcal{V}_q(y)$, it follows easily from Theorem 3, Section II, [3] that the $\varphi(q)$ -neighborhood filters for x and y coincide, and hence that $\varphi(q)$ is weakly uniformizable.

On the other hand, $\lambda(q)$ (the finest topology coarser than q) can fail to be weakly uniformizable, even when q is a weakly uniformizable pretopology.

III. Convergence groups. Let (S, +) be an Abelian group with identity element 0. If \mathcal{F} and \mathcal{G} are filters on S, then $-\mathcal{F} = \{-F: F \in \mathcal{F}\}$, and $\mathcal{F} + \mathcal{G}$ is the filter generated by $\{F + \mathcal{G}: F \in \mathcal{F}, \mathcal{G} \in \mathcal{G}\}$. The notations $\mathcal{F} - \mathcal{G}$ and $x + \mathcal{F}$ will usually replace $\mathcal{F} + (-\mathcal{G})$ and $x + \mathcal{F}$. For a filter \mathcal{F}

with the property $0 \in F$, all $F \in \mathcal{F}$, it is convenient to write $n\mathcal{F}$ for $\mathcal{F} + \dots + \mathcal{F}$ (n times); in general, if a is an ordinal number with an immediate predecessor a-1, $a\mathcal{F} = \mathcal{F} + (a-1)\mathcal{F}$, and if a is a limit ordinal (an infinite ordinal with no immediate predecessor), $a\mathcal{F} = \bigcap \{\beta\mathcal{F} \colon \beta < a\}$.

DEFINITION 3.1. Let (S, +) be an Abelian group and $q \in C'(S)$. Then (S, +, q) is a convergence group if and only if, for each pair of filters \mathcal{F}, \mathcal{G} on S, $(q(\mathcal{F}) - q(\mathcal{G})) \subset q(\mathcal{F} - \mathcal{G})$.

This definition is the natural one in the sense of "making the group operation continuous". The straightforward proof of the first proposition is omitted.

Proposition 3.1. If (S, +, q) is a convergence group, then:

- (1) \mathcal{F} q-converges to 0 if and only if $x+\mathcal{F}$ q-converges to x;
- $(2) x + \mathfrak{V}_{q}(0) = \mathfrak{V}_{q}(x);$
- $(3) \mathfrak{V}_q(x) = \mathfrak{V}_q(-x).$

Proposition 3.2. A convergence group (S, +, q) is a weakly uniformizable convergence structure.

Proof. Let \mathcal{F} q-converge to 0, and $y \in \bigcap \mathcal{F}$. Then $-y+\mathcal{F} \geqslant -\mathcal{F}+\mathcal{F}$, and since $-\mathcal{F}+\mathcal{F}$ q-converges to 0, so does $-y+\mathcal{F}$. But then $-y+\mathcal{F}+y=\mathcal{F}$ q-converges to y.

PROPOSITION 3.3. Let (S, +) be an Abelian group, q a pretopology. Then (S, +, q) is a convergence group if and only if the following conditions are satisfied. (1) $\mathfrak{V}_q(0) - \mathfrak{V}_q(0) = \mathfrak{V}_q(0)$; (2) $\mathfrak{V}_q(x) = x + \mathfrak{V}_q(0)$, all x in S.

Proof. Let (S, +, q) be a convergence group. Then (2) follows from Proposition 3.1, and (1) follows from Definition 3.1. Conversely, given (1) and (2), let $x, y \in S$, and $V(x-y) = x-y+V(0) \in \mathfrak{V}_q(x-y)$, where $V(0) \in \mathfrak{V}_q(0)$. Choose $V_1 \in \mathfrak{V}_q(0)$ such that $V_1-V_1 \subset V(0)$. Then $x+V_1 \in \mathfrak{V}_q(x)$, $y+V_1 \in \mathfrak{V}_q(y)$, and $x+V_1-(-y-V_1) \subset V(x-y)$.

Proposition 3.4. If (S, +, q) is a convergence group and q a pretopology, then (S, +, q) is a topological group.

Proof. If $V \in \mathcal{V}_q(0)$, let $V^* = \{(x, y) \in S \times S: x - y \in V\}$. It follows easily that $\{V^*: V \in \mathcal{V}_q(0)\}$ generates a uniformity \mathcal{U} on S. Since $\mathcal{U}[x] = \mathcal{V}_q(x)$ for all x in S, q is a topology. The rest is clear.

PROPOSITION 3.5. Let $Q \subset C'(S), Q \neq \emptyset$, such that $q \in Q$ implies (S, +, q) is a convergence group. Let $p = \sup_{C} Q$. Then (S, +, p) is a convergence group.

Proof. Let $x \in p(\mathcal{F})$, $y \in p(\mathcal{G})$. Then $x \in q(\mathcal{F})$, $y \in q(\mathcal{G})$ for all q in Q, and, by the given condition, $\mathcal{F} - \mathcal{G}$ q-converges to x - y. Thus $\mathcal{F} - \mathcal{G}$ p-converges to x - y.

If (S, +, q) is a convergence group, then $\lambda(q)$, the finest topology coarser than q, is both homogeneous and weakly uniformizable.

For a given Abelian group (S, +), let T(S, +) be the set of all topologies t such that (S, +, t) is a topological group, and let C(S, +) be the set of all convergence structures q such that (S, +, q) is a convergence group. It is easy to see that neither T(S, +) nor C(S, +) is closed under the operation \inf_c . We seek the smallest subcomplete lattices of C'(S) that include T(S, +) and C(S, +) respectively.

Definition 3.2. (S,+,q) is a weak convergence group if and only if the following conditions are satisfied: (1) \mathcal{F} q-converges to 0 if and only if $x+\mathcal{F}$ q-converges to x; (2) \mathcal{F} q-converges to 0 implies $\mathcal{F}-\mathcal{F}$ q-converges to 0.

Every convergence group is a weak convergence group. Also, a weak convergence group is a weakly uniformizable convergence structure, since the proof of Proposition 3.2 requires no alteration if "convergence group" is replaced by "weak convergence group".

THEOREM 3.1. (S, +, q) is a weak convergence group if and only if q is the \inf_c of the set $Q = \{p \in C(S, +): p \ge q\}$.

Let $\overline{W}(S, +) = \{q \in C'(S): (S, +, q) \text{ is a weak convergence group}\}$. Corollary. W(S, +) is the smallest sub complete lattice of C'(S) that includes C(S, +).

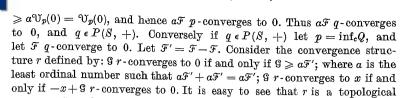
Proof. The verification that W(S, +) is closed under \sup_c and \inf_c is straightforward. The result now follows from Theorem 1.

DEFINITION 3.3. (S, +, q) is a pseudo convergence group if and only if it is a weak convergence group with the property that, for all ordinal numbers α , $\alpha \mathcal{F}$ q-converges to 0 whenever \mathcal{F} q-converges to 0.

Let $P(S, +) = \{q \in C'(S) \colon (S, +, q) \text{ is a pseudo convergence group}\}$. One can find examples of a convergence group that is not a pseudo convergence group and of a pseudo convergence group that is not a convergence group.

THEOREM 3.2. $q \in P(S, +)$ if and only if $q = \inf_c Q$, where $Q = \{p: p \in T(S, +) \text{ and } p \geqslant q\}$.

Proof. If $q=\inf_c Q$, then q is clearly a weak convergence group. Let \mathcal{F} q-converge to 0; then there is $p \in Q$ such that $\mathcal{F} \geqslant \mathfrak{V}_p(0)$. But $a\mathcal{F}$



It can be shown that a pseudo convergence group q is a convergence group if and only if the set Q defined in the preceding theorem is a dual ideal in the lattice T(S, +).

group, and $r \in Q$. Since $x \in r(\mathcal{F})$ implies $x \in p(\mathcal{F})$, p = q.

COROLLARY. P(S, +) is the smallest sub complete lattice of C'(S) that includes T(S, +).

Let (K, +) be a subgroup of (S, +); let (S', +) be the quotient group whose elements are cosets of S modulo K; let 0' denote the identity element of S'. If $g\colon S\to S'$ is the canonical homomorphism and q a convergence structure on S, then the quotient convergence structure q' on S' is defined by: \mathfrak{G} q'-converges to g if and only if there is $\mathfrak{F} \in F(S)$ g-converging to g such that g(g)=g and $g \geqslant g(\mathcal{F})$.

THEOREM 3.3. If (S, +, q) is a weak convergence group (respectively, convergence group, pseudo convergence group, topological group) and q' the quotient convergence structure corresponding to a subgroup (K, +), then (S', +, q') is a weak convergence group (respectively, convergence group, pseudo convergence group, topological group).

Proof. Let (S, +, q) be a weak convergence group, S' = S/K, and assume that $0' \in q'(\mathbb{S})$. Then there is x in K and \mathcal{F} in F(S) such that \mathcal{F} q-converges to x and $\mathbb{S} \geqslant g(\mathcal{F})$, where g is the canonical homomorphism. But $\mathcal{F}_1 = -x + \mathcal{F}$ q-converges to 0, and $g(\mathcal{F}) = g(\mathcal{F}_1)$. Since $(\mathcal{F}_1 - \mathcal{F}_1)$ q-converges to 0, and $\mathbb{S} - \mathbb{S} \geqslant g(\mathcal{F}_1) - g(\mathcal{F}_1) = g(\mathcal{F}_1 - \mathcal{F}_1)$, $(\mathbb{S} - \mathbb{S})$ q'-converges to 0. Translations are preserved under homomorphisms, and it follows that (S', +, q') is a weak convergence group.

The analogous result for convergence groups is known (see [4]). For pseudo convergence groups, the result follows from the fact that $g(\alpha \mathcal{F})$ = $ag(\mathcal{F})$.

Next, let $Q \subset W(S, +)$, and $q = \inf_c Q$. Let (S', +) be a quotient group of (S, +) with kernel K and canonical homomorphism g. For each $p \in Q$, let (S', +, p') be the quotient weak convergence group corresponding to (S, +, p), and let $Q' = \{p' \in C'(S'): p \in Q\}$. If $q' = \inf_c Q'$, then the following conclusion can be drawn.

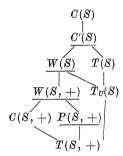
THEOREM 3.4. (S', +, q') is the quotient weak convergence group of (S, +, q) under the canonical homomorphism g.

Proof. If \mathcal{F} q-converges to 0, then \mathcal{F} p-converges to 0 for some p in Q; thus $g(\mathcal{F})$ p'-converges to 0', and $g(\mathcal{F})$ q'-converges to 0'. Con-

versely, let \mathfrak{G} q'-converge to 0', i.e. for some p in Q, \mathfrak{G} p'-converges to 0'. Then there is \mathcal{F} p-converging to x in K such that $\mathfrak{G} \geqslant g(\mathcal{F})$; as in the proof of the previous theorem, there is also \mathcal{F}_1 p-converging to 0 with $g(\mathcal{F}) = g(\mathcal{F}_1)$. But \mathcal{F}_1 also q-converges to 0, and the theorem is proved.

A corresponding result can be established for quotient pseudo convergence groups.

In the lattice diagram that follows, the order relation is set inclusion. Each entry is a complete lattice in the order relation defined on C(S); underlined entries are sub complete lattices of C(S).



IV. Convergence uniformities.

DEFINITION 4.1. A weak convergence uniformity w is an anti-residual set of uniformities on S; i.e., if $\mathfrak{A} \in w$ and \mathfrak{A} is a uniformity finer than \mathfrak{A} , then $\mathfrak{A} \in w$.

For economy in writing, "weak convergence uniformity" will be shortened to "weak uniformity".

Any uniformity $\mathfrak U$ can be regarded as a weak uniformity if we identify $\mathfrak U$ with $w_{\mathfrak U_{\mathfrak l}}=\{\mathfrak V\in U(S)\colon \mathfrak V\geqslant \mathfrak U_{\mathfrak l}\}$.

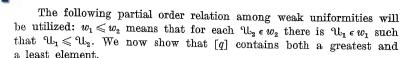
With each weak uniformity w, there is an associated weakly uniformizable convergence structure q_w . If $\mathfrak{U} \in w$, we denote by $t_{\mathfrak{U}}$ the topology compatible with \mathfrak{U} ; then $q_w = \inf_{\epsilon} \{t_{\mathfrak{U}}: \mathfrak{U} \in w\}$.

Approaching from another direction, let q be a weakly uniformizable convergence structure, and let [q] be the set of all weak uniformities compatible with q (i.e., $[q] = \{w: q_w = q\}$). We single out two members of [q] of particular interest:

(1)
$$w_q^* = \{ \mathcal{U}_{\mathcal{F},x} : \mathcal{F} \text{ } q \text{-converges to } x \};$$

(2)
$$w_q' = \{ \mathfrak{A} \in U(S) \colon t_{\mathfrak{A}} \geqslant q \}.$$

Remark. If a weak uniformity w is defined as a non-anti-residual set of uniformities on S, then it will be assumed without further comment that w includes those additional uniformities needed to satisfy the anti-residual property.



THEOREM 4.1. If $w \in [q]$, then $w'_q \leq w \leq w^*_q$.

Proof. If $\mathfrak{U} \in w$, then $\mathfrak{U} \in w'_q$ is obvious, and thus $w'_q \leq w$. If $\mathfrak{U}_q^* \in w_q^*$, then we can assume that there is a filter \mathcal{F} q-converging to x such that $\mathfrak{U} \geqslant \mathfrak{U}_{\mathcal{F},x}$. Since $q = q_w$, there is $\mathfrak{W} \in w$ such that \mathcal{F} $t_{\mathfrak{W}}$ -converges to x. Thus, $\mathcal{F} \times \mathcal{F} \geqslant \mathfrak{W}$, implying $\mathfrak{U}_{\mathcal{F},x} \geqslant \mathfrak{W}$, and $w \leqslant w_q^*$.

DEFINITION 4.2. Let w be a weak uniformity on S. \mathcal{F} is a w-Cauchy filter if and only if there is \mathfrak{U} in w such that $\mathcal{F} \times \mathcal{F} \geqslant \mathfrak{U}$.

DEFINITION 4.3. A weak uniformity w is complete if and only if each w-Cauchy filter q_w -converges to some point in S.

If q is in W(S), then there is always at least one complete weak uniformity compatible with q, namely w_q^* . A uniformity, regarded as a convergence uniformity, is complete in the usual sense if and only if it is complete in the sense of the preceding definition.

The pair (S, w) consisting of a set S and a weak uniformity w on S will be termed a weakly uniform space. A definition of a completion for a weakly uniform space which generalizes the standard definition can be given in several different ways, from among which we choose the following.

DEFINITION 4.4. (\hat{S}, \hat{w}) is a completion of the weakly uniform space (S, w) if and only if there is a one-to-one function $\sigma: S \to \hat{S}$ with the following properties: (1) for each y in \hat{S} , there is a filter on $\sigma(S)$ which converges to y relative to a topology compatible with one of the uniformities in \hat{w} ; (2) if $\mathbb{U} = \bigcap w$, and $\hat{\mathbb{U}} = \bigcap \hat{w}$, then $\sigma(\mathbb{U})$ coincides with the restriction of $\hat{\mathbb{U}}$ to $\sigma(S)$.

THEOREM 4.2. Each weakly uniform space (S, w) has a completion.

Proof. Let $w=\{\mathbb{U}_a\colon a\in \Lambda\}$, \hat{S} be the set of all w-Cauchy filters, and $\tilde{S}_a=\{\mathcal{F}\in S\colon \mathcal{F}\times\mathcal{F}\geqslant \mathbb{U}_a\}$. The uniformity $\tilde{\mathbb{U}}_a$ on S_a is defined as follows: for each symmetric entourage U in \mathbb{U}_a , let $\widetilde{U}=\{(\mathcal{F},\mathbb{S})\colon \mathcal{F},\mathbb{S}\in S_a$ and $U\in\mathcal{F}\times\mathbb{S}\}$; let $\tilde{\mathbb{U}}_a$ be the uniformity generated by $\{\widetilde{U}\colon U\in\mathbb{U}_a\}$. For each α in Λ , $(\widetilde{S}_a,\widetilde{\mathbb{U}}_a)$ is a complete uniform space, and if $\sigma\colon S\to\widetilde{S}_a$ is defined by $\sigma(x)=\dot{x}$, for all α in Λ , then $\sigma(S)$ is dense in \widetilde{S}_a . (See Chapter 2, Section 3, Theorem 2, [1]). Next, let $\hat{\mathbb{U}}_a=\dot{\Lambda}\cap\widetilde{\mathbb{U}}_a$, where Λ is the diagonal of \hat{S} . We now regard σ as a mapping of S into \hat{S} . If w is generated by $\{\hat{\mathbb{U}}_a\colon a\in\Lambda\}$, then it is routine to verify that (\hat{S},\hat{w}) is a completion of (S,w).

DEFINITION 4.5. A weak uniformity which is a dual ideal in the lattice U(S) is called a directed convergence uniformity.

A convergence group which is also a pseudo convergence group is compatible with a directed convergence uniformity; this result is clear from the remark following Theorem 3.2. A directed convergence uniformity is a "uniform convergence structure" in the sense of Cook-Fischer [2]. Any convergence structure compatible with a directed convergence uniformity is T_2 whenever it is T_1 .

From Theorem 2.1 it follows that every T_1 topology is a weakly uniformizable convergence structure. This may be compared with

Theorem 4.3. Every T_2 topology p is a convergence structure compatible with a directed convergence uniformity.

Proof. Let $\mathfrak{U}_x = \dot{\Delta} \cap (\mathfrak{V}_p(x) \times \mathfrak{V}_p(x))$, and $w = {\mathfrak{U}_x : x \text{ in } S}$. It is easily seen that w is a weak uniformity compatible with p. But the set w' of finite intersections of members of w is a directed convergence uniformity, and $w' \in [p]$.

Concluding remarks. A meaning has not yet been assigned to the term "convergence uniformity". It would seem appropriate to reserve this name for a weak convergence uniformity satisfying the following conditions: (1) A convergence group is a uniformizable convergence structure; (2) If a topology is uniformizable as a convergence structure, then it is uniformizable in the usual sense; (3) A T_2 uniform convergence space has a (unique?) Hausdorff completion. A definition that meets the first two conditions is the following: w is a convergence uniformity if and only if w is a weak uniformity and $\lambda(q_w)$ is uniformizable. I do not know of a definition that will satisfy all three conditions.

References

[1] N. Bourbaki, Éléments de Mathématique. Livre III: Topologie Général, Deuxième Édition. Paris.

[2] C. H. Cook and H. R. Fischer, Uniform convergence structures, Math. Annalen, (To appear).

[3] D. Kent, Convergence functions and their related topologies, Fund. Math. 54 (1964), pp. 125-133.

[4] J. W. Wloka, Limesräume und Distributionen, Math. Annalen 152 (1963), pp. 351-409.

Reçu par la Rédaction le 24. 11. 1965

Some relational systems and the associated topological spaces

by

Andrzej Grzegorczyk (Warszawa)

The aim of this paper is to investigate relational systems $\langle S,R\rangle$ (S is the field of a binary relation R), and associated algebras:

$$A(S,R) = \langle P(S), \cup, \cap, -, C \rangle$$

where P(S) is the set of all subsets of S, $\langle P(S), \smile, \cap, - \rangle$ is the Boolean algebra of subsets of S, and the operation C is defined on the elements of P(S) as follows:

(2)
$$\mathbf{C}X = \{y \colon \bigvee \ x \ (x \in X \land xRy)\}.$$

It is easy to see that if the relation R is a quasi-ordering, i.e. if it satisfies two conditions (see [1]):

(3) a.
$$xRx$$
 (reflexivity),
b. $(xRy \land yRz) \rightarrow xRz$ (transitivity).

then the algebra $\mathcal{A}(S,R)$ is a topological field of sets (this means that it satisfies the equalities: A. $X \subset CX$; B. $C(X \cup Y) = CX \cup CY$; C. CCX = CX; D. $C\emptyset = \emptyset$ (\emptyset is the empty set)).

The purpose of these investigations is to characterize the topological fields of sets and related pseudo-Boolean algebras for some special relational systems, e.g. systems satisfying some additional equalities, having a logical meaning (cf. Theorem 1 and Corrolary 3).

This is a continuation of the well-known papers of Tarski and McKinsey [5] and Rasiowa and Sikorski [6].

1. Representation of totally distributive topological spaces. A topological space: $\langle P(S), \cup, \cap, -, C \rangle$ is totally distributive if and only if for every set $X \in P(S)$

(4)
$$CX = \bigcup_{x \in X} C\{x\}.$$

Hence every finite topological space is totally distributive.