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A convergence group which is also a pseudo convergence group is
compatible with a directed convergence uniformity; this result is clear
from the remark following Theorem 3.2. A directed convergence uni-
formity is a “uniform convergence structure’’ in the sense of Cook-
Fischer [2]. Any convergence structure compatible with a directed con-
vergence uniformity is 7, whenever it is T,.

From Theorem 2.1 it follows that every T, topology is a weakly
uniformizable convergence structure. This may be compared with

TamoREM 4.3. Hvery T, topology p is a convergence structure compatible
with & directed comvergence umiformity.

Proof. Let Uy = 4 ~ (Vp(@) xVp(#)), and w = {Ws: @ in S}. It is
easily seen that w is a weak uniformity compatible with p. But the set w’
of finite intersections of members of w is a directed convergence uni-
formity, and w’ € [p].

Concluding remarks. A meaning has not yet been assigned to
the term ‘“‘convergence uniformity”. It would seem appropriate to reserve
this name for a weak convergence uniformity satisfying the following
conditions: (1) A convergence group is a uniformizable convergence
structure; (2) If a topology is uniformizable as a convergence structure,
then it is uniformizable in the usual sense; (3) A T, uniform convergence
space has a (unique?) Hausdorff completion. A definition that meets
the first two conditions is the following: w is a convergence uniformity
if and only if w is a weak uniformity and A(gw) is uniformizable. I do not
know of a definition that will satisfy all three conditions.
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Some relational systems and the associated
topological spaces
by

Andrzej Grzegorczyk (Warszawa)

The aim of this paper is to investi i
‘ L . igate relational systems <, R
(8 is the field of a binary relation R), and associated algebras: &

@) A8, B) = (P(8), v, m, —, O

where P(8) is the set of all subsets of 8, <P(8), v

3Ny > 18 the BOOlea’n
algebm: Of Subsets Of S’ and the Operatlon C 1 ed on 1he elelnel].[}s
S defln d
Of I (S) as fOuOWS.

(2) CX={y: V a(zeX A sRy)}.

It is easy to see that if the relation R is i : L.
s 2 quasi-ordering, i.e. if i
satisfies two conditions (see [1]): 4 g Le. if it

(3) a. 2R (reflexivity) ,

b. @Ry A yRBz)—> xRz (transitivity),

fohen the algebra £(S, R) is a topological field of sets (this means that
it satisfies the equalities: A. XCCX; B. CXuY)=CXu(CY:
C. CCX=CX; D. CO=0 (@ is the empty set)). ‘ ’
) The purpose of these investigations is to characterize the topological
tields of sets and related pseudo-Boolean algebras for some special re-
lational systems, e.g. systems satisfying some additional equalities, having
a logical meaning (cf. Theorem 1 and Corrolary 3).

This is a continuation of the well-known papers of Tarski and
McKinsey [5] and Rasiowa and Sikorski [6].

1 Representgtion of totally distributive topological
Spaces. A topological space: (P(8), u, n, —, CD is totally disiributive
if and only if for every set X e P(S)

(4) CX= U Cla}.
zeX

Hence every finite topological space is totally distributive.
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LevvA 1. Bvery totally distributive topological space S is identical
with the algebra £(8, R) for the quasi-ordering relation I defined as follows:

(5) 2Ry =y eCla}.

Proof. Directly from formulas (1)-(5).
A relation R is said to be partially ordering if it is quasi-ordering
and satisfies the following condition:

(6) (wBy A yRa)—>2=y;
the partially orvdering R is partially weli-ordering if
(7) /\X(X CONX#BsVope XA Au@ROAN e X u= w))) .

THEOREM 1. A totally distributive topological space T = <1?(S), U,
A, —, Cy is identical with the algebra #(8, R) for'so'me @latwn 'R of
partial well-ordering if and only if the following equality (B) is true in T:
@) §=(IntT o C({Int(Z © It ¥)—Int T) ©
v (Int(—Z © Tnt ¥) —Int X)) .
Proof, First we shall prove that (B) is true in every algebra (S8, R)

for a relation R of partial well-ordering.
According to definition (2) of our topology we have

(8) yeIntY = Aw(@Ry—~zeX).
Let @ = Int Y be an open subset of 8. Let us congider the set
9 D={y: yéGAANs@RyAo#y—>xe).
It is easy to prove that
(10) GuCD=2F.

Indeed, if 2z ¢ & let us consider the set Z, = {u: uKz A u ¢ G}. According
to (7) there exists such v that v € Z, and

Nu(uRo A wstv—>uéZ,).
Hence v Rz, v¢ G and
ANuuBRv Au #£v->ue@).

Thus » e D and 2e CD .
Now we shall see that for every Z

(11) DAZC(Int(Z v G)n—G).
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Suppose that z € D ~ Z; then by (9) z € — G and Az[EzRes(z=2v
V #e @), whence Az(@Re>aeZu G) and according to (8) z e Int(Z v &).

From (11) we infer that

D=DnZ)vDn-2)CInt(ZwBH—G oInt(—Z © ¢)—@G.

From this and (10) we obtain (E).

Now we shall show that if R is not partially well-ordering, then (E)

is not true in A(8, R). Then we must suppose that or (6) or (7) is not
satisfied.

If (6) is not fulfilled, then there exist two elements x, and ¥, such that
(12) Ty = Yo A BBy, A Yo R, .

Let us put
(13) Y= {2: 2Bwy A ~ (2,Ra)}, and Z=— {x,} .

If 2¢ Y and 2Ra, then zRa, and ~ (#,Rz) according to the transi-
tivity of R, and thus z ¢ Y. Hence if 2 ¢ Y, then # ¢Int Y by (8). Then
we have

(14) Y=1Int¥.

Now suppose that =, e C{Int(Z v Y)—Y). According to (2) and (8)
this would mean that for some z

(15) 5Bz A 2é X A Az(pRo->(z = m, vzeX).

Hence by (13) #,Rx; then by (12) y,Rz but Yo # 2y and ¥y, ¢ ¥, which
contradicts (15). Thus we have proved that

(16) Z, € C(Int(Z ) Y)—Y) .
Let us also note that
a7 2y¢ (—Z v ¥),

and suppose that , e C(Int(—2Z u Y)—Y). According to (2) and (8)
this would mean that for some 2
(18) @Bz A w¢ ¥ N \2(eRo—>(z # a4, vzel)).
Hence by (13) xR, but #,¢ ¥, which contradicts (18).
Thus we have proved that
(19) #,¢ C(lnt(—Z v ¥)—7) .

Also #,¢ Y. Hence (14), (16) and (19) shows that (E) is not satisfied.
If (7) is not satisfied, there exist a set X C S and an element ,
such that

(20) Zyge X A Av(veX»Vu(uRuAu%vAueX)).
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Hence there exists a sequence {#,} C X such that

(21) Tpr1 B A Bpt1 7 B »

We can suppose that (6) is fulfilled and we put

(22) Z = {tom: ne N} and XY ={y:\z(rzRy—>z¢2)}.
First let us notice that Z ~ ¥ = @ and by the transitivity of R

{23) ' Y=IntY,
Also we can prove that
(24) Int(Zw ¥Y)—Y=0.

Indeed, suppose that y e Int(Z v Y) and y ¢ ¥, whence y ¢ Z; this
means that ¥ = @, for some n. Then @enis Bawn, and 2,41 7 2y according
to (21). Thus by (8) PLop+1 € ZuY It Lont+1 € Z, then Lop+1 = Doy for some k.
It 2n "|—1 > 2]‘7, then 992k+1_Rw2k, by (21) and w2n+1Rw2k+1 by (21) and transi-
tivity. Thus @ B2e1, and @, = @41 by (6), which contradicts (21).
If 2k > 2n4-1, then @pi2B@onts by (21) and @ R%enye by (21) and
transitivity. Hence @gn41 B ®an+z 80d op 11 = Tonr2, Which contradicts (21).
Thus #os+1 ¢ Z, and then @s,4; € Y. This means by (22) that A 2(eRen1—
2¢ Z), but @opioRbsnr1 and Xynis € Z. Hence (24) is proved.

Now we shall prove that

(25) 2y ¢ C(Int(—Z v ¥)-7¥).

Suppose the contrary case. This means that there exists a v such
that vEx, and v e Int(—Z v ¥)— Y. If v ¢ ¥, then there exists a 2 such
that 2Rv and < Z. Hence by (8) 2¢ —Z u Y; thus 2 ¢ Y, but Z and ¥
are digjoint, and so we have obtained a contradiction. Of course, @, € Z
and hence @, ¢ Y, thus according to (23), (24), and (25) the formula (E)
18 not true in £(8, B).

A relation R is a right-rooted tree iff

(#Ry A sRz—~(yRz v 2Ry) .

THEOREM 2. Hvery topological space 6 = #(8, R), for a relation R of
partial ordering, can be embedded in a topological space #4(8’, R') for some
right-rooted tree R'. (For § finite, § is also finite.)

Proof. As 8 we take the set of all chains maximal to right and
having their starting points:

(26) Oh(X,s)=seX AA z(zeX = (wRz A\ Yy e X>(Ry v sz))))

Relational systems and the associated topological spaces

(3]
183
~

(X is a chain maximal to right with x as the starting element),
{27) XeS'E\/:I:(:DeS/\Ch(X,w)),
(28) XR'YEX,YES’/\YCX;

R’ is of course a relation of partial ordering. We need to prove that it
is a right-rooted tree. This according to (28) means that

(29) (X,Y,Z2e8' n YCXAZCX)>(YCZVEZCY).

Indeed, suppose Ch(¥,y) and Ch(X, ) and Ch(Z,=?). From (26)
we infer that yRz or 2Ry. If yRz we can prove that Z C Y; if 2Ry,
then ¥ C Z. ’

It suffices to consider one of these cages. Suppose zRy; then ac-
cording to (26) we shall prove that

(30) ue ¥ >(@Ru A Aw(weZ->uRw v wRu))) .

If e, then yRu according to (26) and zRu by transitivity.
If weZ and u e ¥, then w, u ¢ X and by (26) uRw or wRu.
The formula (30) is thus proved and hence ¥ C Z and (29).
The embedding of #£(8,R) in A(8; R') is given by the following
mapping:
(1) @) ={Y: Va{zeX A Ch(Y,x)} for any X<P(8).
We need some properties of
(32) p(X)=pY)>X=1T.

If e X, and Ch(U, x) for some U, then U eg(X)= (YY), whence
% ¢ ¥, because the starting element of a chain is unique:

(33) Oh(X,s)A Ch(X,y)>z=1y.

Hence we have X C Y, and conversely ¥ C X; thus ¥ = ¥. °
(34) P(X v Y)=gX)vepY),

(35) PX A Y)=¢(X) oY)

are evident. We have to prove that

(36) p(8—X)=8'—¢(X).

The definition (31) and the uniqueness (33) of the starting point of a chain
imply that

P(8~X)={Y: Vo@eS—X A Ch(Y, a))}
={¥: VoCh(Y,2) A Ay(Ch(T, y) >y ¢ X))}
= S’—¢(X).
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As the last formula we shall prove that
9(CX) = Cp(X).
According to (31), (27) (18), and (2) this means that

(37)
(38) Va,2(zeX A zRo A Ch(Y, )
=V Z,z(Ch(Y,2)A Ch(Z,2) A YCZ A zeX).

The implication <« is easy beacause if Ch(Y,®), then x ¢ ¥ and,
aceording to ¥ C Z, v ¢ Z. Hence if Ch(Z, 2) then (26) implies that zRa.
Yor the converse implication —+ we need the lemma

(¢Ra@ A Ch(¥, @)\ Z(Ch(Z,2) A Y C Z).

It may be proved by using the axion of choice. Suppose that all elements ¢
such that

(39)

(40) 2Rxe A v:Rw
are enumerated by ordinals < a. We define a set U by induction:
Up= {z,2};
U5 v {.’,&'5} if /\’M/(’M € U;%(wg Ru v uRw;)} H
Uera = { U: if not ;
U,=1{JU: for 2 limit number.
&<
U=1T1.,.
Of course U, C U, for ¢ <{.
‘We put

Z=UuvY.
We easily verify that:

(41) weZ—>2Rw,
(42) w,veZ—>wRv v vRw),
(43) [Nyl e Z—>(wRy v yRw)) A sRw|>weZ .

(41) is evident by (40) and the definition and (42) follows directly from
the definition and the monotonicity of {Us}. Proving (43) we find first
that wEz or #Rw. If s Rw, then w e ¥ according to (26). If w R, then
for some £ we have w = z; and according to the definition w e Ugyq; thus
w e U. In both cases w e Z.

Formulas (41)-(43) mean that Ch(Z, ). Of course ¥ C Z.

Formulag (32), (34), (35), (36) and (37) mean that #£(8, R) is em-
bedded in #£(S, B').

icm°®
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2. Pseudo-Boolean algebras associated with relational
systgms. For a topological field of sets T = {P(8), n, v, —, C> we shall
consider also the associated pseudo-Boolean algebra (B(S), ~, v, =, @),
i.e. the algebra of open sets of the space G:

B(8)= the set of all open sets of the space G;
and the operation = is defined as follows:
X=>Y=Int(—-X v ¥),

If the topological field of sets § is associated with a quasi-ordering
relational system (S, R), i.e, if § — #(8, R), then the associated pseudo-
Boolean algebra of open sets of #(8, BR) will be denoted by B(S,R).

First we shall note the following lemma:

Lzmma 2. Bvery pseudo-Boolean algebra B(S, R) for a quasi-ordering R
s isomorphic with the pseudo-Boolean algebra B(8’, R') for some relation g
of partial ordering, and S’ < S.

Proof. Let (8, R) be a pseudo-Boolean algebra and let R be a quasi-
ordering relation. Let us define an equivalence relation av:

1)
First let us note that
(2) (XeBS)razmy)>zeX =yeX).
Hence if we take the relational quotient system (8’, R'>, 8 being the
set of equivalence classes of ~ in § and
(3) [#]RTy] = zRy ,
then B’ is a relation of partial ordering, and the pseudo-Boolean algebras
B(8, R) and $(8’, R) are isomorphic according to (2). The function F
establishing isomorphism is defined as follows:

F(X) = {[a]: X}, XBe(8).

A right-rooted tree is a right-rooted stock tree if it satisfies the
condition

e~y = (xRy A yRux).

for

VeeSAyeSyRa.

Of course every right-rooted tree can be enlarged to a right-rooted
stock tree by adding one new end-point.

THEOREM 3. Ewery pseudo-Boolean algebra $B(S,R) for o quasi-
ordering B can be embedded in a pseudo-Boolean algebra $H(S", R) for
some right-rooted stock tree R". (For a finite §, 8" is also finite.)

Proof. According to Lemma 2, R may be considered as a relation
of partial ordering. Hence according to Theorem 2 the topological space
#(8, R) can be embedded in a topological space #4(8’, R’) for some right-
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rooted tree R’. Hence the same isomorphic function ¢ establishes the
embedding of B(8, R) in H(S’, R’). Then we enlarge E' to B" and §”
to 8 as follows:

uel" =(uweS Vu=w),

yR"u = (yR'u vV u =),
where z, is a new element different from all 4 ¢ §. The new embedding
is given by the function ¢':

) p(X) if XeB(S) and X #8,
P = {S it X=8.

3, Applications to modal and intuitionistic logic.

CorOLLARY 1. The set of equalities true in all pseudo-Boolean algebras
s ddentical with the set of equalities true in all pseudo-Boolean algebras
B(8, R) for a finite right-rooted stock tree (8, R).

Proof. According to Me. Kinsey and A. Tarski [6] this set of equa-
lities is identical with the set of equalities frue in all finite psendo-Boolean
algebras. And according to Theorem 3 finite pseudo-Boolean algebras
can be embedded in finite trees.

Corollary 1 may be considered as a formulation of Jaskowski’s [3]
theorem on the characterization of intuitionistic propositional calculus
by his matrices, for Jaskowski’s matrices may be shown to be of the
form B(8, R) for finite trees R (see [2]).

CoROLLARY 2. If we add to the system of modal logic 84 the awiom

() (((Z=>DY)=>DY)/\ ((NZ:DY)»BY))»[]Y

(O = the necessity sign and = = the strict implication), we obtain
a system G stronger that 84, not contained in S5; but interpreting intu-
wtionistic conmectives in the usual way, we obtain in G as theorems only the
intuitionistic tautologies as in the case of S 4.

Proof. According to Tarski’s topological interpretation of modal
logic, the matrices for G are topological spaces satisfying equality (B).
{See Theorems 3.4 and 3.6 of McKinsey and Tarski [5].) Hence if ¥ is
a theorem of G, then ¥ = § is true in every topological space satistying (B).

Suppose that ¥ is not intuitionistic; then according to Clorrolary 1
there is a finite right-rooted stock tree <8, R) such that ¥ s« §in $(S, R).
But (8, R), being finite, is partially well-ordered, and according to
Theorem 1 (E) is true in the topological space (S, R). We obtain a con-
tradiction.

The formula (G) is not a theorem of 85 becausse 85 is true in the
space S of two points a,b such that Ca= Cb= {a,b}= 8. The re-
lation R defined in (5) is not a relation of partial ordering and hence (E)
is not true in S.
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