A convergence group which is also a pseudo convergence group is compatible with a directed convergence uniformity; this result is clear from the remark following Theorem 3.2. A directed convergence uniformity is a "uniform convergence structure" in the sense of Cook-Fischer [2]. Any convergence structure compatible with a directed convergence uniformity is T_2 whenever it is T_1 .

From Theorem 2.1 it follows that every T_1 topology is a weakly uniformizable convergence structure. This may be compared with

Theorem 4.3. Every T_2 topology p is a convergence structure compatible with a directed convergence uniformity.

Proof. Let $\mathfrak{U}_x = \dot{\Delta} \cap (\mathfrak{V}_p(x) \times \mathfrak{V}_p(x))$, and $w = {\mathfrak{U}_x : x \text{ in } S}$. It is easily seen that w is a weak uniformity compatible with p. But the set w' of finite intersections of members of w is a directed convergence uniformity, and $w' \in [p]$.

Concluding remarks. A meaning has not yet been assigned to the term "convergence uniformity". It would seem appropriate to reserve this name for a weak convergence uniformity satisfying the following conditions: (1) A convergence group is a uniformizable convergence structure; (2) If a topology is uniformizable as a convergence structure, then it is uniformizable in the usual sense; (3) A T_2 uniform convergence space has a (unique?) Hausdorff completion. A definition that meets the first two conditions is the following: w is a convergence uniformity if and only if w is a weak uniformity and $\lambda(q_w)$ is uniformizable. I do not know of a definition that will satisfy all three conditions.

References

[1] N. Bourbaki, Éléments de Mathématique. Livre III: Topologie Général, Deuxième Édition. Paris.

[2] C. H. Cook and H. R. Fischer, Uniform convergence structures, Math. Annalen, (To appear).

[3] D. Kent, Convergence functions and their related topologies, Fund. Math. 54 (1964), pp. 125-133.

[4] J. W. Wloka, Limesräume und Distributionen, Math. Annalen 152 (1963), pp. 351-409.

Reçu par la Rédaction le 24. 11. 1965

Some relational systems and the associated topological spaces

by

Andrzej Grzegorczyk (Warszawa)

The aim of this paper is to investigate relational systems $\langle S,R\rangle$ (S is the field of a binary relation R), and associated algebras:

$$A(S,R) = \langle P(S), \cup, \cap, -, C \rangle$$

where P(S) is the set of all subsets of S, $\langle P(S), \smile, \cap, - \rangle$ is the Boolean algebra of subsets of S, and the operation C is defined on the elements of P(S) as follows:

(2)
$$\mathbf{C}X = \{y \colon \bigvee \ x \ (x \in X \land xRy)\}.$$

It is easy to see that if the relation R is a quasi-ordering, i.e. if it satisfies two conditions (see [1]):

(3) a.
$$xRx$$
 (reflexivity),
b. $(xRy \land yRz) \rightarrow xRz$ (transitivity),

then the algebra $\mathcal{A}(S,R)$ is a topological field of sets (this means that it satisfies the equalities: A. $X \subset CX$; B. $C(X \cup Y) = CX \cup CY$; C. CCX = CX; D. $C\emptyset = \emptyset$ (\emptyset is the empty set)).

The purpose of these investigations is to characterize the topological fields of sets and related pseudo-Boolean algebras for some special relational systems, e.g. systems satisfying some additional equalities, having a logical meaning (cf. Theorem 1 and Corrolary 3).

This is a continuation of the well-known papers of Tarski and McKinsey [5] and Rasiowa and Sikorski [6].

1. Representation of totally distributive topological spaces. A topological space: $\langle P(S), \cup, \cap, -, C \rangle$ is totally distributive if and only if for every set $X \in P(S)$

(4)
$$\mathbf{C}X = \bigcup_{x \in X} \mathbf{C}\{x\}.$$

Hence every finite topological space is totally distributive.

Relational systems and the associated topological spaces

LEMMA 1. Every totally distributive topological space S is identical with the algebra $\mathcal{A}(S,R)$ for the quasi-ordering relation R defined as follows:

(5)
$$xRy \stackrel{\mathrm{Df}}{=} y \in \mathbf{C}\{x\}.$$

Proof. Directly from formulas (1)-(5).

A relation R is said to be *partially ordering* if it is quasi-ordering and satisfies the following condition:

(6)
$$(xRy \wedge yRx) \rightarrow x = y;$$

the partially ordering R is partially well-ordering if

$$(7) \quad \wedge X \big(X \subset S \ \wedge \ X \neq \varnothing \rightarrow \bigvee v \big(v \ \epsilon \ X \ \wedge \ \bigwedge u (u R v \ \wedge \ u \ \epsilon \ X \rightarrow u = v) \big) \big) \ .$$

THEOREM 1. A totally distributive topological space $T = \langle P(S), \cup, \cap, -, C \rangle$ is identical with the algebra $\mathcal{A}(S, R)$ for some relation R of partial well-ordering if and only if the following equality (E) is true in T:

(E)
$$S = (\operatorname{Int} Y \cup C)(\operatorname{Int}(Z \cup \operatorname{Int} Y) - \operatorname{Int} Y) \cup$$

$$\cup (\operatorname{Int}(-Z \cup \operatorname{Int} Y) - \operatorname{Int} Y))$$
.

Proof. First we shall prove that (E) is true in every algebra $\mathcal{A}(S,R)$ for a relation R of partial well-ordering.

According to definition (2) of our topology we have

(8)
$$y \in \operatorname{Int} Y \equiv \bigwedge x(xRy \to x \in Y).$$

Let G = Int Y be an open subset of S. Let us consider the set

$$(9) D = \{y \colon y \in G \land \bigwedge x(xRy \land x \neq y \rightarrow x \in G)\}.$$

It is easy to prove that

$$(10) G \cup CD = S.$$

Indeed, if $z \in G$ let us consider the set $Z_z = \{u \colon u Rz \land u \notin G\}$. According to (7) there exists such v that $v \in Z_z$ and

$$\wedge u(uRv \wedge u \neq v \rightarrow u \notin Z_z)$$
.

Hence vRz, $v \notin G$ and

$$\wedge u(uRv \wedge u \neq v \rightarrow u \in G)$$
.

Thus $v \in D$ and $z \in \mathbb{C}D$.

Now we shall see that for every Z

$$(11) D \cap Z \subset (\operatorname{Int}(Z \cup G) \cap -G).$$

Suppose that $z \in D \cap Z$; then by (9) $z \in -G$ and $\bigwedge x(xRz \rightarrow (x=z \lor x \in G))$, whence $\bigwedge x(xRz \rightarrow x \in Z \cup G)$ and according to (8) $z \in Int(Z \cup G)$. From (11) we infer that

$$D = (D \cap Z) \cup (D \cap -Z) \subset \operatorname{Int}(Z \cup G) - G \cup \operatorname{Int}(-Z \cup G) - G.$$

From this and (10) we obtain (E).

Now we shall show that if R is not partially well-ordering, then (E) is not true in A(S,R). Then we must suppose that or (6) or (7) is not satisfied.

If (6) is not fulfilled, then there exist two elements x_0 and y_0 such that

$$(12) x_0 \neq y_0 \wedge x_0 R y_0 \wedge y_0 R x_0.$$

Let us put

(13)
$$Y = \{x: xRx_0 \land \sim (x_0Rx)\}, \text{ and } Z = \{x_0\}.$$

If $x \in Y$ and zRx, then zRx_0 and $\sim (x_0Rz)$ according to the transitivity of R, and thus $z \in Y$. Hence if $x \in Y$, then $x \in Int Y$ by (8). Then we have

$$(14) Y = Int Y.$$

Now suppose that $x_0 \in C(\operatorname{Int}(Z \cup Y) - Y)$. According to (2) and (8) this would mean that for some x

$$(15) xRx_0 \wedge x \notin Y \wedge \wedge z(zRx \rightarrow (z = x_0 \vee z \in Y)).$$

Hence by (13) x_0Rx ; then by (12) y_0Rx but $y_0 \neq x_0$ and $y_0 \in Y$, which contradicts (15). Thus we have proved that

(16)
$$x_0 \in C(\operatorname{Int}(Z \cup Y) - Y).$$

Let us also note that

$$(17) x_0 \in (-Z \cup Y),$$

and suppose that $x_0 \in C(\operatorname{Int}(-Z \cup Y) - Y)$. According to (2) and (8) this would mean that for some x

$$(18) xRx_0 \wedge x \in Y \wedge \wedge z(zRx \rightarrow (z \neq x_0 \vee z \in Y)).$$

Hence by (13) x_0Rx , but $x_0 \notin Y$, which contradicts (18). Thus we have proved that

$$(19) x_0 \in C(\operatorname{Int}(-Z \cup Y) - Y).$$

Also $x_0 \in Y$. Hence (14), (16) and (19) shows that (E) is not satisfied. If (7) is not satisfied, there exist a set $X \subset S$ and an element x_0 such that

$$(20) x_0 \in X \land \land v(v \in X \rightarrow \bigvee u(uRv \land u \neq v \land u \in X)).$$

Hence there exists a sequence $\{x_n\} \subset X$ such that

$$(21) x_{n+1}Rx_n \wedge x_{n+1} \neq x_n.$$

We can suppose that (6) is fulfilled and we put

(22)
$$Z = \{x_{2n}: n \in \mathbb{N}\}$$
 and $Y = \{y: \bigwedge z (zRy \rightarrow z \in \mathbb{Z})\}$.

First let us notice that $Z \cap Y = \emptyset$ and by the transitivity of R

$$(23) Y = Int Y,$$

Also we can prove that

(24)
$$\operatorname{Int}(Z \cup Y) - Y = \emptyset.$$

Indeed, suppose that $y \in \operatorname{Int}(Z \cup Y)$ and $y \notin Y$, whence $y \in Z$; this means that $y = x_{2n}$ for some n. Then $x_{2n+1}Rx_{2n}$, and $x_{2n+1} \neq x_{2n}$ according to (21). Thus by (8) $x_{2n+1} \in Z \cup Y$. If $x_{2n+1} \in Z$, then $x_{2n+1} = x_{2k}$ for some k. If 2n+1 > 2k, then $x_{2k+1}Rx_{2k}$ by (21) and $x_{2n+1}Rx_{2k+1}$ by (21) and transitivity. Thus $x_{2k}Rx_{2k+1}$, and $x_{2k} = x_{2k+1}$ by (6), which contradicts (21). If 2k > 2n+1, then $x_{2n+2}Rx_{2n+1}$ by (21) and $x_{2k}Rx_{2n+2}$ by (21) and transitivity. Hence $x_{2n+1}Rx_{2n+2}$ and $x_{2n+1} = x_{2n+2}$, which contradicts (21). Thus $x_{2n+1} \notin Z$, and then $x_{2n+1} \in Y$. This means by (22) that $\bigwedge z(zRx_{2n+1} \to z \notin Z)$, but $x_{2n+2}Rx_{2n+1}$ and $x_{2n+2} \in Z$. Hence (24) is proved.

Now we shall prove that

(25)
$$x_0 \notin \mathbb{C}(\operatorname{Int}(-Z \cup Y) - Y).$$

Suppose the contrary case. This means that there exists a v such that vRx_0 and $v \in \text{Int}(-Z \cup Y) - Y$. If $v \notin Y$, then there exists a z such that zRv and $z \in Z$. Hence by (8) $z \in -Z \cup Y$; thus $z \in Y$, but Z and Y are disjoint, and so we have obtained a contradiction. Of course, $x_0 \in Z$ and hence $x_0 \in Y$, thus according to (23), (24), and (25) the formula (E) is not true in A(S, R).

A relation R is a right-rooted tree iff

$$(xRy \wedge xRz \rightarrow (yRz \vee zRy))$$
.

THEOREM 2. Every topological space $\mathfrak{F} = \mathcal{A}(S,R)$, for a relation R of partial ordering, can be embedded in a topological space $\mathcal{A}(S',R')$ for some right-rooted tree R'. (For S finite, S' is also finite.)

Proof. As S' we take the set of all chains maximal to right and having their starting points:

(26)
$$\operatorname{Ch}(X, x) = x \in X \land \bigwedge z \Big(z \in X = \big(x R z \land \bigwedge y \big(y \in X \rightarrow (z R y \lor y R z) \big) \big) \Big)$$

(X is a chain maximal to right with x as the starting element),

(27)
$$X \in S' \equiv \bigvee x (x \in S \wedge \operatorname{Ch}(X, x)),$$

(28)
$$XR'Y \equiv X, Y \in S' \land Y \subset X;$$

R' is of course a relation of partial ordering. We need to prove that it is a right-rooted tree. This according to (28) means that

$$(29) (X, Y, Z \in S' \land Y \subset X \land Z \subset X) \rightarrow (Y \subset Z \lor Z \subset Y).$$

Indeed, suppose $\operatorname{Ch}(Y,y)$ and $\operatorname{Ch}(X,x)$ and $\operatorname{Ch}(Z,z)$. From (26) we infer that yRz or zRy. If yRz we can prove that $Z\subset Y$; if zRy, then $Y\subset Z$.

It suffices to consider one of these cases. Suppose zRy; then according to (26) we shall prove that

$$(30) u \in Y \to (zRu \land \wedge w(w \in Z \to (uRw \lor wRu))).$$

If $u \in Y$, then yRu according to (26) and zRu by transitivity.

If $w \in Z$ and $u \in Y$, then $w, u \in X$ and by (26) uRw or wRu.

The formula (30) is thus proved and hence $Y \subset Z$ and (29).

The embedding of $\mathcal{A}(S,R)$ in $\mathcal{A}(S;R')$ is given by the following mapping:

(31)
$$\varphi(X) = \{ Y : \bigvee x (x \in X \land \operatorname{Ch}(Y, x)) \} \quad \text{for any } X \in P(S).$$

We need some properties of

(32)
$$\varphi(X) = \varphi(Y) \to X = Y.$$

If $x \in X$, and Ch(U, x) for some U, then $U \in \varphi(X) = \varphi(Y)$, whence $x \in Y$, because the starting element of a chain is unique:

(33)
$$\operatorname{Ch}(X, x) \wedge \operatorname{Ch}(X, y) \to x = y.$$

Hence we have $X \subset Y$, and conversely $Y \subset X$; thus X = Y.

(34)
$$\varphi(X \cup Y) = \varphi(X) \cup \varphi(Y),$$

(35)
$$\varphi(X \cap Y) = \varphi(X) \cap \varphi(Y)$$

are evident. We have to prove that

(36)
$$\varphi(S-X) = S' - \varphi(X).$$

The definition (31) and the uniqueness (33) of the starting point of a chain imply that

$$\begin{split} \varphi(S-X) &= \big\{ Y \colon \bigvee x \big(x \in S - X \land \operatorname{Ch}(Y, x) \big) \big\} \\ &= \big\{ Y \colon \bigvee x \operatorname{Ch}(Y, x) \land \bigwedge y \big(\operatorname{Ch}(Y, y) \rightarrow y \notin X \big) \big\} \big\} \\ &= S' - \varphi(X) \;. \end{split}$$

As the last formula we shall prove that

(37)
$$\varphi(\mathbf{C}X) = \mathbf{C}\varphi(X).$$

According to (31), (27) (18), and (2) this means that

$$(38) \quad \forall x, z \ (z \in X \land zRx \land \operatorname{Ch}(Y, x))$$

$$\equiv \bigvee Z, z, x \left(\mathrm{Ch} \left(Y, x \right) \wedge \ \mathrm{Ch} \left(Z, z \right) \wedge \ Y \subseteq Z \wedge z \; \epsilon \; X \right).$$

The implication \leftarrow is easy beacause if $\operatorname{Ch}(Y,x)$, then $x \in Y$ and, according to $Y \subset Z$, $x \in Z$. Hence if $\operatorname{Ch}(Z,z)$ then (26) implies that zRx. For the converse implication \rightarrow we need the lemma

$$(39) \qquad (zRx \wedge \operatorname{Ch}(Y,x)) \rightarrow \bigvee Z(\operatorname{Ch}(Z,z) \wedge Y \subset Z).$$

It may be proved by using the axion of choice. Suppose that all elements x^{\sharp} such that

$$(40) zRx_{\xi} \wedge x_{\xi}Rx$$

are enumerated by ordinals $< \alpha$. We define a set U by induction:

$$egin{aligned} U_0 &= \{z,x\} \;; \ U_{\xi+1} &= \left\{egin{aligned} U_{\xi} &\cup \{x_{\xi}\} & ext{if} & \wedge u \left(u \; \epsilon \; U_{\xi}
ightarrow (x_{\xi} \, Ru \; ee \; u \, Rx_{\xi})
ight); \ U_{\lambda} &= igcup_{\xi < \lambda} U_{\xi} & ext{for} \; \lambda \; ext{limit number} \;. \end{aligned}$$
 $U &= U_a.$

Of course $U_{\xi} \subset U_{\zeta}$ for $\xi < \zeta$.

We put

$$Z = U \cup Y$$
.

We easily verify that:

$$(41) w \in Z \to zRw,$$

$$(42) w, v \in Z \rightarrow (wRv \vee vRw),$$

$$(43) \qquad \left[\bigwedge y \left(y \in Z \to (wRy \vee yRw) \right) \wedge zRw \right] \to w \in Z.$$

(41) is evident by (40) and the definition and (42) follows directly from the definition and the monotonicity of $\{U_{\xi}\}$. Proving (43) we find first that wRx or xRw. If xRw, then $w \in Y$ according to (26). If wRx, then for some ξ we have $w = x_{\xi}$ and according to the definition $w \in U_{\xi+1}$; thus $w \in U$. In both cases $w \in Z$.

Formulas (41)-(43) mean that Ch(Z, z). Of course $Y \subset Z$.

Formulas (32), (34), (35), (36) and (37) mean that $\mathcal{A}(S, R)$ is embedded in $\mathcal{A}(S', R')$.

2. Pseudo-Boolean algebras associated with relational systems. For a topological field of sets $\mathfrak{T} = \langle P(S), \land, \lor, -, C \rangle$ we shall consider also the associated pseudo-Boolean algebra $\langle B(S), \land, \lor, \Rightarrow, \emptyset \rangle$, i.e. the algebra of open sets of the space \mathfrak{T} :

$$B(S)$$
 = the set of all open sets of the space \mathfrak{T} ;

and the operation \Rightarrow is defined as follows:

$$X \Rightarrow Y = \operatorname{Int}(-X \cup Y)$$
.

If the topological field of sets \mathcal{C} is associated with a quasi-ordering relational system $\langle S, R \rangle$, i.e. if $\mathcal{C} = \mathcal{A}(S, R)$, then the associated pseudo-Boolean algebra of open sets of $\mathcal{A}(S, R)$ will be denoted by $\mathfrak{B}(S, R)$.

First we shall note the following lemma:

LEMMA 2. Every pseudo-Boolean algebra $\mathfrak{B}(S,R)$ for a quasi-ordering R is isomorphic with the pseudo-Boolean algebra $\mathfrak{B}(S',R')$ for some relation R' of partial ordering, and $\overline{\overline{S}}' \leqslant \overline{\overline{S}}$.

Proof. Let $\mathfrak{B}(S,R)$ be a pseudo-Boolean algebra and let R be a quasi-ordering relation. Let us define an equivalence relation \approx :

$$(1) x \approx y \equiv (xRy \wedge yRx).$$

First let us note that

(2)
$$(X \in B(S) \land x \approx y) \rightarrow (x \in X \equiv y \in X).$$

Hence if we take the relational quotient system $\langle S', R' \rangle$, S' being the set of equivalence classes of \approx in S and

$$[x]R'[y] \equiv xRy ,$$

then R' is a relation of partial ordering, and the pseudo-Boolean algebras $\mathcal{B}(S,R)$ and $\mathcal{B}(S',R)$ are isomorphic according to (2). The function F establishing isomorphism is defined as follows:

$$F(X) = \{[x]: x \in X\}, \text{ for } XB \in (S).$$

A right-rooted tree is a right-rooted stock tree if it satisfies the condition

$$\forall x \in S \land y \in S y R x$$
.

Of course every right-rooted tree can be enlarged to a right-rooted stock tree by adding one new end-point.

THEOREM 3. Every pseudo-Boolean algebra $\mathfrak{B}(S,R)$ for a quasi-ordering R can be embedded in a pseudo-Boolean algebra $\mathfrak{B}(S'',R'')$ for some right-rooted stock tree R''. (For a finite S,S'' is also finite.)

Proof. According to Lemma 2, R may be considered as a relation of partial ordering. Hence according to Theorem 2 the topological space $\mathcal{A}(S,R)$ can be embedded in a topological space $\mathcal{A}(S',R')$ for some right-

rooted tree R'. Hence the same isomorphic function φ establishes the embedding of $\mathcal{B}(S,R)$ in $\mathcal{B}(S',R')$. Then we enlarge R' to R'' and S' to S'' as follows:

$$u \in S'' \equiv (u \in S \lor u = x_0),$$

 $yR''u \equiv (yR'u \lor u = x_0),$

where x_0 is a new element different from all $u \in S$. The new embedding is given by the function φ' :

$$\varphi'(X) = \begin{cases} \varphi(X) & \text{if} \quad X \in \boldsymbol{B}(S) \text{ and } X \neq S, \\ S'' & \text{if} \quad X = S. \end{cases}$$

3. Applications to modal and intuitionistic logic.

COROLLARY 1. The set of equalities true in all pseudo-Boolean algebras is identical with the set of equalities true in all pseudo-Boolean algebras $\mathfrak{B}(S,R)$ for a finite right-rooted stock tree $\langle S,R \rangle$.

Proof. According to Mc. Kinsey and A. Tarski [6] this set of equalities is identical with the set of equalities true in all finite pseudo-Boolean algebras. And according to Theorem 3 finite pseudo-Boolean algebras can be embedded in finite trees.

Corollary 1 may be considered as a formulation of Jaśkowski's [3] theorem on the characterization of intuitionistic propositional calculus by his matrices, for Jaśkowski's matrices may be shown to be of the form $\mathfrak{B}(S,R)$ for finite trees R (see [2]).

COROLLARY 2. If we add to the system of modal logic S4 the axiom

(G)
$$\left(\left((Z\Rightarrow\Box Y)\Rightarrow\Box Y\right)\land\left((\sim Z\Rightarrow\Box Y)\Rightarrow\Box Y\right)\right)\Rightarrow\Box Y$$

(\square = the necessity sign and \Rightarrow = the strict implication), we obtain a system G stronger that S4, not contained in S5; but interpreting intuitionistic connectives in the usual way, we obtain in G as theorems only the intuitionistic tautologies as in the case of S4.

Proof. According to Tarski's topological interpretation of modal logic, the matrices for G are topological spaces satisfying equality (E). (See Theorems 3.4 and 3.6 of McKinsey and Tarski [5].) Hence if Ψ is a theorem of G, then $\Psi = S$ is true in every topological space satisfying (E).

Suppose that Ψ is not intuitionistic; then according to Corrolary 1 there is a finite right-rooted stock tree $\langle S, R \rangle$ such that $\Psi \neq S$ in $\mathcal{B}(S, R)$. But $\langle S, R \rangle$, being finite, is partially well-ordered, and according to Theorem 1 (E) is true in the topological space $\mathcal{A}(S, R)$. We obtain a contradiction.

The formula (G) is not a theorem of S5 because S5 is true in the space S of two points a, b such that $Ca = Cb = \{a, b\} = S$. The relation R defined in (5) is not a relation of partial ordering and hence (E) is not true in S.

References

[1] G. Birkhoff, Lattice theory, revised edition, New York 1948.

[2] A. Grzegorczyk, A philosophically plausible formal interpretation of intuitionistic logic, Indagationes Math. 26 (1964), pp. 596-601.

[3] S. Jaśkowski, Recherches sur le système de la logique intuitioniste, Actes du Congres Inter. de Philosophie Sci. Paris 1936, VI part, pp. 58-61.

[4] J. C. C. McKinsey and Alfred Tarski, The algebra of topology, Annals of Math. 45 (1944), pp. 141-191.

[5] — Some theorems about the sentential calculi of Lewis and Heyting, Jour. Symb. Log. 13 (1948), pp. 1-15.

[6] — On closed elements in closure algebras, Annals of Math. 47 (1946), pp. 122-162.

[7] Helena Rasiowa and Roman Sikorski, The mathematics of metamathematics, Warszawa 1963, Monografie Matematyczne tom 41.

Reçu par la Rédaction le 4.3.1966