

Upper semi-continuous continuum-valued mappings onto circle-like continua

by

H. Cook (Athens, Ga.)

In 1930 (therefore, without reference to inverse limits), D. van Dantzig proved, [3], that an m-adic solenoid is a continuous image of an n-adic solenoid if and only if m is a factor of a power of n. In this paper, van Dantzig's theorem is generalized in several directions.

DEFINITIONS AND NOTATIONS. Throughout this paper, R denotes the real line, Z denotes the unit circle in the complex plane, and arg denotes the usual multi-valued argument function of Z onto R. Denote by Ψ the collection to which ψ belongs if and only if ψ is an upper semi-continuous mapping of R onto a subset of R which contains an interval of length 2π such that (1) for each real number $x, \psi(x)$ is either a point or a closed interval of length 1 or less; (2) $[\mathrm{lub}\psi(\pi)-\mathrm{lub}\psi(0)]/2\pi$ is an integer; (3) for each real number x,

$$\operatorname{lub} \psi(x+2\pi) - \operatorname{lub} \psi(x) = \operatorname{glb} \psi(x+2\pi) - \operatorname{glb} \psi(x) = \operatorname{lub} \psi(2\pi) - \operatorname{lub} \psi(0).$$

If ψ is in Ψ , let

$$W(\psi) = [\operatorname{lub}\psi(2\pi) - \operatorname{lub}\psi(0)]/2\pi$$

and let

$$M(\psi) = \{ \text{lub} \psi([0, 2\pi]) - \text{glb} \psi([0, 2\pi]) \} / 2\pi$$
.

Denote by Φ the collection to which φ belongs if and only if φ is an upper semi-continuous mapping of Z onto Z such that, if z is in Z, $\varphi(z)$ is either a point or an arc of length 1 or less. If φ is in Φ , let E_{φ} denote the set to which the point (x,y) of the plane belongs if and only if there exist points z and w in Z such that x is in $\arg z$, w is in $\varphi(z)$, and y is in $\arg w$. For each φ in Φ , each component of E_{φ} is the graph of some element of Ψ ; let φ^* denote one such element of Ψ . For each φ in Φ , let $W(\varphi) = W(\varphi^*)$ and let $M(\varphi) = M(\varphi^*)$. If φ_1, φ_2 and $\varphi_1 \circ \varphi_2$ are in Φ , there is a positive integer n such that, for each real number x, $[\varphi_1 \circ \varphi_2]^*(x) = \varphi^*(\varphi^*(x)) + 2\pi n$. If φ is in Φ and is single-valued, then φ^* is also single-valued, and if the integer n is a factor of $W(\varphi), \varphi$ has a continuous single-valued nth root.

The following theorem can easily be established by induction: THEOREM 1. If ψ is in Ψ , m is an integer, and x is a real number,

$$\mathrm{lub}\,\psi(x+2\pi m)-\mathrm{lub}\,\psi(x)=\mathrm{glb}\,\psi(x+2\pi m)-\mathrm{glb}\,\psi(x)=\,2\pi m\,W(\psi)\;.$$

In each of the following four theorems the first statement is proved and the second is a simple corollary.

THEOREM 2. If ψ_1 and ψ_2 are in Ψ and ψ_2 is single-valued, then $\psi_1 \circ \psi_2$ is in Ψ and $W(\psi_1 \circ \psi_2) = W(\psi_1)W(\psi_2)$. If φ_1 and φ_2 are in Φ and φ_2 is single-valued, then $\varphi_1 \circ \varphi_2$ is in Φ and $W(\varphi_1 \circ \varphi_2) = W(\varphi_1)W(\varphi_2)$.

Proof. Evidently $\varphi_1 \circ \varphi_2$ is upper semi-continuous and contains an interval of length 2π , and, for each real number x, $\psi_1(\psi_2(x))$ is either a point or a closed interval of length 1 or less. If x is a real number,

$$\begin{split} \operatorname{lub} \psi_1 \big(\psi_2 (x + 2\pi) \big) &= \operatorname{lub} \psi_1 \big(\psi_2 (x) + 2\pi W \left(\psi_2 \right) \big) \\ &= \operatorname{lub} \psi_1 \big(\psi_2 (x) \big) + 2\pi W \left(\psi_1 \right) W \left(\psi_2 \right) \end{split}$$

and

$$\begin{split} \operatorname{glb} \psi_1 \big(\psi_2(x+2\pi) \big) &= \operatorname{glb} \psi_1 \big(\psi_2(x) + 2\pi W \left(\psi_2 \right) \big) \\ &= \operatorname{glb} \psi_1 \big(\psi_2(x) \big) + 2\pi W \left(\psi_1 \right) W \left(\psi_2 \right) \,. \end{split}$$

In particular,

$$\left[\left[\ln b \, \psi_1(\psi_2(2\pi)) - \ln b \, \psi_1(\psi_2(0)) \right] / 2\pi = W(\psi_1) W(\psi_2) \right].$$

Note that Theorem 2 is a simple generalization of Theorem 1 of [1] and, in the present paper, is used in precisely the same context as was that theorem used in [1].

THEOREM 3. If ψ_1, ψ_2 and $\psi_1 \circ \psi_2$ are in Ψ and ψ_1 is single-valued, then $W(\psi_1 \circ \psi_2) = W(\psi_1)W(\psi_2)$. If φ_1, φ_2 , and $\varphi_1 \circ \varphi_2$ are in Φ and φ_1 is single-valued, then $W(\varphi_1 \circ \varphi_2) = W(\varphi_1)W(\varphi_2)$.

Proof. There exists a number x in $\psi_2(0)$ such that $\psi_1(x) = \text{lub}\,\psi_1(\psi_2(0))$ and a number y in $\psi_2(2\pi)$ such that $\psi_1(y) = \text{lub}\,\psi_1(\psi_2(2\pi))$. Now, $x + 2\pi W(\psi_2)$ is in $\psi_2(2\pi)$ and

(1)
$$\psi_1(x + 2\pi W(\psi_2)) - \psi_1(x) = 2\pi W(\psi_1) W(\psi_2);$$

and $y - 2\pi W(\psi_2)$ is in $\psi_2(0)$ and

(2)
$$\psi_1(y) - \psi_1(y - 2\pi W(\psi_2)) = 2\pi W(\psi_1) W(\psi_2).$$

Clearly, if

$$A = \psi_1(y) - \psi_1(x + 2\pi W(\psi_2))$$
 and $B = \psi_1(x) - \psi_1(y - 2\pi W(\psi_2))$,

A and B are both non-negative. But, from (1) and (2) it follows that A+B=0. Then

$$2\pi W(\psi_1 \circ \psi_2) = \psi_1(y) - \psi_1(x) = \psi_1(x + 2\pi W(\psi_2)) - \psi_1(x) = 2\pi W(\psi_1) W(\psi_2).$$

THEOREM 4. If ψ_1 and ψ_2 are in Ψ , ψ_2 is single-valued, and $W(\psi_1) = 0$, then $M(\psi_1) \geqslant M(\psi_1 \circ \psi_2)$. If φ_1 and φ_2 are in Φ , φ_2 is single-valued, and $W(\varphi_1) = 0$, then $M(\varphi_1) \geqslant M(\varphi_1 \circ \varphi_2)$.

Proof. There exist numbers x_0 and x_1 in the interval $[0, 2\pi]$ such that $\operatorname{glb} \psi_1(\psi_2([0, 2\pi])) = \operatorname{glb} \psi_1(\psi_2(x_0))$ and $\operatorname{lub} \psi_1(\psi_2([0, 2\pi])) = \operatorname{lub} \psi_1(\psi_2(x))$; there also exist numbers t_0 and t_1 in $[0, 2\pi]$ and integers n_0 and n_1 such that $\psi_2(x_0) = t_0 + 2\pi n_0$ and $\psi_2(x_1) = t_1 + 2\pi n_1$.

Then

$$\begin{split} 2\pi M (\psi_1 \circ \psi_2) &= \mathrm{lub} \, \psi_1 \big(\psi_2 (x) \big) - \mathrm{glb} \, \psi_1 \big(\psi_2 (x_0) \big) \\ &= \mathrm{lub} \, \psi_1 (t_1 + 2\pi n_1) - \mathrm{glb} \, \psi_1 (t_0 + 2\pi n_0) \\ &= \mathrm{lub} \, \psi_1 (t_1) - \mathrm{glb} \, \psi_1 (t_0) \leqslant 2\pi M (\psi_1) \; . \end{split}$$

THEOREM 5. If ψ_1, ψ_2 and $\psi_1 \circ \psi_2$ are in Ψ and ψ_1 is single-valued, then $M(\psi_1 \circ \psi_2) \geqslant |W(\psi_1)|$. If φ_1, φ_2 and $\varphi_1 \circ \varphi_2$ are in Φ and φ_1 is single-valued, then $M(\varphi_1 \circ \varphi_2) \geqslant |W(\varphi_1)|$.

Proof. There exist numbers x_0 and x_1 in $[0, 2\pi]$ and numbers y_0 in $\psi_2(x_0)$ and y_1 in $\psi_2(x_1)$ such that $y_1 - y_0 = 2\pi$. Then

$$\begin{split} 2\pi M \left(\psi_1(\psi_2) \right) &\geqslant |\psi_1(y_1) - \psi_1(y_0)| \\ &= |\psi_1(y_0 + y_1 - y_0) - \psi_1(y_0)| \\ &= |\psi_1(y_0) + W(\psi_1) - \psi_1(y_0)| = 2\pi |W(\psi_1)| \;. \end{split}$$

DEFINITIONS. If P is a sequence p_1, p_2, p_3, \dots of integers and, for each $n, Z_n = Z, \pi_n^{n+1}$ is a single-valued element of Φ , and $\widetilde{W}(\pi_n^{n+1}) = p_n$, then any continuum topologically equivalent to the inverse limit, Z_{∞} , of the inverse mapping system $\{Z_n, \pi_n^m\}$ (except where otherwise noted, an inverse mapping system will be assumed to be taken over the set of all positive integers directed by <) will be called a P-adic circle-like continuum. If, for each n, π_n^{n+1} is a local homeomorphism (or, equivalently, $(\pi_n^{n+1})^*$ is strictly increasing or strictly decreasing) then any continuum topologically equivalent to Z_{∞} will be called a *P-adic solenoid*. It is known that, if Σ is a P-adic solenoid, then Σ is topologically equivalent to the inverse limit of the inverse mapping system $\{Z_n, \sigma_n^m\}$ where, for each n, $Z_n = Z$ and, for each number z in Z, $\sigma_n^{n+1}(z) = z^{p_n}$. If n is a positive integer and N is the sequence n, n, n, ..., then an N-adic solenoid is an n-adic solenoid in the sense of van Dantzig, [3]. If P is a sequence of integers infinitely many terms of which are 0, then P-adic circle-like continua will be called zero-adic circle-like continua. If all but a finite number of terms of P have absolute value 1, then P-adic circle-like continua will be called monadic circle-like continua. Circle-like continua which are neither zero-adic nor monadic will be said to be poly-adic.

If $\{X_n, \pi_n^m\}$ and $\{Y_n, \sigma_n^m\}$ are inverse mapping systems with inverse limit X_{∞} and Y_{∞} respectively; m_1, m_2, \ldots and n_1, n_2, \ldots are increasing sequences of positive integers; and, for each i, ζ_i is a mapping of X_{m_i} onto a subset of X_{n_i} and $\zeta_i \circ \pi_{m_i}^{m_{i+1}} = \sigma_{n_i}^{n_{i+1}} \circ \zeta_{i+1}$, then the mapping ζ of X_{∞} onto a subset K of Y_{∞} such that, for each point x of X_{∞} , $\sigma_{n_i}(\zeta(x)) = \zeta_i(\pi_{m_i}(x))$ is called the mapping of X_{∞} onto K induced by the sequence ζ_1 , ζ_2 , ... (if n is an integer, π_n denotes the projection of X_{∞} onto a subset of X_n and σ_n denotes the projection of Y_{∞} onto a subset of Y_n).

If f is a function, invf will sometimes be used to denote f^{-1} .

If P is the sequence p_1, p_2, \ldots of non-zero integers and Q is the sequence q_1, q_2, \ldots of non-zero integers, then Q is said to be a factorant of P provided there exists a positive integer ν such that, if $\nu' \geqslant \nu$, there is a positive integer μ for which $\prod_{i=\nu}^{\nu'} q_i$ is a factor of $\prod_{i=1}^{\mu} p_i$.

THEOREM 6. If P is a sequence of non-zero integers, Q is a sequence of non-zero integers which is a factorant of P, H is a P-adic circle-like continuum, and K is a Q-adic solenoid, then there is a continuous single-valued mapping of H onto K.

Proof. Suppose that H is the inverse limit of the inverse mapping system $\{Z_n, \pi_n^m\}$ and K is the inverse limit of the system $\{Z_n, \sigma_n^m\}$ where, for each $n, Z_n = Z$, $W(\pi_n^{n+1}) = p_n$ and, for each number z in Z, $\sigma_n^{n+1}(z) = Z^{q_n}$. Let v be a positive integer such that, if $v' \ge v$, there is a positive integer μ for which $\prod_{i=v}^{r'} q_i$ is a factor of $\prod_{i=1}^{\mu} p_i$. Let m_0, m_1, m_2, \ldots be an increasing sequence of positive integers such that, for each integer $j \ge 0$, $\prod_{i=v}^{r+j} q_i$ is a factor of $\prod_{i=1}^{m_j} p_k$ and, for each j > 0, let ζ_i denote the continuous $\prod_{i=v}^{r+j} q_i$ th root of $\pi_{m_0}^{m_j}$ and consider it as a mapping of Z_{m_j} onto Z_{r+i} . Then the diagram

$$Z_{m_1} \xleftarrow{\tau_{m_1}^{m_2}} Z_{m_2} \xleftarrow{\tau_{m_2}^{m_3}} Z_{m_3} \leftarrow \\ \downarrow^{\zeta_1} \qquad \qquad \downarrow^{\zeta_2} \qquad \qquad \downarrow^{\zeta_3} \dots \\ Z_{\nu+1} \xleftarrow{\sigma_{\nu+1}^{\nu+2}} Z_{\nu+2} \xleftarrow{\sigma_{\nu+2}^{\nu+3}} Z_{\nu+3} \leftarrow$$

is commutative and the mapping ζ of H onto K induced by the sequence ζ_1, ζ_2, \ldots is a continuous single-valued mapping.

THEOREM 7. If H is a chainable continuum and K is a poly-adic circle-like continuum, there does not exist an upper semi-continuous mapping f of H onto K such that, for each point x of H, f(x) is a proper subcontinuum of K.

Proof. Suppose that C is a chainable continuum, Σ is a poly-adic solenoid, and g is an upper semi-continuous mapping of $\mathcal C$ onto $\mathcal E$ such that, for each point x of C, g(x) is a proper subcontinuum of Σ . Then Σ is an indecomposable continuum. Let C' be a subcontinuum of C which is irreducible with respect to the property that $g(C') = \Sigma$. Then, for each proper subcontinuum L of C', g(L) is a proper subcontinuum of Σ . Now, if C' is the sum of two of its proper subcontinua L_1 and L_2 , then g(C') $=g(L_1)+g(L_2)=\Sigma,$ contrary to the fact that Σ is indecomposable; thus C' is indecomposable. Therefore, according to a theorem of Burgess ([2], Theorem 7), C' is circle-like and, as can be seen from Burgess' proof of that theorem, there exists a sequence G_1, G_2, \ldots of collections of open sets properly covering C' such that (1) for each n, each element of G_n has diameter less than 1/n; (2) for each n, each element of G_{n+1} is a subset of some element of G_n ; (3) for each odd n, G_n is a linear chain; and (4) for each even n, G_n is a circular chain. Then, for each even n, G_{n+2} circles in G_n zero times in the sense of Bing [1]; hence, C' is a zero-adic circle-like continuum.

Suppose that C' is the inverse limit of the inverse mapping system $\{Z_n, \pi_n^m\}$ and Σ is the inverse limit of the system $\{Z_n, \sigma_n^m\}$ where, for each n, $Z_n = Z$, $W(\pi_n^{n+1}) = 0$ and, for each number z in Z, $\sigma_n^{n+1}(z) = Z^{2n}$ and $|q_n| > 1$. Suppose that, for each n, there exists a point x_n of C' such that $\sigma_n(g(x_n)) = Z_n$. There exists a subsequence x_n, x_n, \ldots of the sequence x_1, x_2, \ldots which converges to a point x of C' and $\lim\sup g(x_{n_\ell}) = \Sigma$, which, since g is upper semi-continuous, is a subset of g(x). But this is contrary to the assumption that g(x) is a proper subcontinuum of Σ . Thus, there exists a positive integer N_1 such that, if x is a point of C', then $\sigma_{N_1}(g(x))$ is a proper subcontinuum of Z_{N_1} . Then there is a positive integer $N > N_1$ such that, if $n \ge N$ and x is a point of C', $\sigma_n(g(x))$ has

arc length less than $2\pi / \prod_{i=N_1}^{N-1} |q_i| < 1/3$.

Now, for each $n \ge N$, there exist (1) a positive number ε_n such that, if x and y are two points of C' at a distance less than ε_n from each other, then there is an arc of length less than 1/3 intersecting both g(x) and g(y) and (2) a positive integer M_n such that, if $m \ge M_n$ and z is a number in Z_m , then $\operatorname{inv} \pi_m(z)$ has diameter less than ε_n . For each i, let $n_i = N + i - 1$. Let m_1, m_2, \ldots be an increasing sequence of positive integers such that, for each i and each number z in Z_{m_i} , $\operatorname{inv} \pi_{m_i}(z)$ has diameter less than ε_{n_i} . Then, for each i and each number z in Z_{m_i} , $\sigma_{n_i}(g(\operatorname{inv} \pi_{m_i}(z)))$ lies in an arc of Z_{n_i} having length less than 1.

For each positive integer i and number z in Z_{m_i} , let $\varphi_i(z)$ be the arc of Z_{n_i} with least arc length containing $\sigma_{n_i}(g(\operatorname{inv} \pi_{m_i}(z)))$; for each i, φ_i is in Φ . For each two integers i and j (i < j) and each number z in Z_{m_i} ,

 $\sigma_{n_i}^{n_j}(\varphi_j(z))$ is a subset of $\varphi_i(\pi_{m_i}^{m_j}(z))$; thus, $\sigma_{n_j}^{n_i} \circ \varphi_j$ and $\varphi_i \circ \pi_{m_j}^{m_i}$ are both in Φ ,

$$W\left(\sigma_{n_{i}}^{n_{j}}\circarphi_{j}
ight)=\,W\left(arphi_{i}\circ\pi_{m_{i}}^{m_{j}}
ight), \quad ext{ and } \quad M\left(\sigma_{n_{i}}^{n_{j}}\circarphi_{j}
ight)\leqslant M\left(arphi_{i}\circ\pi_{m_{i}}^{m_{j}}
ight).$$

Now, suppose that, for some i, $W(\varphi_i) = 0$. Then, by Theorems 4 and 5, for each integer j > i,

$$M(arphi_i)\geqslant M(arphi_i\circ \pi_{m_i}^{m_j})\geqslant M(\sigma_{n_i}^{n_j}\circ arphi_j)\geqslant |W(\sigma_{n_i}^{n_j})|\geqslant \prod\limits_{k=n_i}^{n_j}|q_k|\;,$$

a contradiction. But then, by Theorems 2 and 3,

$$0 = W(\varphi_1)W(\pi_{n_1}^{n_2}) = W(\varphi_1 \circ \pi_{n_1}^{n_2}) = W(\sigma_{n_1}^{n_2} \circ \varphi_2) = W(\sigma_{n_1}^{n_2})W(\varphi_2)$$

and, thus, $W(\varphi_2)=0$. Thus we have reached a contradiction and there can be no such upper semi-continuous mapping g of a chainable continuum onto a poly-adic solenoid.

Suppose that f is an upper semi-continuous mapping of a chainable continuum H onto a poly-adic circle-like continuum K such that, for each point x of H_1 , f(x) is a proper subcontinuum of K. By Theorem 6. there is a continuous single-valued mapping h of K onto a poly-adic solenoid Σ' . Then $h \circ f$ is an upper semi-continuous mapping of H onto Σ ; and, since each proper subcontinuum of K is chainable, for each point x of H, h(f(x)) is a proper subcontinuum of Σ' , a contradiction. Thus, the theorem is proved.

THEOREM 8. Suppose that P and Q are sequences of non-zero integers; H is a P-adic circle-like continuum; K is a Q-adic circle-like continuum; and f is an upper semi-continuous mapping of H onto K such that, for each point x of H, f(x) is a proper subcontinuum of K. Then Q is a factorant of P.

Proof. Suppose that Q is not a factorant of P. Then there exist an increasing sequence ν_1, ν_2, \ldots of positive integers and a sequence $\lambda_1, \lambda_2, \ldots$ of positives primes such that, for each two positive integers i and μ, λ_i is

a factor of greater multiplicity of $\prod_{j=\nu_1}^{\nu_{i+1}-1} q_j$ than for $\prod_{j=1}^{\mu} p_j$. For each i,

let $q_i' = \prod_{j=n}^{n+1-1} q_i$ and denote the sequence q_1', q_2', \dots by Q'. Now, Q' is a factorant of Q, so there is a continuous single-valued mapping h of K onto Σ , the inverse limit of the inverse mapping system $\{Z_n, \sigma_n^m\}$ where, for each n, $Z_n = Z$ and, for each number z in Z, $\sigma_n^{n+1}(z) = z^{q_n'}$. Now, $h \circ f$ is an upper semi-continuous mapping of H onto Σ ; for each i, $|q_i'| > 1$; and, for each x in H, f(x) is chainable. Thus, for each point x in H, h(f(x)) is a proper subcontinuum of Σ . Let $g = h \circ f$.

Suppose that H is the inverse limit of the inverse mapping system $\{Z_n, \pi_n^m\}$ where, for each n, $Z_n = Z$ and $W(\pi_n^{n+1}) = p_n$. Now, as in the

proof of Theorem 7, it can be shown that there exist increasing sequences m_1, m_2, \ldots and n_1, n_2, \ldots of positive integers and a sequence $\varphi_1, \varphi_2, \ldots$ of elements of Φ such that, for each two integers i and j (i < j), $\sigma_{ni}^{nj} \circ \varphi_j$ and $\varphi_i \circ \pi_{mi}^{nj}$ are in Φ , $W(\sigma_{ni}^{nj} \circ \varphi_j) = W(\varphi_i \circ \pi_{mi}^{nj})$ and $M(\sigma_{ni}^{nj} \circ \varphi_j) \leq M(\varphi_i \circ \pi_{mi}^{nj})$. Now, suppose that $W(\varphi_1) \neq 0$. Then, by Theorems 2 and 3, for each i,

$$W(\varphi_1)W(\pi_{m_1}^{m_i}) = W(\varphi_1 \circ \pi_{m_1}^{m_i}) = W(\sigma_{n_1}^{n_i} \circ \varphi_i) = W(\sigma_{n_1}^{n_i})W(\varphi_i).$$

Thus, for each i, $W(\varphi_1)$ is a factor of $\prod_{k=n_1}^{n_i-1} \lambda_j$, a contradiction, so $W(\varphi_1) = 0$. Then, by Theorems 4 and 5, for each i,

$$M(arphi_1)\geqslant M(arphi_1\circ \pi_{n_1}^{m_t})\geqslant M(\sigma_{n_1}^{n_t}\circ arphi_t)\geqslant |W(\sigma_{n_1}^{n_t})|\geqslant \prod_{i=1}^{n_1-1}\lambda_i\ ,$$

again a contradiction and the theorem is proved.

THEOREM 9. Suppose that H and K are two solenoids and there exist an upper semi-continuous mapping f of H onto K such that, for each point x of H, f(x) is a proper subcontinuum of K, and an upper semi-continuous mapping g of K onto H such that, for each point x of K, g(x) is a proper subcontinuum of H. Then H and K are homeomorphism.

Proof. Suppose that H is a P-adic solenoid and K is a Q-adic solenoid. Then each of P and Q is a factorant of the other. McCord has shown, [4], that if each of P and Q is a factorant of the other, then P-adic and Q-adic solenoids are homeomorphic.

References

[1] R. H. Bing, Embedding circle-like continua in the plane, Canad. J. Math. 14 (1962), pp. 113-128.

[2] C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959), pp. 653-659.

[3] D. van Dantzig, Ueber topologische homogene Kontinua, Fund. Math. 15 (1930), pp. 102-125.

[4] M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965), pp. 197-209.

THE UNIVERSITY OF GEORGIA Athens, Georgia, U.S.A.

Recu par Rédaction le 12. 4. 1966