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CorOLLARY 1. If 8 is a normal Moore space which contains no dense
metric subspace, then 8 is a counterezample of Type D.

Proof. This follows from Theorem 1 and from Moore’s metrization
theorem [4]. .
_ COROLLARY 2. If 8 is a normal, nonmetrizable Moore space which
is mot a counteremample of Type D, then § contains a dense, nowmetrizable
subspace 8’ such that 8 = D -+M, where D is a metrizable domain dense
in 8’y M is the boundary in 8' of D. ‘

Proof. Since g is not metrizable, there exists [1] a discrete collection I
of mutually exclusive closed point sets not satistying the defini’oioﬁ of
collectionwise normality with respect to any collection of domains, Denote
by ‘I’ the collection to which M’ belongs if and only if, for some M in I
M’ is M—Tnt M (M minus its interior). Then I’ is a discrete collection 0%
closed sets not satisfying the definition of collectionwise normality with
respect to any collection of domains, and I'* is closed and nowhere dense
From Theorem 1 there exists a development G for § such that O(@) X
(8—1I™) is dense in 8—I™ and thus in 8. Let M = I, D = (§—M)-
(0), and. 8’ = D+M. Then D, M, and 8 have the desired properties.
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A complete, infinitary axiomatization of weak
second-order logic

by

E. G. K. Lopez-Escobar (College Park, Maryland)

0. Introduction. One of the reasons (amongst others) why second-
order logic(s) are studied is that it is possible to characterize (up to
isomorphism) many mathematical structures. However for certain struc-
tures, e.g. the natural numbers, archimidean ordered fields, a logic weaker
than second-order (hence the name weak second-order) suffices. In the weak
second-order theories the second-order variables are understood as ranging
over finite, non-empty sequences of those objects to which the first-order
variables refer. The notion of consequence which is customarily used in
weak second-order theories is a semantical (model-theoretic) one. As
remarked by Montague in [M], the methods of Godel [G] can be used to
show that, as long as proofs are required to be of finite length, no
complete formalization can be obtained for weak second-order logic.
Tn this paper we present a formalization in which the proofs are of infinite
length and which is complete. Furthermore, all but cne of the rules of
inference have finitely many premises and the rule with infinitely many
to the w-rule (Carnap’s rule). ()

premises is similar
briefly on how to obtain a more

In the last section we comment
constructive axiomatization.

1. The weak second-order language. The language may be
Driefly defined as follows:

1.1. Symbols.

(a) Individual variables: Vo, ...; Vay .-

(b) Individual constants: oy ...; Cnj -

(¢) Second-order variables: Voy ceey Vg eees

(4) Predicate symbol (binary): P.

(*) The author is indebted to Professor Mostowski for mising the problem of finding

a complete axiomatization for weak second-order logic.
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(e} Logical symbols: — (negation), v (disjunction), = (equali
* (coneatenation), < and &. 7 (equality),
() Auxiliary symbols: ( and ).
The restriction to & single binary predicate symbol (and no function
symbols) is clearly inegsential.

. 12 Terms. The first-order terms are the individual variables and the
individual constants. The second-order ferms can be recursively defined
ag follows:

(a) A second-order variable is a second-order term,

(b) if T and T’ are second-order terms, then so is (T,

(o) if t is a first-order term, then <tS~ is a second-order term,
A closed term i3 a term in which no variable occurs.

An essentially first-order term is a second-order term in which occur
no second-order variables. ‘

The l(mgth 0’ an Gsseﬂna/uy far st-order term T is the nat
A ur vl 1Y "
( ) & &l I be:

(@) Ih(St>) =1,
(b) Ih(T*T’) = 1h(T) +Ih (T").
The order of the terms in an essentially f4 i ini
i y first-order term M i q
sequence of first-order terms Ord(T) such that ™I the fuite
(8) Ord(<AS) = <b).
(b) Ord (T*T') = Ord(T)~0rd (T"). (%)

Two essentially first-order terms T and T’ i :
s ; @ .
T=1T, iff Ord(T)= Ord(T"). re equivalent, in symbols:

We shalllet <, ..., t,S be the term (-l (Sto>* <S> SaS).

1.3. Atomic formulas. An expression i ; iff it i
one f the following foemne P on 18 an atomic formula iff it is of

(@) Ptt’ where t and t are first-order terms,
()t =t where t and t' are first-order terms,
() T =T where T and T" are second-order terms.

1.4. FO?mu as. The 8e (o) ul: .
. t of bt T J
las a8 ‘ig the 169:St set g Contallmng all

(a) 1f 0 is in ¥, then so is the negation of 6
(b) if 6 and v are in » then 50 is the disjunct

(c) if o I‘S m. E; and x iS an i ivi L E2 'V'a,]j]abl th th - al
. N indi d i e er e X ||I]‘Ve|ﬂ
g 2 n of 6! /\X 67 l.S 'z].ulsO in 5‘, '

(a) if 0isin F and X ig
) i 6 2 second-order variable, t; -uni
generalization of 6, A X 6, is also in &, 18R fho K- mniversal

() We use the symhol ~

y —~ 0

ion of 6 and v, (0vy),

to denote the set-theoretical concatenation of finite sequences.

* ©
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We abbreviate “A X A Zx;..Xs0" to “AXX...%,0" and corres-
pondingly for “A X, A X;...X,6".

1.5. Other syntactical notions. We-assume as understood the following
syntactical concepts:

(a) A variable, or an occurrence of a variable, being a free (bound)
in a formula.

(b) 6(by/&, ..., bn/Es) is the proper simultaneous substitution of
the terms &, ..., & for the free variables by, ..., bp in the formula 0 (where
it is further implicitly assumed that by, ..., b, are distinet variables and
that for each 7 << n, by and & are either both firgt-order or both second-
order terms.

(c) A formula 6 is a sentence, i.e. has no free variables. .

2, Semanties. A relational system is an w-sequence (A, R, ay, ...
«rey 8ny ...y SUCh that A is a non-empty set, R a subset of A x A and for
each 7 a, an element of A. A is the universe of (A, R, aydn<, and the a,’s
are distinguished elements of <A, R, apdn<n. If W is a relational system
(and from now on german script letters shall always refer to relational
systems), then an %-assignment is an ordered pair ¢s, 8) such that s is
a2 mapping of the set of individual variables into the universe of % and §
is a mapping of the set of second-order variables into the set of finite,
non-empty sequences of elements of the universe of .

If A= <A, R, apdn<o and 8 = <5, 8) is an W-assignment then

(a) the $-value of a first-order term t, %8, iy defined as follows:
(i) if t = cm, then +%8 — 2, and (ii) if t = Vi, then t%8 = §(vm),

(b) the $-value of a second-order term T, T%8 i defined as follows:
(i) if T=Vm, then T%S = §(Vy), (i) if T= (T,*Ty), then T%5 is the

concatenation T?I’S"T;H’S of the finite sequences T?I’S and T?’S and (iii) if
T = ¢t), then T%S is the 1-sequence (t%5).

The concept of an A-assignment (s, 8) satisfying a formula 6 in A,
in symbols: =y 6[s, 5], is an obvious modification of the usual concept
of satisfaction and hence is omitted. We shall also omit the proof of the
usual properties of the satisfaction relation (e.g. thab it only depends
on the value assigned to the free variables, etc.). A formula 0 is valid
(or true) in WU, =y 0, just in case it is satisfied by every U-assignment; 6 is
valid iff it is valid in every relational system. )

3. Proof-theory. We shall first give a Gentzen type proof theory.
After we have shown it to be complete (i.e. that every valid formula is
provable) we shall briefly consider a Hilbert type axiomatization.

The papers of Kanger [K1], Montague [M] and Rasiowa~Sikorski[R/S]
were extremely belpful in determining the axiomatizations given below.
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3.1. Disjuncts. By a disjunct we understand a finite (possibly empty)
sequence of formulas. Capital greek letters shall be mused to denote
dis!‘ul}cts. If F.——. {Byy ..ry Ok i8 a disjunct, then an A-assignmnet (s, 8
satlsf.les 1“1.11 %, in symbols: |, I'[s, 8] iff |=; 0V... v 0 [8, S]. The notions
of I'is valid (or true) in U and I' is valid are correspondingly defined
T, 6,4 is the disjunct I""<(0>~ 4. Similarly for I', 0, 4, v.
An elementary formula is either an atomic formula or the negation
of an atomic formula.
An essentially first-order formula is a formula which does not contain
any second-order variables.
A.}l essentially first-order equation is ap atomic formula of the form
T;lh (lzn’)where T, T’ are essentially first-order terms such that Ih(T)
An ind{ecomposqble formule is an elementary, essentially first-order
f(.)rmu]a which is neither an essentially first-order equation, nor the nega-
tion of an essentially firgt-order equation.
An indecomposable disjunct is a disjunct consisting of i
A j isting of indecomposable
. 32 Fundamef{ztal disjuncts. A disjunct I' is a fundamenial disjunct
just in case thatb it satisfies at least one of the following conditions:
(a) I' contains a formula 6 and its negation —0,
; (p) TI" contains a seti of first-order elementary formulas whose disjune-
ion (lS @ theorem of the first-order predicate caleulus (with equality),
¢) I' contains a formula of the form — T = T’
‘ . T =T where T, T’ are -
tially first-order terms such that 1h(T) # Ih(T"). , e
31.3‘ Rules of inference. We follow the convention that the premise(s)
are placed above the conclusion in the statement of the rules of inference.

Furthermore it i ot
and thats it is always assumed that the substitutions ave proper

(a) x,¥,2,.. are first-order (i.e. individual) variables
(b) t,t,.. are first-order terms, ’
(¢) X,Y,Z,.. are second-order variables
(a4 T,1,.. are gecond-order termsg. ’
3.3.1. Rules of inference for the propositional connectives.
(R.1) I’,@,A,tp,ﬂ
T, (0vy), 4,8
(R2) T'y—6,4 and Iy —p, 4
Ty = (6vy), 4
(R.3) r,0,4

y p—
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3.3.2, Rules of inference for the quantifiers (unrestricted).

I, —6(x/t), 4

(R4) T~ Ay 0(x/y), 4
®5) r,-6(X/T), 4

T, AY 6(X[Y), 4
3.3.3. Rules of inference for the quantifiers (restricted).

provided that a is either an individual

(R.6) 'I’—I‘/L\%%—i)/,z_)é—z variable or constant and that it does not
’ ! occur free in the conslusion
®7) r,0X/Y), 4 provided that the second-order variable Y
* Iy N2 6(X/Z), 4 does not occur free in the conclusion.

3.3.4. Rules of inference. for equality. For each natural number n the
following are rules of inference: ‘

T, =1}, 4: i<n}

(RB) T, T=T,4
Ty o= th, wvey —rbn == by 4
(R9) T, ST=T, 4

where T, T’ are any essentially first-order terms such that Ord(T)
= by, wory bay and Ord(T") = <to, S 4
3.3.5. Infinitary rule of inference.

{I'y NZoyeeyXn 0(X /gy <oy Xnm), 43 1 < o}
I, NY 6(X[Y), 4

(R.10)

3.3.6. Structural rule of inference.
r,e,4,960, =5
T, 0,4, 58

8.4. Proofs. FT is the set of all finite sequences of natural numbers.
We shall use the bold face letters a and b to denote elements of FT.

a < b iff ais an initial proper segment of b. a < b iff either a= b
ora< b. Tf a= (8, -+y 1), then a, k= By -vy Bp—1, k. 0 i8 the empty
sequence.

A subset T of FT is a spread just in case that 0 ¢ T and if a ¢ T, then
for all b<a, beT.

A bramch of a spread T is a maximal jinearly ordered subset of T.
Tf the branch has & maximal element, then the maximal element is

a terminal node. »
A tree is a spread in which every branch is finite.

Fundamenta Mathematicae, T. LXI
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A proof is a function F whose domain is a tree, whose range is a set
of disjuncts and such that:

(i) if @ is a terminal node, then F(a) is a fundamental disjunect, and

(i) if @ is not a terminal node, then F(e) can be obtained from
{F(b): a< b & for no ¢ (a < ¢ < b)} by an application of one of the rules of
inference (R.1)-(R.10) and finitely many applications of the structural rule.

A disjunct I' is provable if and only if there exists a proof F such
that F(0) =TI

A formula 6 is provable, in symbols: 0, iff the disjunct (8) is
provable.

A straightfoward induection shows that if a formula is provable then
is valid.

4. Tableaux of formulas. As it usually happens with cut-free
Gentzen type formalizations complications arise if a variable is allowed
to occur both free and bound in a formula. Hence we shall prove the
completeness of our system only for sentences (in order to prove the
completeness for formulas we would need some rule of alphabetic vari-
ance). Furthermore we ghall give the proof only for sentences in which
oceur no individual constants (it should be clear from our exposition
how the proof should be modified for sentences involving individual
constants or function symbols).

The method that we use to show the completeness is the standard way
of associating with each sentence 0 a spread S, and a function F, such
that if S, is a tree (i.e. every branch is finite), then Fj gives & proof of g,
while if S, is not a tree (i.e. it has an infinite branch) then from the range
of Fp we can define a relational system 9 in which 6 is not valid.

4.1. DEFINITION. (Ty)n<, i8 an enumeration (without) repetition of
?.11 the essentially first-order terms of the form <Kg, ..oy KpS> where p
18 & natural number and the k’s are individual constants.

4.2. DEFINITION. The function F, (where 0 is a sentence in which
no individual constant occurs) is inductively defined as follows (we ghall
omit the subseript § for the remainder of the definition):

(i) F(0) =0,

(ii) Suppose that F(b) is defined and that F(b) is a digjunct in which
1o second-order variable occurs free. Then
. Case 1. If F(b) is a fundamental disjunct, then for all &, F(b, k)
ig undefined.

i Case 2. If F(b)is not a fundamental disjunet nor an indecomposable
digjunct. Then it must be of the form

Iy, 4
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where I'is an indecomposable digjunct (or empty) and y is not an indecom-
posable formula. The definition then preceeds by cases depending on
the form of .

Case 21. y=T =T' where T, T' are essentially first-order terms
such that Ih(T) = Ih(T’). Let then n = 1h(T), Ord(T) = (to, ..., ta—1) and
Ord(T’) = <tg, «..; th-1>. Then let for each i <n, F(b,?)=TI, ti=ti,
4 and for all ¢ > n, F(b, i) be undefined.

Case 2.2. p= =T = T' where T, T’ are essentially first-order terms
such that Ih(T)=1h(T’). Let then Ord(T)= {(fy, ..., tn-1p, Ord(T’)
= {tpy «ey tn—1) and then define F(b, 0) = I', —to=tg, .., =tp—1=tp—1,
A4 and let F(b, k) be undefined for all &> 0.

Case 2.3. y= (aVvf). Then let F(b,0)=TI,a,p,d and let F(b, k)
be undefined for all %> 0.

Case 2.4. y= —(avf). Then let F(b,0)=1TI, -a,4 and F(b,1)
=TI, —f,4 and F(b, k) be undefined for all ¥ > 1.

Case 2.5. p= ——f. Then let F(b,0)=1TI,8,4 and let F(b, k)
be undefined for all %> 0.

Case 2.6. p= - Ay p. Then let n be the least natural number
such that for all a < b, — B(y/ca) does not occur in F(a). Then let F(b, 0)
=TI, - B(ylea), 4, = A\y B and let F(b, %) be undefined for all k> 0.

Case 2.7. y= - AY . Then let n be the least natural number
such that for all @ < b, — #(Y/Ts) does not occur in F(a). Then let F(b, 0)
=TI, - B(Y/Ts), 4, =AY § and let F(b, k) be undefined for all k> 0.
"~ Case 2.8. p= Ay S Then let n be the least natural number such
that ¢, does not oceur in F(b). Then let F(b, 0)= I', B(y/ca), 4 and let
F(b, k) be undefined for all %> 0.

Case 2.9. y = AY B. Then let for each natural number «, F(b, n)
=TI, AXqy e Xnf(Y[<Xgy so; XuS), 4 where the x’s are chosen so
that there are no clashes of variables.

Case 3. If F(b) is an indecomposable but not a fundamental disjunct,
then let F(b, 0) = F(b) and let F(b, k) be undefined for all k> 0.

DerrNitioN. If Fy is as defined in 4.2, then S, is the domain of Fp.

4.4, LeMMA. S, is a spread and if S is a tree (i.e. every bramch is
finite) then Fy is a proof of 6.

Proof. Immediate. In fact the rules of inference and the definition
of F, were chosen so that the above statement holds.

4.5. LEMMA, If B is an infinite branch of Sy and B is the set of formulas
oceurring in the range of Fy restricted to B, then

(a) if T,T are essentially first-order terms such that T = T'e3,
11 (T) = Ih(T"), Ord(T) = b, ..., ta) and Ord(T) = (b5, -y tad, then for

some i < my ty=1t;¢%B.
'7‘
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(b) 4f T, T are essentially first-order terms such that —T =T'¢3,
() = Ih(T"), OXd(T) = Kty - ta a1 OX(T') = <8, - thY, hen for
al i<n, sti=1tieS.

(c) if (aVP)eB, then a e B and f e B,

() if —(avp)eB, then either —aeB or —feB,
(e) if =—peB, then fe3B,
(£) if > AyPeBD, then for all n, — B(y/cs) € B,
(8) if =AY e, then for all n, — B(Y/Ts) e B,
L) if Ay B eB, then for some n, B(yles) e B,
)
)

@

(
(i) if AY Be3B, then for some n, f(Y|Ty) ¢ B,
() if BeB, then —p¢B,

(&) if Boy ey Pu are elementary first-order formulas whose disj ?
i8 a theorem of the first-order predicate caleulus, them B i
a subset of B. ’ oo B i oot

() if T, T are essentially first- ,
e -vT;T” ro entially first-order terms sych that Th(T) 5% Ih(T )?

) .Proof. (a)-(h) are immediate from the definition of F,. To verif
(i) it suffices to note that if AY f e, then for some & AX xy
BY|<8%g, vy X3 S) € B. Tt then follows from (h) that f,or s‘:')’r;l;’ 'nk
ﬁ(Y/T,,).e 3. (j)~(1) hold because from the assumption that B is aﬁ iﬁfiuit(;
branch it follows that for all b e B, Fy(b) is not a fundamental disjunct.

4.6. TEROREM. If Sy has an infinite branch, then 6 is mot valid,
Proof. Suppose that B is an infinite branch of S, and that B is the
set of formulas occurring in the range of F restricted to B. Then let

Cn~Cpm  Iff either —Ci=cped o ep=cned.

Then define c, ~ ¢y, j_ust. i_n cage that either n = m or for some finite
sequence ty, ..., t, of individual constants we have that

Cp = tnNth . tp+1~13p = Cpy .

It is easily verifiable that ~ i i
. 8 an equivalence relati bhe set of i
dividual constants. Hence we defineq v efation on fhe yet of fn-

= {tm: Cm~ Ca},

A= {Cn: n< 0},

R = {¢Cy, C,): =
{CCny End: for some CpyCq (Cp € Cn & Cq € Cm &——rPCaaca € B)},
A= 4, R <o -

Then we show, by induction on B, that for éll BB, = ﬁ
My
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Case 1. f= Gn = Cn ¢ $. Thenin order to show that |=, — p it suffices
to show that €, £ Gn, i.e. that ¢, % ¢n,. But since we are assuming that
Cn = Cp € B, if Cp~ Cp, then 4.5(k) would be viclated.

Case 2. f= —Cu = Cp ¢ B. Then cn~cyn and hence Cp = €. There-
fore =y — B.

Case 3. =T =T e where T, T’ are essentially firgt-order terms
such that Ord(T)= <ty ..., tuy and Ord(T')= <ti, .., tz> (ie. Ih(T)
= Th(T”)). Then by 4.5(a) there exist i <n such that t;=t; e $. Hence
by case 1, |=y —ts = ti. Thus $: £ t; and hence by the properties of the
satisfaction relation |=y —T =T, ie. |y —5-

Case 4. B = —T="T'e%B, where T, T’ are essentially first-order
terms such that Ord(T)= (ty, ..y tay, Ord(T') = <tg, ..., tud- Then by
4.5(b) for all i<m, —ti=tieP. Hence by case 1, ti=1t; and then
g T =T, le =48

Case . f="T = T’ ¢B where T, T’ are essentially first-order terms
such that Ih(T) s Ih(T’). Then because of the definition of satisfaction
we have that =y —T =T, L.e. [y~ 8.

Case 6. f= —T =T eB, where T,T', are essentially first-order
terms such that Ih(T) 5= Ih(T’). However, because of 4.5(1), this case
cannot arise.

The remaining cases follow immediately from lemma 4.5 (¢)~(k).

Since 6 ¢ $, we have then shown that =y — 0 and hence that 0 is
not valid.

Combining 4.4 and 4.6 we then obtain:

4.7. THEOEREM. A sentence 0 (in which occur no individual constants)
is valid if and only if it is provable.

5. Another axiomatization for weak second~-order logic.
n this section we mention a Hilbert type axiomatization of weak second-
order logie.

5.1. Axioms (3). We use ‘O=>y’ as an abbreviation for ‘(- 0vy).

(A1) Any substitution instance of a tautology (of the propositional
calculus).

(A.2) Ax0=06(x/t).

(A.3) Ax(6vy)=(0vAxy), provided x is not free in 6.

(A4) AX 8=0(X/T).

(AB) AX (Bvy)=(0v=>AX7vp), provided that X is not free in 6.

(A.6) Axioms for the equality symbol (i.e. that = is a congruence rela-

tion relative to both type of variables).

(®) These axioms are adapted from Montague [M].
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(A7)
(A.8)
(A.9)
(A.10)
(A11)
(A12)
(A.13)

AXAY VZ(X*Y)=Z.

AX AY AZ ((X*T)Z) = (X*(Y*Z)).

AX AY AZ((X*Y) = (X*2) =Y = Z).

AX AY AZ (Y*X) = (2°X) =Y = ).

A AT AXAY (X*<5S) = (V<y&) =x =),
A AT AXAY (RUSX) = (Sye*T) =x =)

5.2, Rules of inference. Modus Ponens (Detachment). Universal
generalization with respect to both variables and the following infinitary
rule:

From  {AXp, ooy Xn 0(X[SXgy oony XnS): 1< 00},

To obtain A XS6. .

5.3. Completeness. To prove the completeness of the axiomatization
one can prooceed as follows:

(a) Verify that all the axioms are valid, and that the rule of inference
preserve validity.

(b) Verify that if (6,..., 0x> is a fundamental disjunct, then
6V...v 0; is provable from the above axioms and rules of inference.

(¢) Use induction on the ‘length” of the tree to show that if I" is
a provable disjunct (in the sense of section 4), then the disjunction of
the formulas in I' is provable (in the sense of section b).

Once (a)-(c) have been verified the completeness of the Gentzen
type axiomatization proves the completeness of the above axiomatization.

6. A more constructive axiomatization. In the case of first-
order number theory Shoenfield has shown that the o -rule may be replaced
by a more constructive rule whose content is: to obtain Ax 6 from
{0(n): n< o} provided that there exists a recursive function £ such that
for all n, £(n) is & Godel number of the proof of §(n). Corresponding result
holds for the axiomatization given above for weak-second order. That
is, the infinitary rule can be modified to read:

(8) To obtain AX 0 from {Ax, .., Xn 0(X/<Xq, ..., XpS>): < w} pro-
vided that there is a recursive function £ such that for each n f(n)
is a Godel number of the proof A xy, ..., s 6(X/<Xq, ..., XnS).

That such an axiomatization is complete can be shown in the following
sequence of steps. :

Step 1. Godel numbers can be assigned to proofs using the restricted
rule (S). For example, as done by Shoenfield in [S].

Ax VX <x& =X (where ¢\/’ is an abbreviation for ‘— A 7).
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Step 2. There exists a partial recursive function f such that if 6™
is the Godel number of a sentence 6, then £(767) is the Godel number
of the partial recursive function F, (of section 4, definition 4.2 and where
Godel numbers instead of formulas must be used). This step can be proved
using the recursion theorem of Kleene [K2] because of the effective way
in which the function Fp is constructed.

Step 3. If 6 is a valid sentence, the using again the recursion theo-
vem we can associate with each b element of Sy a natural number g(b)
such that g(b) is Godel number of the proof (using the restricted rule (S))
of the disjunction of the formulas oceurring ab Fy(b).

The above steps are straightforward enough, but do invole a great
deal of arithmetization and thus it is probably best omitted.

References

[G] K. Godel, {tber formal unenischeidbare Sdize der Principia Mathematioa wnd
verwandter Systeme I, Monatshefte fur Mathematik und Physik 38 (1931)‘, pp. 173-198.
[K 1] S. Kanger, A simplified proof method for elementary logic. *“Compuler
1 § d formal systems”, Amsterdam 1963.
PTOQT?QW;;";G& Iéleene,ylwt, duction to Melamathematics. New York 1952.. »
{[M] R. Montague, Semantical closure and non-finite aviomatizability I, in “Infini-
vistic Methods”, Warszawa 1959.
" [R/S] H. Rasiowa and R. Sikorski, On the Genizen Theorem, Fund. Math. 48

1960), . B7-69. .
¢ )[SJP.P} R. Shoenfield, On « restricied w-rule, Bull. 'Acad. Polon. Sei. (1959),

pp. 405-407.

UNIVERSITY OF MARYLAND, -
College Park

Regu par la Rédaction le 7. 11. 1966


GUEST




