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On systems of interlocking exact sequences
by

Peter J. Hilton (Ziirich)

1. Introduction. Let C be a pointed category, with point o, and
let 0X: X >0, ox: 0—X be the unique morphisms in € for each X in [C].
Let 7, c embed Cin C? by 7(X) = 0%, ;(X) = ox. Let Abe an abelian category
and let T = {Tn,—oco < n < oo} be a graded functor from C* to C. Set
%n = Tal, T = Tny and let £ = {{n,— oo <n < oo} be a graded natural
transformation Cn: Ta—>Tn_1. Suppose that for any g: Y—>Z in € the
gequence

(1.1) o T T) S tn(Z) 2 Do) o o D) 25
is exact, where

T=1, @tm=1(g), Pf= Tn(i{) y rm=G(X)e T"(:IZY) '

Then the authors prove in [1] that, if X lv2zin C, then the sequence

Pn-1

(1.2) oo Talf) 2 Ta(gf) 22> Talg) — Taa(f) = oo

is exact, where

B B

This theorem, generalizing a known result for homology and homotopy
groups, was proved by invoking a certain lemma on exact sequences
which may be stated as follows:
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LeMMA. Let four (doubly infinile) sequences, labelled 1,2,3 4 pe
given in the abelian category £ which give rise to the commutative diagmm’ (1.8)
If three of the sequences are exact and if the fourth is differential whem; i;
appiars horizontally or vertically in (1.3), then the fourth sequence is also
exact.

2 3 N
2 AN
N |4 1\‘
(1.3) 3 ¥ 3

The lemma was proved in [1] by routine diagram-chasin ; wog
suggested by Mr. B. Wolk that this lemma should ag(inlit ahgenei.a.li'[;a.gjli
to a.’system of N sequences (N > 3); on the other hand, routine dia;gmm;
ch?,smg could scarcely provide a proof in the general case and it is the
object of .this note to provide a proof of the general result.

We first state the result. We have a system of N interlocking ge-
quences la,belle.d 1,2, ....,N , giving rise to a commutative diagram.
.The s.ystem of interlocking is as in (1.3), except that now each sequence
;(s)uvznt’fien as (lY ~2) horizontal arrows (instead of just two ag in (1.3))
. W(iﬁa, by 2 diagonal arrow, followed by (¥— 2) vertical arrows, followed

Y & gon‘ed arrow, whereupon’ the pattern repeats. Thus a typical
horizontal slice from the “leaning ladder” diagram ig (*)

oMl e met L m=1 m-1 met,
m mi1 L |me2  |ma3 a1 n nt m-3  |maNp-1
m m m m m m

m#\ mi2 m3 nd n i -3 me? N
L5 L Yom Y oma Y Lo me m+ m

1
(*) We have labelled the arrows simply by the label of the sequence to which the

arrow belongs; we will adopt & i i
arrow | 5 pt the same convention below in forming compositions of
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and a typical vertical slice from the diagram is

-1 !
1+ -
-1 AN
1+2 142
-1 l t+1
i+3 1+3
k k
(1.5) (-1 f +1
k+1 k+1 Y
(-3 (-3
1 ( 1+1
-2 Y _1-2
1-1\1 t+1
1,
\ 1+1

Of course, the horizontal and vertical slices have the same pattern.
We call the diagram a leaning ladder diagram of N sequences in £
and prove '
TaEorEM 1.1. Let (N—1) of the sequences in a leaning ladder diagram
of N sequences be exact. Then the remaining sequence 1s exact ab every vertew
at which it is differential.

Note that the remaining sequence is cerbainly differential where it
changes direction. Thus, for example, if sequence m is in question then
at the vertex on the left of (1.4) where the sequence m becomes horizontal
we have i '

mom=mo(m-1) o(m—1)=(m+2)e (m—1) e {m—1)=0.

On the other hand, as we shall show in section 4 by an example, the
remaining seqﬂenoe' may fail to be differential at a vertex at which it
maintains direction.

Section 2 is devoted to the statement and proof of certain auxiliary
results, and section 3 to the proof of Theorem 1.1.

Fundamenta Mathematicae, T. LXI
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2, Auxiliary results. Lambek [2] has introduced the notion of
the image and kernel of a commutative square. Given a square in the
abelian category #,

we seb
Im8 = (Img ~ Imy)/Imga, KerS = kerpa/(kera +kerp).
Then Lambek proves
ProposITION 2.1. Lef the commutative diagram
B e
[s)s]

have exact rows. Then Im 8, == KerS,.
COROLLARY 2.2. Let the diagram

_—

s
[s ] ]

have exact rows and columns. Then Im S = Im ;.

COROLLARY 2.3. Let the diagram

—

Lol el

—

>

—

have exact rows and columns. Then KerS, = KerS;.
Now let

4 be a commutative triangle, then we may fashion out of 4 two commuta~
tive squares 4’, 4",
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PROPOSITION 2.4. ImA’ = 0, Kerd"” = 0.
COROLLARY 2.5. Given the commutative diagram

_ Xt

By

— e

B B

in which the a and B sequences are exact, then ITmS = 0.
COROLLARY 2.6. Given the commutative diagram

Dy

e

1511 S Laz
in which the a and B sequences are exact, then KerS=0.

We now prove
PROPOSITION 2.7. Qiven the commutative diagram

o A ﬁtB l'ﬁ
P;ﬂ...._?z_.p
o C lﬁz D la;
e
¥ %,

where a is exact at P, y is evact at R, ¢ is exact at @, ImB = 0, Ker( =0
and BB, = 0. Then B is exact at Q.

Proof. We appeal to the embedding theorem to allow us to refer
to elements. Thus let # € Q with S, = 0. Then ¢, = 0, 50 there exists ¥
with @& = 9. Since Im B = 0, there exists z with @, = @,f,2, 50 that
there exists % with

x = pzte@u.

Then 0 = 8, = fafr# +Poprt = Papr. Since KerC =0, = ' +u’’ with
@’ = 0, au' = 0, so that u"' = a¢ for some % Thus

7= pe o=z +eu = prteut= p? 416, = iz +6:7)

and the proposition is proved.
Remarks. (i) Lambek introduced the notions of the image and
kernel of a commutative square for more general eategories than abelian
8*
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categories. Propositions 2.1, 2.4 and 2.7 remain valid in the more general
context (for example, in the category of groups).

(ii) It is a curious feature of Proposition 2.7 that, in order to prove

kerg, Cimp, ,
one must assume
kerf, D imp, .

We will construet in section 4 an example in which the remaining hypo-
theses of Proposition 2.7 are satisfied but neither inclusion holds.

3. Proof of Theorem 1.1. We may assume without loss of
generality that the sequences 2,3, ..., N are exact and we study the
exactness of sequence 1. We first consider a vertex @ at which the sequence
does not change direction (*); we may assume the sequence is vertical
at this vertex so we have the diagram, for some 7, 2 < n < N—2,

|‘VA L1B ]2

%_ n+1 2

[T

n+2 n+2

(3.1)

where % belongs to sequence n if # > 2, and % is the identity if n = 2;

and where ;b——i-—_é belongs to sequence (n+2) if N—n > 2, and 7@-—|3 is
the identity if N—n = 2. Thus if #» = 2; ImB = 0. Now assume # > 2;

Wwe may then proceed northeast from square B, obtaining a sequence of
squares

terminating in

m-1 m
[T i n=m—2,
m~2* m-1 " . .

s
S Tme

() This implies ¥ > 4.
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and in

J—
< omi2 m=2

Thus by applying Corollary 2.6 and Proposition 2.1, or Corollary 2.5,
and, successively, Corollary 2.2, we infer that ImB = 0. (Notice that,
until we reach square F we may infer that the image and kernel of each
square are zero; but to proceed from F to B we must go south and then
west since we do not know that sequence 1 is exact; that is, we must
invoke Corollary 2.2 rather than Corollary 2.3.) Thus we infer in any
case that, in (3.1),

(3.2) ImB=0.

An entirely analogous argument, proceeding southwest from O (if
N—n > 2), enables us to infer

(3.3) Ker(=0.

‘We now apply Proposition 2.7 to diagram (3.1) to infer that sequence 1
is exact at @ if it is differential at Q.

It remains to consider a turning point of sequence 1. Observe thait,
as we have already remarked, sequence 1 is certainly differential at such
a vertex . Let us suppose that sequence 1 turns from the vertical to the
diagonal at @. Then we have the diagram

N-17 N-1

A 11 B lZ
(3.4) S

[1 0 lz

As before we infer that ImB = 0. We now observe that we may com-
plete (3.4) by assigning the zero object to the bottom left hand corner.
This certainly gives a commutative square O since L e N=2 N o N = 0.
Moreover, plainly, Ker( = 0. Thus we may again apply Proposition 2.7
to infer that sequence 1 is exact at Q. An entirely analogous argument,
based on the diagram
N A It

797
el ]

—»3 ——

(3.5)
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establishes that sequence 1 is also exact where it turns from the diagonal
to the vertical; and the other two cases of turning points of sequence 1
each yield diagrams isomorphie to one of (3.4), (3,5). This completes the
proof of the theorem.

CoroLLARY (of proof) 3.1. In a leaning ladder diagram of N exact
sequences, all the squares have zero kernel and zero image.

Remarks. (i) Plainly the theorem and the corollary remain true
in the context of the more general categories considered by Lambek
(for example, the category of groups).

(ii) The case N = 3 admits the following interpretation. Let ¢ = (¢,),
y=(y) be two exact sequences and let a = () be a morphism from ¢
to v, thus

S/ T .1 W
(3.8) Ccn-2  |Cont ain [aen

e ihmerre e o IR
Yot Yn Pnsg

Suppose that a, is an isomorphism if » is even. Then the sequence

wntt Panty

am-1 Ben
e S ot SV G-

(8.7)
is exact, where
/3‘2.71‘ = Pon+1 a?::rtl"/’Z'n .

4. An example. Plainly for N # 3 every sequence turns at each
vgrtpx 80 10 supplementary condition that the sequence in question be
differential is required to prove that it is exact. But for N = 4 one sees
by the following example of (1.3) that the supplementary condition is

necessary. Let 4 be the category of abelian groups and consider the
leaning ladder of four sequences

(4.1)

0

j]l-t];e Temaining vertices of the diagram are occupied by zero groups:
=2Zy=(a); B=Z,=(b); C=Z2,0Z,= (e1, ¢,); sequence 2 contains
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the identity on 4; sequence 4 contains the identity on B; sequence 3
contains
0--B%0 5450

where y(b) = 6, 8(c;)=0, 8(¢;) = a; and sequence 1 contains
04505 B0

where a(a) = ¢z, f(¢1) = b, p(c:)=Db.

Then sequences 2, 3, 4 are exact, and all commutativity relations
hold so that we have, in. fact, a leaning ladder diagram. On the other hand
sequence 1 fails to be differential; indeed, neither of the inclusions

Ima CKerf,
ImaD Kerf

holds. It is clear that we may adapt this example to provide a proof of
the necessity of the differentiality condition at any vertex of a leaning
ladder diagram of N sequences at which the sequence in question maintains
direction.

Added in proof: C. T. C. Wall (On the exaciness of interlocking
sequences, L'Enseignement Mahtématique 12 (1966), pp. 95-100) also proves
the Lemma proved in [1] and quoted in the Introduction, and provides
an example, different from ours, to show the necessity of the differen-
tiality condition. Wall’s paper does not consider the generalization to
more than 4 sequences which is the topic of this note. Wall attributes
the 4-sequence diagram to Kervaire, presumably in connection with the
study of homotopy spheres.

References
[1] B. Eckmann and P. J. Hilton, Composition functors and spectral sequences,
Comm. Math. Helv. 41 (1966-67), pp. 187-221.
2] J. Lambek, Goursat’s Theorem and homological algebra, Can. Math. Bull. 7
(1964), pp. 597-608.

E. T. H.,, ZURICH, SCHWEIZ
and CORNELL UNIVERSITY, ITHACA, N. Y.

Regu par la Rédaction le 7. 1. 1967


GUEST




