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(¢) I under «' is a separable space.

(@) I under <’ is a first countable space.

(e) I under 7' is not a second countable space.

Proof. In this proof the notation is that used in defining 7'.

(a) Select a sequence {si}, i=1, 2, ..., such that for each i, s;e N
and lim s; = 0 under 7. It is apparent that such a sequence exists. Since 7’

is finer than 7o, 0 is the only possible limit point of the sequence. However,
0 has a ' -neighborhood such that it containg no elernent of V. It follows
that 0 is not a limit point of the sequence, and, hence, I under +' iy not
countably compact. Applying the well-known theorem that every compact
subset of a space is countably compact, it follows immediately that (I, 7')
is not a compact space.

(b) Let U be a neighborhood of by of the form [byvw M]~ (a,Dd)
where 0 < a < by <b <1 Assume that there exists a mneighborhood
of by, call it V, such that ¥ C U. It is apparent that V would have a subset,
call it W, of the same form as U. Now since all open sets of =’ are unions
of finite intersections of subbase elements, there exists a positive integer j
such that (a;, b;) C W. Observe that a; is a limit point of W, hence of V,
and a; ¢ U, Therefore V ¢ U.

(¢) Observe that each open set of (I,7") contains an interval. There-
fore, each open set of (I,7’) contains a rational number. Hence, the set
of rational numbers contained in I is a countable dense subset of (I, 7'),
and I under 7’ is a separable space.

(d) Observe from. the definition of ¢’ that if P ¢I, then one of the
following forms a countable base, or local countable base, at p for =’

@ In~p—1n,p+in), n=1,2,..

@) (p—1n,p+Ln) " {M wp}, n=1,2,..

@3) (p—1n, p+1in) A {N v p}, n=1,2,..

It follows that (I,+’) is a first countable space. :

(¢) Observe that each element # e K has a neighborhood of the
form U~ {M v}, U an open set of (I,7,). Now if x, i3 a particular
element of K, observe that no union of finite intersections of sets which
are open in (I,7'), excluding those of the form U ~ {M u 2.} where U is
an open set of {I, %}, is equal to a set of the form U ~ {M v @}, where U
is an open set of (I,7,). Hence, since it is well known that K consists
of a non-denumerable number of elements, it follows that (I, ') is not
second countable.

TEXAS TECHNOLOGICAL COLLEGE
Lubbock, Texas

Reguw pur la Rédaction le 20. 8. 1966

Deduction-preserving ‘‘Recursive Isomorphisms”
between theories * **

by

Marian Boykan Pour-El and Saul Kripke
(Minneapolis, Minn. and Princeton, N. JI.)

Introduction. In this paper we concern ourselves with recursive
mappings between theories which preserve deducibility, negation and
implication. Roughly we show that any two axiomatizable theories con-
taining a small fragment of arithmetic—this can be made precise—are
“jsomorphic” by a primitive recursive function which preserves de-
ducibility, negation and implication (and hence theoremhood, refutability
and undecidability). We also show that, between any two effectively
inseparable theories formulated in the predicate calculus, there exists
a recursive ““isomorphism’? preserving deducibility, negation and implica-
tion. We will see that we camnot replace ‘“recursive” by “primitive
recursive” in the last result. As a consequence we oObtain a partition
of all' effectively inseparable theories in standard formalization into ®,
equivalence classes, The unique maximal element is the equivalence class
of those theories containing the small fragment of arithmetic mentioned
above. A more precise summary of our results—which, incidentally answer
some questions left open by Pour-El [6]—appears below, following some
brief notational remarks.

In our opinion interest in the preservation of sentential connectives—
particularly implication—can be justified by the following consideration.
The preservation of implication implies the preservation of modus ponens
and modus ponens is intimately related to the deductive structure of
the theories. (Indeed, it is well known (Quine [5]) that the predicate
caleulus can formulated so that modus ponens is the sole rule of inference.)

All theories considered in this paper will contain the propesitional
caleulus. For definiteness we assume that implication and negation are
the sole primitive propositional connectives: AvB is an abhreviation

* The work of M. B. Pour-El was supported by NSF GP 1612. Sections 1, 2 and
parts of section 3 were obtained independently by both anthors. The remaining results
were obtained by the first-named, amthor. . .

** The authors would like to thank Professor Kurt Gbdel for his very great interest
in these results. ’
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for 7]A>B; A-B is an abbreviation for 7](7.4 v T].B). Furthermore in
every section except section 3 the theories discussed will be formulated
as applied predicate caleuli. All theories will be assumed to be both
copsistent and axiomatizable.

Notation. Let G be a theory. Associated with G is a recursive set W
the set of (Gddel numbers of) sentences and two recursively enumerablf;
subsets of W, T' the set of theorems and E the get of refutable sentences
We assume that W has an infinite complement W. If § C W, then by S“‘
we mean the subset of 8 obtained by omitting all ¢ € 8 such that either
@=1p,—>y, or p="Tly, for some v, and v, in W. Thus 84 consists of
“generalized atoms” relative to negation and implication. Similarly §~
is the subset of § obtained by omitting all ¢ ¢ § such that ¢ ==y for
some p in W. For example, if
then 8= {@)(y1>v), @)y ~>@) e, @)7Tpr, TU2)wil},

84 = {(@) (=), (@) 7Ty}

87 ={®){y1 >y, @y ~>(@)pa, (@) Ty} -

] In general we identify a formula with its Godel number. If a distinetion
i8 necessary it will be clear from the context.

and

Survey of results. The results of A, B, and C below are conge-
quences _of some basic lemmas which are too complicated to state here.
Results in D are of a different nature: they complement those of C.

A. Recursive mappings between applied predicate calouls.

e ::ll:rfefulr Siissv :gﬁ:::ﬂ;nia B, .is e;f;ec.tively inseparable, then there
e oo pping W, into W,, W, onto W, such that

a. f*(B—0) = fHB)~f*0),

b. f*(71B) = T1f*(B),

c. Blg, O if and only if f*(B) I-(;‘f‘(O).

Furtll(irex(zore, 1f)‘ maps Wi into Wa. (Theorem 1.)

i 8, b, ¢ we conclude immediately that theorerms are mapped
into theorem: i

s mapped fl,l tf)eillll:;g:‘lgg aﬁ.z&mapped into refutables and undecidzbles

II. If B, and G, are effectively i i i
function f* mapping W, onto Wz,y%szz?;a%e;&;ntglg ef;: Zli.-llé I?Iilrtl'sg’e

a. f*(B~0) = f*B)>f*0), ’ 1

b. f*(71B) = 1f*(B),

c. B FEC if and only if f*(B) kg, F*(0).

Furthermore, f* maps Wi onto WZ. (.Theorem 2.)

iom°
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B. Recursive mappings between applied propositional calouli.

We show by example that IT does not hold for all applied propositional
calouli. Nevertheless given two effectively inseparable (e.i.) theories G,
and B,, it is possible to find a 1-1 recursive function g mapping W, onto W,
preserving negation, deducibility and which up to deductive equivalence
preserves implication. More precisely,

III. Let G, and 6, be two ei. theories. There is a 1-1 negation-
preserving recursive function g mapping W, onto W, such that for all
formulas B, and C; in G,.

a. By, ¢, if and only if g(By) l-»gig(O'l),

b. kg, g(B,~>Cy) =. g(By)~>g(C),
and for all formulas B, and C, in G,,

*“Gl g (B, > 0,) =. g~Y(Bs) >g7(Cs) -

{Theorem. 4.)
As a trivial consequence of IIL theorems are mapped onto theorems,

refutables are mapped onto refutables and undecidables are mapped onto

undecidables.
Tn contrast I does hold for propositional calculi provided we omit

from the conclusion that f* maps Wi into Wi'. This is stated as
theorem 3.

C. Primitive recursive mappings between theories.

For many mathematically interesting formal theories it is possible
to strengthen results I and II by ghowing that f* can be chosen to be
primitive recursive.- Suppose that G, and G, are theories in standard -
formalization possessing 2 notation for the natural numbers and a binary
predicate <. Suppose further that G; contains a subtheory B} such that
the following hold

(1) for all nkg} s <AVA LT,

(2) for all nbg o <T—>z=0V..vE =T,

(3) every primitive recursive function of one argument is definable
in Bj.

Then II holds for B, and G, with a primitive recursive f*.

(An analogous statement may be made for I, when 6, contains a sub-

. theory G} satisfying (1), (2) and (3)—see a detailed discussion at the end

of section 2.)
Thus for example if By and T, are any two consistent axtomatizable

extensions of the theory R of Undecidable Theories, 11 holds for a primitive
recursive f*. . ‘

D. A hierarchy of effectively inseparable theories.

n contrast to the results of the preceding paragraph it is, in general,
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not possible to c¢hoose the f* of I or IL to be primitive recursive. For we
prove

IV. Let & be a recursively enumerable class of general recursive
functions. Then there exists an effectively inseparable theory B, in standard
formalization such that no recursive function which witnesses the effective
inseparability of G, is in &. (Theorem 6.)

As an immediate corollary we obtain (where R is the theory of
Undecidable Theories, [10])

V. Given an r.e. class F of general recursive functions, there exists
a theory B in standard formalization such that no 1-1 recursive function
mapping W onto Wy, T onto Tr, B onto Ry preserving deducibility,
negation and implication is in F (theorem 7). ‘

We are thus led to a classification of effectively inseparable theories
in standard formalization. These theories are divided into %, equivalence
classes with a unique maximum element. In particular, all the mathema+
tically interesting theories described in the first paragraph of C above
belong to this maximum element: between any two of these theories
the f* of IT may be chosen to be primitive recursive. For details see the
last part of the last section of this paper. )

Basic definitions. Let w,, wy, ..., ws, ... be a standard recursive
enemeration of all recursively enumerable (r.e.) sets. Assume that w,= @.
Let j be the well-known primitive recursive pairing function; let K and L
be its inverses.

DErFINITION 1. A pair of disjoint r.e. sets (a, B) is effectively inseparable
(e.i.) if there exists a recursive function g such that if '

OrmD o, o0rmdf, Orm N org =9
then

g(%) ¢ wra) v org -

DrriNtrioN 2. Let a, §, y be recursively enumerable sets. Let a C y,
BCyand an f= @. Then the pair of sets (a, 8) is effectively inseparable
relative to  if there exists a recursive function g whose range is included
in y and such that if

Y200 a, yormdf, wxwnogy=0
then
9(5)-€ y —(wxm v or)
] DEFINITION 3.‘ An applied predicate calcilus G is an effectively
msepambl'e theory it (T, R) is an effectively inseparable pair of sets.
IEBisa pr.opositiona.l calculus, then the concept of ‘“‘sentence” may
not have meaning since, for example, © may not possess variables. In
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that case we identify ‘“‘sentence” with ¢formula”. Thus definition 3
applies in that case also. () : .

DEFINITION 4. A class F of general recursive functions of one argument
is a recursively enumerable (v.e.) class if there exists a general recursive
function f of two arguments such that f;, fi, ..., fa, ... is an enumeration
of all and only the members of &.

1. Some basic lemmas. In this section we assume that G, and G,
are two consistent axiomatizable theories formulated in the applied
predicate calculus. (See introduction.)

Notation. (See.introduction for notation for 8% and Wf.)
(i) If 8% is a subset of W1, then denote by S the set of all truth
functional combinations of 8.
(i) If f maps 82 into 8F, then denote by f* the induced mapping
of §; into §, satisfying
THE ~F) = f*EB)~f*(F) ,
FE) =8
for all £ and F in §,.

(iii) T ~ 8% is abbreviated by T§ ; B¢~ 8% is abbreviated by R}.

Levma 1. Suppose that

(a) 8 and 82 are infinite r.e. subsets of W and Wi respectively.

(b) 8 has the following dlosure property: If B is a truth-funciional
combination of members of 82, and x i3 a variable not ocourring in B, then
() B e 81 -

(c) (T%, R} is e.. relative to 83.

Then there is a 1-1 partial recursive function | defined on 8, which
maps i into 82 so that the induced mapping f* of 8, tnto 8, is & 1-1 partial
recursive function satisfying the following.

Bty F if and only if f*(E) kg, F4(F)

for oll E and F in S,

Proof. Let Fy,Fs, ..., Fa, ... be an effective enumeration without
repetition of the members of 8¢ . Suppose that at stage n we have a finite
1-1 correspondence between the Fi, ..., Fn and Gy, ..., Gy, such that Fg
corresponds to Gy,. (The Gi's are members of S2.) We seek to extend

() Note that this extension of the definition accords well with. the ongmsl def-
inition. For when  is an applied predicate calculus which is e.i. by the definition then
the set of formulas which are theorems is effectively inseparable from the set of refutable
formulas. : .
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this correspondence effectively to a 1-1 correspondence between

Fyy iy Fuy Fops and Gy, ...y Gy, G4, . The inductive hypothesis is that

any truth functional combination of the Fy, ..., Fyn of the form Fy..... 7

where Ff = Fy or Ff = 7| F; is consistent with G, if and only if the cor-

responding combination of the G;’s is consistent with G, (e.g. F,. |F,-

-Fy-...- Fy is consistent with B, if and only if G¢1'1G¢2-0¢B-...~G% is

consistent with B,). Our aim is to choose a @, so that the same holds

for Fyy .y Fua and Gy, ..., Gy, . The method we use is o generaliza-

tion of Myhill’s [4]—cf. [3a] and [9a].

There are 2" truth-functional combinations of ¥, ..., Iy of the desired
form. Denote them by K, ..., K. Similarly denote the corresponding
truth funectional eombinations of Gy, ..., Gs by K1, ..., Kin .

Since (7%, R?) is effectively inseparable relative to Si, there is
a recursive function g whose range is included in S5 such that if

8D wgwD Tt
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A
8 DQwrwD Ry, wrmpoouy=9,

then
9(8) € 85— (wx ¥ o).

{Of course, K and L are the well-known inverses of the pairing function j,
Le. Kj(w,y) =2 and Lj(»,y)=y.)
Let u be a primitive recursive function such that

Wupy = {D} .
Then consider the following formulas (2)
) G e85~ Ol(wu) &= g(y) V. © € 85 ~ Row,g)
(2) L8 A Ruwuw) @ = g(y) .V. € 85 A Ola(w,y)

By the recursion theorem, there is a primitive recursive function ¢ such
that

3) T e Opipg e i e 8 A Cli(w,p) @ =gt(¢,p, q)
N.weSi A Re(wuq) »
4 % € oxuing &t b€ 8 A Ru(w,) 0= g, p, g)

Ve e 8 ~ Ol(oy) .

(‘). Cly(@,p) i8 & notation for the set of theorems of the extensi
by adding euy as axioms.
. HRi(wup) i8 a notation for the set of refutables of the extension of G, obtained by
addmg_ Wulp) 88 axioms.
Similarly for Cly(w,,) and Ra(0g)-

of B, obtained
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Suppose that B, {K;} is consistent. Then G, {Kj} is consistent
by the inductive hypothesis. We show under the assumption that G,
-+ {K;} is consistent that

(B)  Fise 85 A Ob(ouxy) >0t (Fnia; Ky, K7) € 85 A Ol ouix),
(6) Fn+1 € SlA ) 911( wll(Kj)) "’!]t(Fn+1: Ki7 K;) € Séi n m*z( wu(K;)) ’
(7)) Fpyare 8 — [0l wn(K,)) v Ry “’M(K,))] d

9t (Fasas K, K7) 85— [Cli(wnacy) Rl opax)] -
Indeed, suppose that (5) dees not hold; then ‘
(8) Faae S~ Ohlwumy) Dt~ gi(Fara, Ky, Ki) ¢ 8 o Ol weey) -
Thus from (3) and (4), we obtain
OLUE 1, 53, 1 = (G F i1y Ky KD} (Rel o) ~ 85,
ORHFy 1. Kp K= 85 A Ol wy -
Now, since B,+ {Kj} is consistent,

(85 ~ Ol ) ~ (85" ~ Rel o)) = B-
Thus by (8)
ORYFy 11, Kp K)) O OLlFyy 1. K, K = 0.

Since (T2, T%), is e.i. with respect to 85,

G(Fnsa; Ky, Ki) € 85— (0kury 10, 5, Ep 2 0Ly 11 5,5 5
i.e.
Gt (Fns, K, K) € 88 —[{gt(Fas1, Ky K} o Clyox)) © Roleoyx))]

which yields a contradiction. Thus (5) is proved. In a si@ﬂm manner
we can prove (6) and (7). From (5), (6), and (7) we obtain

(9)  Fnpre8i A Ol 0ux)) > gt(Faia, Kj; K) € 85~ Clwug))
(10)  Fai € 82 ~ ol 0pip) 9T s, Ky, Kj) € 83~ Rl 0ucxpy) 5
(11)  Fpp e 85— (Cl oy v Riouep) <

Gi(Fns1, Byy Kf) € 85 —[Claoyacy ~ Raoumpl -

Let us abbreviate gt(Fui1, Ks, Kj) by H;. Note that (9), (10), and (11)
inply
Ejbg, Fpp Kjbg H; by (9),

K;‘}‘“Gl NFpyr e Kibg, T1H; -
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Thus under the assumption that K; is consistent we have shown that
(12) K;-Fpyq is consistent with B, « Kj H; is congsistent with G, .
(18)  E;- "1 Fnt1 &8 consisient with B, « K;- 71 H;y is consistent with G, .

Note that if K; is not consistent, then by the induetive assumption K}
is not consistent. Thus (12) and (13) hold trivially for inconsistent K,’s.
Hence (12) and (13) hold for all K;’s.

Now let & be the first variable not occurring in Gy, ..., G, , Hy, ..., Ha.
Let @ .. be the formula

(@) [K1-Hy V.o V. Egn-Honl .

Clearly @y, , eS¢ by hypothesis (b). Furthermore it follows from the
fact that

n+1

b, K D. (K- H,y V. ... V. Eip- Hy] = H;
that we have ‘
b K5 Gy, = Hy.
Thus we have
K;-Fpyq 18 consistent with B, > K}-Gcn .

, s consistent with G, .

K+ T\ Fp4a 18 consistent with G, « Kj- |Gy, s consistent with B,.

Thus Gy, ., has been chosen so that the inductive hypothesis holds
between Hi, ..., Py, Foyy and Gy, ..., G, , Gy As an immediate con-
sequence of this we have

7, I-»c;llv’q if and only if Gip |-~(;2 qu,
Fpbtg, T1F; if and only if G;p I-qg;a 1@ p
T1Fptg Fy i and only if 1G4, b, Gy

T1Fptg, 1F, it and only it G, g, T Gfa ,

i\T ow let-B; and () be two truth functional combinations of the members
of 8. Let B, and 0, be the corresponding truth functional combinations

obtained by replacing each F, by @ throughout. It i
ptamed by 'p o g . It is an eagy matter

nt1*

Bt 0; if and only if B, kg, Os -
Thus the conclusion of this lemma holds.
Lemwma 2. Suppose thait:
(a) 8% and 8 are infinite v.e. subsets of Wi and Wi respectively.

(b) Both 85 and 85 have the Jollowing dlosure property: If By is & truth

functional combination of members of S& ' i v
f i and @ s a variable not oceurrin.
tn By, then (2)B;e Si. "
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(e) (T%, R%) is ed. relative to 8t.

Then there is a 1-1 partial recursive function f defined on S5 mapping 8
onto 82 such that the induced mapping f* of 8, onto gg s a 1-1 partial re-
cursive function satisfying the following

EtgF if and only if f*(B) kg, f*F)

for all E and F in 8.

Proof. The proof is an obvious modification of the proof of lemma 1.
Let Fy, Fyy ..oy Fuy ... be a recursive enumeration without repetition of
the members of S{“; let @, ..., Gn, ... be a Tecursive enumeration without
repetition of the members of 8. Suppose that after stage k we have
a 1-1 correspondence between Fy , ..., Fy, and Gy , ..., Gi,. At stage k+1,
we seek to extend this correspondence effectively to a 1-1 correspondence
between Fy,, ..., Fiyy Fop o and Gy, ..., Gy, Gy, S0 thatany truth functional
combination of Fy, ..., Fi, , of the form described in lemma 1 is consistent
with G, if and only if the corresponding truth functional combination of
Giyy oy Gy, 18 consistent with B,. The induetive hypothesis is, of course,
that any truth functional combination of Fy,, ..., Fy, of the kind described
in lemma 1 is consistent with G, if and only if the corresponding truth
functional combination of Gy, ..., G, is consistent with G,.

Case 1. k-+1 is even. Generate Fy, Fy, ..., Fy, ... until the first F is
found such that F # Fy for j=1, ...,k Suppose that it is F,. Let
Py =Fs. Let g, be a function which witnesses the effective inseparability
of (T3, R}) with respect to 82, Obtain #; by the recursion theorem
as in equations (3) and (4) of the proof of lemma 1. Let Ky ooy Kox
be all possible truth functional combinations of the Fy (for j=1, ... k)
of the desired form (see lemma 1); let Kj, ..., Kix be the corresponding
truth functional combinations of G4’s. Let # be the alphabetically first
variable not oceurring in any of gty(Fi,,, K, Kj) for j=1, ey 25 or
in any of Gy for j=1, ...,k Let

Gy = () [K1-guta(Ftp g K, K. V...V . E-goto(Fyp Ko, Kt)] -

Note that G, # Gy for j=1, .., k. Furthermore we have, of course,
that any truth funetional combination of Fe, ..y Fipy, is consistent
with G, it and only if the corresponding truth funectional combination of
Gy -y Gy, I5 consistent with G,.

Case 2. k41 is odd. Generate Gy, Gs, ..., Gn, ... until the first @
is found, such that @ # Gy for j=1, ..., k. Suppose that it is @,. Then
let Gy, = G,. Our aim is to find an Fy,, so that any truth functional
combination of the Fy, (of the desired form) for j=1, .., k-1 is con-
sistent with 6, if and only if the corresponding truth functional combina-
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tion of the G4’s for j = 1, ..., k1 is congistent with B,. This can be accom-
plished by reversing the roles of the F’s and the &’s in aase 1 and using
the effective inseparability of (T%, R}) with respect to S4in place of the
effective inseparability of (T%, Rf) with respect to Si*. The proof is entirely
analogous to the proof of case 1. Thus we obtain a 1-1 partial recursive
function f defined on Si and mapping 87 onto S%. Furthermore the
induced mapping f* is a 1-1 partial recursive function defined on §, and
mapping 8, onto §,. As in the proof of lemma 1, it can be shown that

Brg F it and only it f¥(B) by, f*(F)
for all B, F in §,.

2. Recursive and primitive recursive mappings between
applied predicate caleuli. This section is devoted to applications
of lemmas 1 and 2. In order to obtain these applications it is necessary
to state two simple facts concerning effective inseparability. The first
one, which we state in lemma 3 is well known. The second, which we give
a8 lemma 4 does not appear to have been explicitly stated in the literature.

LeMuMA 3. Let ga, B) be an effectively inseparable pair of sets; let (v, 0)
be a disjoint pair of r.e. sets. Suppose’that f is a recursive fumetion such that

teaefl@)ey,
Tefef(2)ed;

then (y,8) is an effectively inseparable pair of sets.

Lennia 4. Let (a, B) be an effectively inseparable pair of sets. Let 8

be a recursive set such that 62 a, 6 2 B Then (a, B) is effectively inseparable
relative 1o 8.

Proof. Obvious.

On the basis of lemmas 3 and 4 we see that it & is an applied predicate
caleulug which is effectively inseparable then

(14) (T*, B*) is ed. relative to W4 .

For let ¢ }?e any formula in W. Let 2 be alphabetically the first variable
not oceurring in €. Let ¢’ he (z)C. Define f by

D if Dew
D)= ’
1(D) {0 otherwise .
Since (7, R) is e.i., we see by lemma 3 (using the f above) that (T4, E4)

is ei. Now applying lemma 4 we see that (14) holds.
We are now ready to state two of our main results.
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TEEOREM 1. If B, is consistent and G, is effectively inseparable then
there 48 a 1-1 recursive function f* mapping W, into W,, W, onto W, such
that for all B, C in W,

a. f(B—0) = fXB)~f*(C),

b. f*(T1B) = T1f*(B),

¢. Btg, O if and only if f*(B) g, f¥(C)
Furthermore f* maps Wi into Wi .

Proof. We employ lemma 1. Let the 8i* and 82 of lemma 1 be W5
and W3'. Then the §, and §, of lemma 1 become W, and W,. By (14),
hypothesis ¢ of lemma 1 holds. Since a and b are automatically satisfied,
we obtain from the coneclusion of lemma 1, a 1-1 partial recursive function
mapping W, into W, amnd satisfying a, b, and ¢ of the conclusion of this
theorem. Since W, is recursive with infinite recursive complement, this
function may be extended to a recursive function satisfying the conclusion
of this theorem.

THEOREM 2. Let G; and T, be two effectively inseparable theories.
Then there is & 1-1 recursive function f* mapping W, onto W,, W, onto W,
such that for all B, C in W,

a. f*(B~C) = f*B)~>f*C),

b. f*(T1B) = T1f*(B),

¢. Bty O if and only if f*(B) g, f*(0).

Furthermore f* maps Wi onto Wi.

Proof. Similar to theorem 1 using lemma 2 in place of lemma 1.

It is easy to see that the function of relative effective inseparability
for (14) may be chosen to be primitive recursive both in W and in the
function of effective inseparability of (7', R). This note leads to the fol-
lowing generalizations of theorems 1 and 2.

Remark 1. (Primitive recursive mappings between theories.) A slight
modification of the proof of lemma 1 shows that the f* of theorem 1 can
be chosen to be primitive recursive in W,, W,, and in the funection g
of effective inseparability of (T;, R,). Similarly the function f* of theorem 2
can be chosen to be primitive recursive in Wy, W, and in both functions
of effective inseparability—the function for (7., R,) and the function
for (T,, R,). Thus in theorem 1, if W,, W, and the function of effective
inseparability for B, are primitive recursive, then f* is primitive recursive.
Similarly in theorem 2, if W,, W, and both functions of effective insepara-
bility are primitive recursive, the f* is primifive recursive.

‘We now apply these observations to some mathematically interesting
formal theories. Let (a,f) be Kleene’s e.d. pair of sets [3]. Then for
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a theory G in standard formalization posgessing a notation for the natural
numbers, the following holds (cf. [6], [7]).
Suppose that G possesses a binary predicate < satisfying the following

(1) for all n tgex<AVE <o,
(2) for all n bge < T = 0V...v& = 7.

Suppose further, that every primitive recursive function of one argument
is definable in B.
Then there is a formula & with one free variable such that

nea->tg®(n), nep—>tg1BHE).

The above result shows that under the hypothesis of the result
a disjoint pair (o*, f*) of r.e. supersets of Kleene’s e.i. pair (a, §) is re-
ducible to (T, E) by a primitive recursive function. Since Kleene’s pair
is effectively inseparable by a primitive recursive function, so is (a*, *).
It follows (by the proof of lemma 3) that (7', R) is effectively inseparable
by a primitive recursive function. Thus in theorem. 1 if B, satisties the
hypothesis of the above result—or merely contains a subtheory which
satisfies this hypothesis—and if W, and W, are primitive recursive,
then f* may be chosen to be primitive recursive. Similarly, in theorem 2,
if G, and B, both contain subtheories which satisty the hypothesis of
the above result and if W, and W, are primitive recursive, then the Fid
of theorem 2 may be chosen to be primitive recursive. Now many of
the interesting formal theories in standard formalization which satisty
the above result have W as a primitive recursive set—for example, the
theories R, Q, and P of Undecidable Theories [10], Z-F set theory, Godel-
Bernays set theory, etc. Between any two of these theories the mapping f*
of theorem 2 may be chosen to be primitive recursive.

Remark 2. It may be supposed that theorem 2 can be extended
0 that if B; and G, are two effectively inseparable theories each. possessing
a common effectively inseparable subtheory B (which is a proper sub-
theory of both) then the f* of theorem 2 (conclusion 1) can be chosen
to map T onto T and R onto R. That this is not necessarily the casge may
be seen by the following example.

Let 8 be Peano Arithmetic; let B, be a proper finite extension of G;
let B, be an extension of B which is not a finite extension. Of course,
for B, we have the existence of a fixed A, such that for all O,

F5, 01 if and only it hgd,D0,.

Sinee B, does not have this property the result follows.

It ought to be remarked that one can replace vacuous quantification
by non-vacous quantification in the above proofs of lemmas 1 and 2.

icm°®
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3. Propositional calculi. It is natural to inquire whether theo-
rems 1 and 2 -hold for theories formulated in the propositional calculus
(with modus ponens as the sole rule of inference). That theorem 2 does
not hold follows from an example given by Pour-El [6]. We restate this
example here for the sake of completeness.

ExAMPLE. There exist two e.i. theories T, and G, formulated as
applied propositional caleuli such that no 1-1 recursive function f mapping
W, onto W,, T, onto T, satisfies the following

fE—-F)=f(B)>f(F), [(1EB)="f(B).

Proof. B, and B, are assumed to be applied propositional calenli
based on negation and implication with modus ponens as the sole rule of
inference. Suppose further that B, and G, possess a unary predicate B,
the successor function § and 0. Let (a, f) be an effectively inseparable
pair of sets. Suppose that 0éav g and Léav f. :

AXIOMS FOR Gs.

1. Axiom schemata for the propositional calculus;

2. B(m) for n €a;

3. T1B(n) for nep.

AXIOMS FOR T,.

. Axiom schemata for the propositional caleulus;
. B(n) for nea;

. T1B(n) for nef;

. B(0)—>B(1).

It is easy to see that B, and G, are e.i. theories. Note that any 1-1
recursive funetion mapping W, onto W,, preserving negation and implica-
tion must map atomic sentences onto atomic sentences. Thus B(0) is
mapped onto B(n,) and B(1) is mapped onto B(n;) where 1, # n,. Hence
the theorem B(0)—B (1) must be mapped onto the non-theorem B(ng) >
—B(m,). )

Note that we have proved something stronger. There is no 1-1 function
mapping W, onto W,, T, onto 7T, such that both implication and negation
are preserved. :

In contrast most of theorem 1 does hold for propositional calculi.
We state this result as theorem 3. Note that the g of theorem 3 does not
map Wf into W;‘.

TarorEM 3. Let G, be consistent and G, be effectively inseparable.
Then there is a 1-1 recursive function g mapping Wy into W, such that for
all B and C in W,

Fundamenta Mathematicae, T. LXI 11
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a. g(B~C) = g(B)—¢(C),

b. g(T1B) = "14(B),

¢. Blg O if and only if g(B) kg, 9(0).

The proof is via a slight modification of lemma 1:

Suppose that Wi and Wi are infinite recursive sets. Suppose further
that B, is an e.i. theory. Then there exists a 1-1 partial recursive function f
mapping Wi into W, such that the induced mapping f* (which preserves
implication and negation) is a 1-1 partial recursive function preserving
deducibility. The proof of this lemma is analogous to the proof of lemma 1.
In particular the inductive assumption is similar. Assume we have
a correspondence between ¥y, ..., Fy and Gy, ..., G4, —the F's are members
of Wf, the (s are members of W,. We seek to extend this correspondence
to a correspondence between Iy, ..., Fn,Fpyr and Giy, ...y Gy, Gy, e
Define K;, Kj, Hy in a manner analogous to lemma 1. (In particular
H; = g, to(Fpiy, Kj, Kj) where g, is the function of effective inseparability

of (Ty, R,) relative to W,.) Let G5 be the first member of W5' which does-

not oceur in Gy, ..., Gy,. Define G, by
K- Hy (GEVT6) V. V. K HalGF v 1165 .

This gives a 1-1 partial recursive function f mapping W into W, which
preserves deducibility. The induced mapping f* also preserves deducibility.
(The inclusion of (G v 71Gy) in G4, , assures that the induced mapping
is 1-1!) Thus theorem 3 holds. (3)

It follows immediately that if G, and B, are both effectively insepar-
able there are two 1-1 recursive functions g, and g, such that for all B,
and 0; in W, and for all B, and C, in W,

(a) §:(B,~0y) = g:(By) »:(0)),

9:(T1 By} = T1g:(By),
B, tg, 0, i and only if g(B)) ks, 9:(01);

(b) 9By~ 0o) = ga(Bs) >g2( Ca),

9o(T1B2) = T1g2(By),
B, tg, 0, if and only if g,(B,) ks, 02(Ca).

An interesting contrast to the example given at the beginning of
this section is provided by theorem 4 below. For, given two e.i. theories G,
and %G, it is possible to find a 1-1 recursive function g mapping W, onto W,
Dpreserving negation, deducibility (and hence theoremhood and refutability)
and which up to deductive equivalence preserves implication.

(*) Recall that AVB is an abbreviation for 14 —B; A+B is an abbreviation for
7("]:1\( jB). Theorem 3 would hold with any of the usual choices of conmectives
as primitives.

Deduction-preserving *Recursive Isomorphisms” 155

THEOREM 4. Let G, and B, be two e.i. theories. There is a 1-1 negation-
preserving recursive function g mapping W, onto W, such that for all for-
mulas By and 0y in G,

(1) By b, Oy if and only if g(By) b, 9(Ch),

(2) tg, g(B.—Cy) =. g(B)>g(C)
and for all formulas By and C, in G,,

(8) Fg, g7 HBy—~C) =. g~UB,) >g7(Ch).

Proof. The proof uses an obvious modification of lemma 2. Replace
S8 by Wi; 88 by Wi (see end of introduction for notation). Use the fact
that (77, Ri) and (75, Ry) are effectively inseparable relative to Wy
and Wz . The formula corresponding to g, is (K3-Hy- V.o V. - Kok
-Hy) in case 1 (when n is even). An analogous change is made in case 2
(when n is odd). We thus obtain a 1-1 recursive function h mapping Wi
onto W5 such that (1) of theorem 4 holds. Extend this to a d-1 recursive
function g mapping W, onto W, preserving negation so that (1) theorem 4
holds. It is an immediate consequence of the construction that (2) and (3)
hold.

4. A classification of effectively inseparable theories.
In section 2 we showed that, for many pairs of mathematically interesting
formal theories G, and G,, theorem 2 holds with a primitive recursive f*.
It is natural to ask whether this strengthening can be obtained for all e.i.
pairs of theories. We will show that the answer is negative, even if we
confine ourselves to theories in standard formalization. Our discussion
will give rise to a hierarchy of effectively inseparable theories in standard
formalization (see theorem 7 below).

The main result of this section, theorem 6, is based on theorem 5,
concerning effectively inseparable sets, which may be of some independent
interest. (%)

THEOREM 5. Qiven an T.e. class F of gemeral recursive fumctions of
a single argument we can find an effectively inseparable pair of seis (v, 8)
such that no recursive function which witnesses the effective inseparability
of (y,0) is in &. (%)

(%) A special case of this result obtained by letting & be the set of all primitive
recursive functions was obtained by McLaughin. This result also generalizes resultg
of Rogers [8] and Fischer (Theory of Provable Recwrsive Functions, MIT Doctoral Disser-
tation 1962). Rogers showed that if 8 is a consistent extension of elementary number
theory then there is a creative set which possesses no productive function which is
a p-function of 8. Letting & be the r.e. class of all p-functions of 8, we can, by a slight
modification of theorem 5, obtain Rogers’ result. Indeed, it seems that many of the
results in Fischer's thesis can be generalized by replacing the class of p-functions by
an arbitrary r.e. class of general recursive functions. For, as in theorem 5, the recursive
enu hility of & together with a suitable diagonalization argument combine to give
the result in more general form.

11*
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Proof. We assume that & has the property that every recursive
function of one argument which is primitive recursive in & is a member
of F. (If & does not have this property then we enlarge ¥ to obtain an r.e.
class F* which is closed with respect to this property. The proof then
proceeds with F*in place of &.) Since F is an r.e. class of recursive functions
of one argument, there is a recursive function f of two arguments such
that fo, fiy ..oy fay ... is an enumeration of the members of F. Define the
function g by

gly) = D (fn, 0)+1) ;
b
g is a strictly increasing recursive function. Hence gg—the range of g—is
recursive.

Let (a, §) be Kleene’s effectively inseparable pair of sets. Let y = g(a);
let 6= g(B) v gg. Trivially, y and & are r.e. sets. Furthermore, (y,d)
is an e.i. pair of sets. For let { be a primitive recursive function such that

oy = {2] §(x) € wi}.

Let b be a primitive recursive function witnessing the effective insepara-
bility of (a, 8). Then the function k* defined by

1¥(3) = ghj((tE (3)), 1(L ()

is a function of effective inseparability for (y, 8). Note that the function &*
is primitive recursive in the universal function f of .

It is now easy to see that there does not exist a function s ¢ ¥ which
witnesses the effective inseparability of (y, 6). For suppose the contrary.
We will show that this assumption leads to the existence of a strictly
increasing function w ¢ & such that gw Cy < 8 C og. We will thus obtain
a contradiction.

Let ¢, and ¢, be indices for y and & respectively. Let » be a primitive
recursive function such that

Wty = @i {8j (6, 9)}
Now the following sequence of elements of y w o
8] (60, €1), 8] (€0; v (e0)) ; ---, 8] (€0, ™3{ey)) , ...

containg no repetitions. This is an immediate consequence of the fach
that for each n >0

Wey M Wyn(gy) = 4] 3
Wynler) = Wey v {8 (?u, e)}v v {3]‘("07 ”""1(91))} .

(These last two equalities are proved by a straightforward induction on n.
Of course, v» is defined by: 0(p) = p, ") = oo(p)).)
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Now define w by

w(0) = sj (€, &)
w(n—41) = sj [o, vek(k<wim+2-s(en ok () >wutn) (q,)]

Clearly w is a strictly increasing function such that ow C mg_ 0g-
Furthermore w is primitive recursive in s, and hence w ¢ . But this is
a contradiction, since—by construction of g—if pg is enumerated without
repetition, in order of magnitude, then this enumeration grows faster
than of for any fe&. Thus, since gw C og, the same is true for ow.

Theorem 6 below is an analogue of theorem 5 for theories G in standard
formalization. Note that the proof is not as straightforward as may be
expected. One reason is that W—(T' v R) has quite different properties
with respect to recursiveness from the y 6 of the preceding theorem.
More specifically, W — (T « R) contains a subset which can be generated
in order of magnitude by a primitive recursive function. (For let-p ¢ W—
—(I' v R). Then ¢, ¢-@, p-¢-@, ... is such a sequence.) In contrast, the
proof of theorem 5 hinges on the fact that if a subset of y U é is enumerated
in order of magnitude, it cannot be 5o enumerated by a member of F.
The analogy which we use is that W—(T v R) does not contain an in-
finite r.e. sequence of sentences g,, @y, ..., @s, ... such that

(1) @i41 is undecidable in B v {p,, ..., ¢;} for each i;
(2) the function g defined by g(n) = ¢, is in F.

Even with this meodification there are complications because W —
—(T v R) contains not only sentences of the forms @, and —1®, but
also sentences not of these forms—see next paragraph for notation. A brief
outline of the proof appears below.

Let G* be the decidable theory of one equivalence relation §. Let @,
be a statement asserting that there is an equivalence class of § consisting
of n members. Let ¥, be a statement asserting that there is at most one
equivalence class having n members. With this nofation we can state and
prove theorem 6.

THEOREM 6. Let F be an r.e. class of general recursive fumctions of
one argument. Then there exists an effectively inseparable theory G in standard
formalization such that mo recursive funotion which witnesses the effective
inseparability of G is in F.

Outline of the proof. We assume that a function of ei. of ©
constructed below is in & First we obtain an infinite r.e. sequence
Xoy «osy Xny ... of undecidable sentences such that for each 4, X;, is un-
decidable in B v {X,, ..., X;}. This sequence is obtained primitive re-
cursively from F. From this sequence we obtain in two stages another r.e.
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sequence Xp', .., Xy, .. having the property that each X7 containg
a &p, which is undecidable in  where p, is an increasing (not necessarily
recursive) function of 4. The sequence Xy, ..., X/, ... is obtained primitive
recursgively from &. Thus
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Doy D1y oo

i8 a strictly increasing sequence of elements of y w & bounded by a member
of &, contradicting the construetion of y u é.

Proof of Theorem 6. As in the proof of theorem 5 we can assume
without loss of generality that every recursive function of one argument,
primitive recursive in ¥ is a member of F. (If F does not satisty these
conditions enlarge & to obtain an r.e. class & such that & C &' and §'
does satisfy these conditions. Work with % instead of F.) We will also
assume that in the standard enumeration wy, w,, wy, ..., W, ....of r.6. sets
we have w,= 0.

Let (y, &) be the effectively mseparable pair of sets obtained from F
by theorem 5. We may assume without loss of generality that 0¢y U 4.
For the theory T we take the extension of the decidable theory of one
equivalence relation obtained by adding the following non-logical axioms

¥y for all m,
D, for ey,
1D, for ned.

Note that every sentences X of G is equivalent to a truth function
of a finite number of the @,’s and this truth function can be calculated
from X. (%)

Clearly G is effectively inseparable. Hence there is a recursive func-
tion g+ such that if

W2wxm2d T, W2lormy2R, oxmnopm=0

then
gr(i) e W—

We show that g+ ¢ #. Assume g+ ¢ F. Let o be a Godel number of T; leti b
be a Godel number of R. Let o= j(a, b). Define g* by

g*(0) = g+(e) ,

Note that since F is closed under primitive recursive operations, g* ¢ F.
We will show that under that assumption that g* € ¥, we obtain a con-

tradiction. Thus g+ ¢ §. From this, the conclusion of the theorem follows
easily.

(g v o) -

g n+1) = g+(n--1).

(%) See Shoenfield [9] and Janiczak [2] for the décisi'on procedure.
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The function g* has the property that if

Woogw2d T, W2 wrn2E, oxpnnowy=29,
then
g*(i) € W—(me v (A)L(()) .

Define primitive recursive functions ¢, k,, h, and & by

(0) wgyy={T19| pewin W}

(1) wnysp = set of theorems of G obtained by adding wgg v {g%(4)}
as axioms;

(2) oy = set of refutable sentences of G obtained by adding wir) v
w {g*(4)} as axioms;

(3) h(i) = j(ha(d) s ha(d)-

Note that .

(4) wpny = set of theorems obtained by adding wzmss v {g*h™(i)}
ag axioms.

(B) wnas = set of refutable sentences obtained by adding weganm v
v {g*h™(1)} as axioms.

We see that

(6) KR (i) = h B"(3) for all m;

(7) Lh™(3) = hyh™(3) for all =,

i.e.
tLE"(3) = thyh™(5)
for

(8) h(h"(5)) = 7k B"(5), By B™(9))

Thus

(9) opanp=set of theorems obtained by adding {g*(i)}v,..,v
w {g*h"(1)} U wgg as axioms.

(10) wpam; = set of refutable sentences obtained by adding {g*(¢)} v~
U e U {gFRM(E)} U ouysy a5 axioms.

(9) and (10) are obtained by a simple induetion on #. If n =0, the
result holds trivially. Assuming that (9) holds for p, we show that (9)
holds for p+1. For
seb of theorems obtained by a.ddmg omFy v (g}

by (3).

whlh’”’l
a8 axioms.
s = st of theorems obtained by adding wwa?n v )
as axioms.
wpaP*y = seb of theorems obtained by adding wxe v {g*(i)} v -
o {g*BP(4)} v {g*h¥*" (i)} as axioms.
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Analogously for (10).

Now 0 is a Godel number of the empty set. Since K (0) = L(0) = 0,
oxe= o= 3. Hence aye= 9. Thus (9) and (10) become

Wt = Seb of theorems obtained by adding {g*(0)} v ... v {g*A"(0)}
as axioms.

ongto = set of refutable sentences obtained by adding {g*(0)} v
v ..o {g*R7(0)} as axioms.

An induction on n shows that, for all =,

Onite) N Ongho) = D .
Thus
FHH0) = g% (R B(0), B R(0)) € W —(mnie © ©n(o) -

Hence for all n, ¢*h"1(0) is undecidable in the extension of © obtained
by adding {g*(0)} w ... v {g*2"(0)} as axioms. By applying the deecision
procedure to g*k"(0), we obtain a sentence X, equivalent in E to the
sentence with Godel number ¢g*A™(0) such that X, is a truth-functional
combination of @;’s. Note that the sequence Xy, X;, ..., Xy, ... is obtained
primitive recursively from ¢* (4). We obtain a new r.e. sequence X, X ...
such that each X contains a @, not in any Xj for & < n. Furthermore
this @, is undecidable in 8. Let Xj= X,. Assume that X, ..., X3, have
been defined. We show how to define X;.,. Suppose that

Xn=Xp Xy Xpyr  for some p and k.
Let ¢ be the number of distinet @y’s appearing in any of the Xj for

i=0,..,n
Let

a

Xotr=Xpiprr oo Xpininse  where b= Z (%) Pl

k=1
(The justification of this appears in the next paragraph.)
Note that if X’ is a Boolean combination of @;,, ..., @, there are Pl
possible truth assignments to @y, ..., @y, and X'. Thus there are at most

b= 2_,1 (k) 2* Qistinet truth assignmets to any X' containing only @ps

appearing in X, ..., X}, Since for all 8, Xpipteta 18 undecidable in B v
’ '’
VXG5 Xy Xpirtay ooy Xppita)y 008 0f Xpippy ooy Xpopna DAUSE CON-

tain a @, not in Xj, ..., X; which is undecidable in 6. Thus X, con-

tains a @, not in Xj, ..., X; which is undecidable in G.

f') If the (‘lecisicn procedure were not primitive recursive, we would add the recursive
funcm?n d which carries out the decision procedure to & and close under primitive
recurgion and composition to obtain F*. We would then work with * instead for &.
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We now construet anr.e. sequence X', X;', X5', ... such that each X}’
contains a @, satisfying the following: )

Dy, is undecidable in B, P,, does not oceur in Xy for k¥ < n and pn
is @ strietly increasing function of n—which is not necessarily recursive.

Let X{' = X§. Assume we have generated Xy',..., X; . We show
how to generate X;'i,. Suppose that

Xy =X, ... X,y for some p and k.
Define X7,y by
lem’-i-l = X;H—k-}-l N -"'X;H. Eﬂr—xi”-—l+k+2 3
i=0

where X 1is the Godel number of X} . Since each Xy, ; contaings a Dy,
undecidable in B which does not oceur in X, z+; for j <4, there must
be a Dy,,, occurring in X', which satisfies the required condition.

We see by construction that the sequence Xj', Xj', ... is obtained
primitive recursively from g*. Now let &,,, Dy, ... be a sequenee (not
necessarily recursively enumerable) such that

pi>p; H i>j,
&, occurs in X; and is undecidable in ©.

Thus, by construction, po, Py, .y Pn,-- is an increasing sequence of
elements of y v é such that p, < X, But this is impossible since if
any subset of y U 6 is enumerated in order of magnitude (even mon-
effectively), this enumeration grows faster than the range of any member
of ¥. Thus ¢g*¢ F and the theorem is proved.

Remark 3. A function of effective inseparability for (T, E) may
be chosen to be primitive recursive in the universal function f of & (see
theorem 5 for notation).

Let § be Peano Arithmetic. As an immediate corollary to theorem 6
we obtain

THEOREM 7. Qiven an T.e. class F of general recursive functions, there
exists a theory G in standard formalization such that no 1-1 recursive Sfunc-
tion w mapping W onto Wg, T onto Tg, R onto Rg is in F.

Proof. As in the proof of theorem 6, we can assume without loss
of generality that any function of one argument which is primitive re-
eursive in & is a member of F. Use the theory G of theorem 6. Note that
if 4 were in F, then G would be effectively inseparable by a function
primitive recursive in ¥ and hence in ¥ (see the proof of theorem 6).

Theorem 7 gives rise to a classification of e.i. theories in standard
formalization. As a basis for this classification we give the following
reducibility definition for theories. We assume that & contains all primitive
recursive functions and is closed under composition and primitive recursion.
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DEFINITION B. G, is F-reducible to B, (G, <g By) if there is a 1-1
recursive function f e ¥ mapping W, into W,, T, into T,, R, into.R, pre-
serving deducibility, negation and implication.

The redueibility relation of definition 5 gives rise in a natural manner
to an equivalence relation: B, =g G, if and only if B, g T, and G, <5 G,.

Now let & be the set of primitive recursive functons ,. We discuss
briefly the equivalence classes of effectively inseparable theories under =g,.
First recall that, by remark 1, section 2 for any two theories. ®, and G,
satisfying the hypothesis of the theorem stated in this remark, the f*
of theorem 2 may be chosen to be primitive recursive. Thus, for example,
all consistent extensions of the theory R of Undecidable Theories [10]
belong to the same equivalence clags modulo =g, . Furthermore from
lemma 1 we know: if G, is an e.i. theory possessing a primitive recursive
witness to its effective inseparability (e.g. any extension of R) and if G,
is any other e.i. theory then B, < 9,01~ Now let B; be the theory obtained
by applying theorem 6 to ¥,. Then [6{] K7, [G] Let g be a function
witnessing the effective inseparability of 6;. Let ¥, be the r.e. clags of
functions of one argument obtained from F, v {g} by finite application
of composition and primitive recursion. Apply theorem 6 to Fj to
obtain B;'. Now [B}] <7, [B,] and [B)] # 7, [Gi]. Continuing in this way
we obtain N, distinet equivalence classes of effectively inseparable theories
in standard formalization with [6,] a maximum element. The detailed
structure of the algebra of these equivalence classes remains to be in-
vestigated. (%)

Added in proof, Sept. 1967: These results have appeared in summary form
in Bull. Amer. Math. Soe. 73 (1967), pp. 145-148.
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