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line M ¢ M which passes through p’ and intersects the interior of R'.
We find an interior point p of B’ such that p ¢ M ~ X. It is not difficuls
to check that g(o,p)= 6 and g(0, q)= 0-+o(P, @)

Remark. In view of 3.1, a metric space satisfying 4.3 cannot be
complete. However, we do not know whether there exists a non-degenerate
zero-dimensional separable metric space which is star-like at each point,
and which is topologically complete, i.e. homeomorphic with a complete
metric space. Such a space would exist if one could construct a &; on
the plane such that all conditions from 4.1 are fulfilled.
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Connectivity retracts
of finitely coherent Peano continua

by

J. L. Cornette and J. E. Girolo (Ames, Iowa)

The principle result of this paper is

THEOREM 1. Every connectivity retract of a k-coherent Peano con-
tinuum 4s an m-coherent Peano continuum, where m < k.

An auxiliary result essential to the proof of Theorem 1 is

Levma 1. If X is a k-coherent Peano continwum and H C X is totally
disconmected, then each quasicomponent of X —H 4s connected.

In [8], it is shown that every connectivity retract of a continuum
is a continuum, and there is described a Peano continuum (locally con-
nected, metric) which has a connectivity retract that is not a Peano
continuum. From Theorem 1, such a continuum must have infinite
coherence. In [1], the special case of Theorem 1 for unicoherent eontinua
(k= 0) was established. Lemma 1 is the key to the generalization of
that argument and should be useful in other results on connectivity
functions. One may readily construct examples which show that nejther
the condition that X be locally connected nor the condition that X be
finitely coherent nor the condition that H be totally disconnected may
be omitted from the hypothesis of Lemma 1.

In view of Theorem 1 and the fact that for finite polyhedra, the
fixed point property is preserved by connectivity retraction (3], Th. 3.13),
we raise the

QuesTION. Is there a J-coherent Peano continuum that has a con-
nectivity retract that i8 mot a continuous retract? E
1. Preliminaries. Let X and Y denote topological spaces and

fi XY a transformation. Then f is & connectivity function if for each

connected O C X, {(v,f(2)): ¢ C} is connected in the product space
XxY. Tf YCX and f is a connectivity function and for each oe Y,
f(@)= @, then Y is a conmectivity retract of X.
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Srarrines’ Levma. Suppose that X is a compact metric semi-locally-
conmected space and f: X Y is a comneclivity funotion where Y is a T,
space. Then if C is & closed subset of ¥ and G’ denotes the collection of com-
ponents of (C), the set G consisting of G together with all of the degenerate
subsets of X—F"(C) is a monotone uppersemicontinuous decomposition of X
and @ as a subset of the decomposition space s totally disconnecied.

Discussion of eonnectivity functions and Stallings’ Lemma may he
found in [1], [2], [3], [5] and [6]. If M is a subset of a topological space,
bd(M) denotes the boundary of M, M denotes the closure of M, and
the quasicomponent of M containing P ¢« M is the set of all # in M such
that M is not the sum of two mutually separated sets, one containing
and the other containing P.

Suppose that X is a continuum. If 0 C X, let 5(0) be the number
that is one less than the number of components in ¢ (possibly infinite,
in which case b(C)= co). The coherence of X is the supremum of
{d(U A V): U and V are continua and U v V is X}. Also, X is k- coherent
if X has finite coherence k.

LeMMA A. If a subset H of a k-coherent Peano continuum X separates
points a and b of X in X, there is a closed subset C of H with not more than &

components which separates a from b in X. In particulor, if H 48 totally
disconnected, C is finite.

LemmA B. Suppose that X is a Peano continuwm. For each mnon-
negative integer n, let S, denote the statement ‘“there is a subset F of X with
n+1 points and there are disjoint closed subsets A and B of X such that
neither A mor B separates two points of F in X, but A o B separates each
two points of B in X.” Then if y is & non-negative integer, X has coherence ¥
if and only if 8, is true and 8,., is false.

Levma C. If E is a subcontinwum of a k-coherent Peano contintum X
and {0y} are the components of X — B, then Z3b(bd (Ch) < k.

It will be observed that Lemmas A and- B are analogs of certain
“Phragmeén-Brouwer” properties of unicoherent econtinua. Temma A
is contained in [7], p. 390, Th. 1. Tt seems that Lemma B has not appeared
in this form. However, each implication either has a rather standard
argument or follows, with suitable interpretation, from [7], p. 402,
Lemma 7.4. Lemma C is implied by [7]), p. 396, Th. 5.

2. Proot of Lemma 1. Suppose that X is a k-coherent Peano
continuum, H is a totally disconnected. subset of X, and O is a quasi-
component of X —H which iz the sum of two mutually separated non-
empty sets A and B. It will be shown that X — H is the sum of two mutually

tsepamated. sets D A and $O B and thus violate the hypothesis that €
15 & quasicomponent of X —H.
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For any quasicomponent @ of a subset T of a compact metrie space 8,
there is a continuum ¢’ such that @ CQ'CQ u (§—T'). Hence, there is
a continuum M guch that 0C M C ¢ v H. In this instance, since H is
totally disconnected, C is dense in M and M is simply C. Let D denote
the set of all components of X —M. From Lemma C, all but % of the
members of D have connected boundaries and the boundary of no member
of D has more than % components. Using the fact that H is totally discon-
nected, it will be shown that the components of the boundaries of the
members of D are degenerate.

Suppose this is not 8o and 4 is a member of D whose boundary has
a nondegenerate component. Then, by considering n = (k1) (k- 2) ares
from g single point 2 of 4 to distinct accessible boundary points of A,
one can obtain a continuum ZC A containing 2, and » disjoint ares
{(ws, yi)Yi-1 such that for i=1,..,n,y; is in Z but not in H, z; is in
bd(4) and (@i, yi) —{®1, ys} C4—Z. From Lemma A, for i=1, ..., n,
there is a finite F; C H such that ¥; separates y; from a point of ¢ in X
and must then geparate y; from all of ¢ in X. Let F= QF; and

iz
Y = {y,, ..., Yu}. Then F separates ¥ from C in X and there is GCF
such that @ separates ¥ from ¢ in X and no proper subset of @ separates Y
from O in X. Observe that for ¢ = 1, ..., n, @ must intersect the arc(z;, y1)
and the component of X — @ containing y¢ must have at least two boundary
points, one in (%, ¥:) and another in Z v (x;, y;) for some j # . Let B
denote the component of X—@ that contains €. Then from Lemma Q
and because @ = bd(E) is finite, no more than % components of X —F
bave nondegenerate boundaries. Therefore, some component of X—F
must contain at least %2 points of Y, but such a component would
have at least k-2 boundary points which would contradiet Lemma O.

It follows now that every member of D has a finite boundary and
not more than % members of D have a nondegenerate boundary. Let
D' = {d,, ..., 4} denote those elements of D whose boundaries inte.srsect
both 4 and B. It will next be shown that for each A¢e.D’, A;—H is the
sum of two mutually separated set U:D A ~ 44 and ViD B n 4.

. Buppose 4 ¢ D’ and @ € bd (4s) ~ {4 v B) and Q is the qgajmcomponent
of A;—H containing 2. Then just as M = T is connected, @ i3 connected,
and if @ is nondegenerate, @ contains a point y of Ai—H. But x and y
do not belong to the same quasicomponent of X ‘Hi anfi hence do not
belong to the same quasicomponent of A.—H, which involves a con-
tradiction. We conclude that @ is {}. Therefore, if @ € 4 ~ 4s and _b 'eB n
~ Ay, d;— H is the sum of two mutually separated sets, one eontaamng‘a,
the other containing . Since there is only a finite collection of such pan:;
{a, b}, by a rather standard process one can obtain two mutually separate
sets U;D A ~ Ay and Vi B ~ 4y such that Usw Vi=4i—H.
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Since X is metric, there exist disjoint open sets o’ and g’ in X such
that A C o' and BC g°. Then let

D,= {4 e D—D': bd(4) intersects M ~ «’ but not B},

D,= (D—D")-D,,
e=AvlUv..vU,v(JD—H),
f=BuV,v.uV,v(JD,~—H).

It is immediate that a v p is X—H and that o and g are disjoint and
contain A and B, respectively. It will be shown that o does not contain
a limit point of §.

Suppose that a point P of « is a limit point of 8. If P is in a member 4’
of D, 4" is an open set in A containing P but no point of g, which is a con-
tradiction. If for some ¢ =1, ..., m, Pisin U;— A4, 4,18 an open get in X
containing P and no point of 8—V;. It would follow that P would be
a limi$ point of V; which would contradict the fact that U; and V, are
mutually separated. Now suppose P ¢ A. There is a connected open set 0
in X such that P <0 Ca', O does not intersect Vi u ... w Vi, and O does
not intersect any of the finite number of elements of D that have non-
degenerate boundaries that intersect B but not A. Then 0 contains a point R
of § and R must belong to a member 4’ of D,. There is an arc T from R
to P lying in O and the first point of that arc that belongs to M is a bound-
ary point of 4" and belong to M ~ a'. Since 4’ belongs to D,, A" does
not belong to D, or to D' and consequently must have a boundary point
in B.and no boundary point in 4, and thus the last condition on O is
violated. This exhausts the possibilities and we have that o contains no
Limit point of B. The proof that f contains no limit point of « iy similar.
Finally, o and g form the separation of X —H mentioned in the first
paragraph of this argument and the proof is complete.

3. Proot of Theorem 1. Suppose that X is a k-coherent Peano
continuum, Y is a subspace of X and f: XY is a connectivity function
such that for each ¢ in ¥, f(x) = @. Then ¥ is & continuum ([3], Th. 3.5).
It will be shown first that ¥ is locally connected and then that ¥ has
eoherence m < k.

¥ is locally conmected. Suppose that P is a point of ¥ at which ¥
is not locally connected. Then there are open sets R'and D containing P
such that D is a subset of R and there is a sequence M,, M,, ... of com-
ponents of ¥ ~ D which converges to g non-degenerate continuum M

containing P but no point of {Ul M, and such that no component of ¥ ~ B
intersects M and one of My, My, ... ([4], p. 90, Th. 11). Let @ denote

@e collection of all components of S (Y —R) and let & denote @ together
with the degenerate subsets of f(R Y). From Stallings’ Lemma, @ is
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2 monotone uppersemicontinnous. decomposition of X and G is totally
disconnected in @. Since the elements of & are connected, the associated
map T: X -G is monotone and ([8], p. 153, Th. 8.6) @ has finite coherence
not greater than k. Since My, M,, ... converges to M in X, T(M,), T(M,), ...
converges to T(M) in G. Also, since each of M, M,, M,, ... is a subset
of ¥ ~ R and f is the identity on ¥, no one of M, M,, M,, ... intersects
Y ~—R). Consequently, T(M) is non-degenerate and each of T(H),
T(M,), T(M,), ... is a subset of G—@'.

Let @ be the quasicomponent of G¢—@' that contains T'(M). There
exist k-2 disjoint connected open subsets Uy, ..., Uyys of @ that intersect
T(M) and there is an integer ¢ such that T'(M;) intersects each of
Uyy ooy Ugse. IE @' scparates a point o of T'(M) from a point y of T (M)
in @, from Lemma A, there would be a set FC @ with not more than
k-1 points that separates @ from y in G. But since T(M) and T(M;)
do not intersect @', I would have to intersect each of U, ..., Ugys which
is impossible. It follows then that @ must contain 7T'(My). .

From Lemma 1, @ must be connected. Since I is monotone, T (@)
is connected: therefore f(T7%(Q)) is connected. Since @ C G—&, f(T7(Q))
CY ~ R, and since T'(M) « T(M;) C @ and f is the identity 0].1 Y, MouM
Cf(T74(Q)) and the component of ¥ ~ R containing M must intersect M’}’
This contradicts an original stipulation on M and M,, M,, ..., and it
follows that Y is locally connected.

Y has coherence < k. Suppose that ¥ has coherence greater than k.
Then from Lemma B, there is a set F of k-2 distinct poi:nts of ¥ and
there are disjoint closed subsets 4 and B of ¥ such that neither 4 nor B
separates two poiuts of F in ¥, but A u B separates ea,c? two points
of Fin Y. Let G’ denote the collection of components of f~ (A_;; B) and
let @ be @' together with all of the degenerate subsets‘ of X —f (A v B).
As in the previous part, @ is a monotone uppersemicontinuous decom-
position of X, G is totally disconnected, and the coherence o'f the de-
composition space G is not greater than k. Also, T: X -G wil denot;
the decomposition map. Since f preserves connected sets and A_ 1amd
are mutually separated, each element of G is a QO{n.ponent of f(4) or
of F7(B), so that T'(f~(4)) and T(f7'(B)) are disjoint. .

Since A [respectively B] does not separate two pomts— of ¥ in ¥,
there is & connected subset a [f] of ¥ —4 [Y——B]jham contains F. SII;BJ'
is the identity on ¥, a [f] does not intersect f(4) [/ (B)] tam};er (2
[T(B)]is & connected subset of & that contains T(F) _ag:d does no 5[11]?]'—1?; §
(/) [7(;7(B)). Oomsequently, neicher 2(4) nor
separates two points of T(F) in G. o

Suppose now that T'(f*(4)) v T(f(B)), which is & o ?elg’i?;’:st;ﬁ
two points of T(F) in G. From Lemma B, and because I 18 p F’ e
is a finite subset H of G which separates each two points of T(F) in 6.
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Then if 4’ is H ~ T(f*(4)) and B’ is H ~ T(f(B)), A’ and. B’ are disjoint
closed subsets of &, neither A’ nor B’ separates two points of T'(F) (which
has k42 points) in &, and A’ v B’ separates each two points of T(F)
in @. This contradicts Lemma B, since the coherence of @ is << %. Qon-
sequently, there are two points of 7'(F) that are not separated in @ by G-
and therefore belong to the same quasicomponent @ of G —@'.

From Lemma 1, @ is connected. Since T is monotone, 77Q) is con-
nected. Then f (T“I(Q)) is a connected subset of ¥ — (4 « B) that containg
two points of F and this involves a contradiction. It follows that the
coherence of Y is less than or equal to k.
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On a method of construction of abstract algebras
by

J. Plonka (Wroctaw)

1. In this note we consider abstract algebras with finitary operations
without nullary fundamental operations (*) and of a fixed type. First
we recall the definition of a direct system of algebras (see [3], chapter 3):

(@) I is a given poset (partially ordered set) whose ordering relation
is denoted by <.

(ii) For each iel an dgebra W= (Ag (FPer> s given, all
algebras Uy being of the same type.

A

(iii) For each pair <, j of elements of I with i<j a homomo.rph'ism
pi: WUy ds given. The resulting set of homomorphisms must satisfy the
following conditions:

(@) 1<k implies g o oy = P, ond
(b) @i is the identity map for iel.

The system (I, {Widier, Pudici; tsexy 18 called a direct system of
algebras. .

We shall consider only direct systems # with the lLu.b.-property,
i.e. systems which satisfy additionally the condition:

(iv) The ordering relation of I induces a partial order with the least
upper bound property (*).

For every such direct system s we define an algebra A = 8(+) which
we shall call the sum of the direct system . )
We may clearly assume that the carriers of the a%gebgs Ugare .mutua_.]l}
disjoint, as otherwise we could obtain this by taking isomorphie copies.

(*) This is not a serious restriction. In fa;ct, if %fundumenta;l operation Itf;': :; J;huil;.g;
then one can replace it by a unary operation Fi(z) =T, without essen
in the algebraic structure of the algebra in question. .

(1) We recall that an ordered set has the least ‘upper: bound property it every two
of its elements have a least common upper hound. :
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