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On the Grothendieck group of compact polyhedra

by
P. J. Hilton (Ziirich)

1. Introduction. In an earlier note [3] we constructed a set of
examples of the following phenomenon: X; and X, are compact connected
polyhedra with isomorphic homology and homotopy groups but of dif-
ferent homotopy types. The demonstration fell into two parts. First it
was shown that it is possible to construct polyhedra X,, X, of different
stable homotopy types such that X;+8~X,+4 8, where 8 is a suitable
sphere and -+ denotes the disjoint union with base points identified.
Secondly it was shown that if X;+ A4 ~X,4+ A4 for a suitable compact
connected polyhedron A, then the suspensions of X; and X, have iso-
morphic homotopy groups, mi XX, o m ZX,.

In this paper we make a more systematic study of both parts of
the argument and considerably strengthen the relevant statements. In
gection 2 we deal with the second part of the argument. We find it un-
necessary t0 pass to the suspensions of X, and X, provided X, X,, 4
are themselves already suspensions of connected polyhedra. This effects
considerable improvement when it comes to finding examples. We also
show that the homotopy groups kill the torsion in the Grothendieck
group of suspensions of connected polyhedra. That is to say we may
interpret the statement

m Xy = mX,

a8 saying that m; may be regarded as being defined on those elements
of the Grothendieck group G(Z9%) of homotopy classes of suspensions
of compact connected polyhedra which are represented by polyhedra;
call this subset GV(Z9"). Then we actually prove the statement

if X, +A~X,+A4

m X, = m X, it tX,+A4~1X,+A for some integer { > 0;

that is, if X, and X, represent the same element of G(X91) modulo its
torsion subgroup. Although this improvement is, at this stage, purely
theoretical, it fits better into the general algebraic picture. For z; maps
ST t0 olby, interpreted as the collection of isomorphism classes of finitely
generated abelian groups. If we form the Grothendieck group of «fb,
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with respect to the direct sum operation then G*(slby) = b, and there
is no torsion in @ («fby); that is, if

IMON = tM,®N

for finitely generated abelian groups M, M,, N, then M, ~ M, (Prop-
osition 2.10). On the other hand

(L1) A+ B) & m(A) Dui(B) ,

in general, so our main theorem is not a direct consequence of the well-
known property of ofb,. Also we do not define a map

QPG (Aby)
extending s in view of (1.1). We are content to define
(1.2) iz GT(ZTY) >oby

where @' denotes the image of @' under the projection ¢->G= G/T,
T being the torsion subgroup. We repeat that the improvement achieved
in replacing ¢ by G' in (1.2) is purely theoretical, since we do not even
know whether they differ; we construct in section 3 examples where
XX, but tX, ~tX,, t > 1, but in our examples X, and X, represent
the same element of G(ZX1).

We introduce a notational innovation in section 2. We are much
concerned with the conmnectivity of the polyhedra entering into our
discussion, but it is a source of numerical awkwardness that, for example,
the n-sphere is (n—1)-connected and that every polyhedron is (—1)-con-
nected. Moreover, if we take the smaghed product of a k-connected and
a l-connected polyhedron the result is (k-+1-41)-connected. For these
and other reasons we introduce the notion of n-essential polyhedra.
A polyhedron is m-essential if all its non-vanishing homotopy groups
are in dimensions > . Thus every polyhedron is O-essential and the
co-essential polyhedra are the contractible polyhedra. Further we say
that the essentiality of X is n, written EssX = n, where 0 < n < oo, if

n = max{m| X is m-essential} .

Ot course, this is simply a device to raise the connectivity index by unity:
X is n-essential if and only if it is (n—1)-connected.

In seetion 3 we refine and analyse the procedure for obtaining ex-
amples of polyhedra X, and X, such that X,-+ 8 ~X,+4 8 for a suitable
sphere 8. Freyd considered this phenomenon in [2]. He was there con-
cerned with stable homotopy, whereas we are free to congider unstable
phenanena. Nevertheless we base ourselves essentially on Freyd’s con-
struction procedure but, of course, use nome of the arguments of [2].

icm
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Freyd observed that his example had the three properties (see last page
of [2])
X+ 8~ X, Ny ’

X+ 85~ X,+ 8%,
2X,~2X,,

(1.3)

where ~ is the stable homotopy relation. In fact, of course, they have
the stronger properties (*) obtained by replacing ~ by the homotopy
relation ~. We show that the three properties (1.3) of Freyd’s example
reflect increasingly special features of that example. Specifically, Freyd
takes «eng(S) of order 8, f=3a, X;= 8 . ¢ X, = 85Uz’ Then
the first property in (1.3) is just due to the fact that 3 is prime to 8, the
second also uses the fact that a is a suspension element, and the third
further exploits the relation 3 = 1mod 8. Our theorems in seetioz% 3
are concerned with hypotheses on aemp1(S") and f=la validating
conclusions which generalize each of the three properties in (1.3). We
are thus able to provide an 8-dimensional example of two suspension
polyhedra X; and X, such that

X 48X+ 88,
X+ 8= X+ 8,
2X1 22X2 ) X]_*Xz k]

(1.4)

whence, by our main theorem, . Xy o2 m Xy, all i ) ]

Moreover, no example of lower dimension possessing such properties
can be constructed by the procedure of this section. We can .construct,
however, an example in dimension 7 having all the. properties of ex-
ample (1.4) except that it is no longer concerned with two suspension:
polyhedra. In fact, we take desuspensions of the polyhedra X;, X, of (1.4’).
Precisely let a e mg(8%) be the generator and let f= Sa, ¥, =8 v, ¢,
Y, = 8° v ¢". Then one proves by a refinement -of the arguments in
section 3 (see Remark (1) at the end of that section) that

Y, + 8" =Y+ 8,
Y+ 88T+ 8,
92Y,~2Y,, Y,Y,
and the polyhedra X, X, of (1.4) are the suspensions X; = % Y, X, = 2¥,.

Y, o Y, since ¥, and ¥,
However, we cannot deduce from (1.5) th_a’c ¥, = 2
are not s,uspensions. T4 would indeed be interesting to know whether ¥,

(L1.5)

(4 This strengthening did not concern Freyd in [2], being quite irrelevant o the

topic of that paper.

14
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and Y, do have isomorphic homotopy groups; one may prove by classical
homotopy arguments that their homotopy groups are indeed isomorphie
up to and including dimension 10.

In section 3 we are much concerned with maps of the form

8 = 8.8

t copies

i copies
or, as we may write it,

fr 8% 187,

Moreover, these maps will involve no ‘“cross-terms” but will be
completely deseribed by #* maps y,; specifying how the ith sphere in the
domain is mapped to the jth sphere in the range. It is then matural to
express the map (or its homotopy class) by a (¢ X#)-matrix I'= (y;)
with entries in m,(8%). In particular, if p = ¢ then I" is a matrix over the
integers. It is then a very convenient feature of the matrix notation
that if g: ¢87>18" is represented by the matrix 4 = (d45) of elements
in 7,(8"), then the composite map from 8% to #8" is represented by the
produet matrix I'4 if the yy are suspensions, provided we interpret yé
to mean ““first -y, then 8”. We will therefore adopt this convention in section 3.
Maps will be written “on the right” so that we may say, in the discussion
above, that fg is represented by I'4. We will adopt the same convention
even if the yy are not suspensions but then we may only understand
by I'o 4 the composition of homotopy classes represented by I', 4 and
we may not compute I'o A as the matrix product I'd. We remark that
this convention has the consequence that, for any integer I, loa is
always la

e
but a-l is not always lg,
8P gl b, g

This seems much ypreferable to the situation which arises with. the opposite
convention.

] We should also draw attention to the conventions adopted in the
pterests of brevity. Thus in section 2 we write X 7 to mean that X
18 a compact polyhedron, although, in fact, § is the collection of homotopy
classes of compact polyhedra. Similarly, in Section 3 (and in the previous
paragraph) we blur the distinction between maps and their homotopy
classes so that, for example, we talk of the polyhedron 8" u, €™ where
a€mtn1(8"). We believe this abuse of language will lead to no confusion

and, in a_tbempting to avoid it, we would be led into unnecessarily fussy
formulations. ‘
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2. The main theorem. Let Ty, be the collection of based home-
omorphism classes of based compact polyhedra, and let %, be the sub-:
collection of n-essential polyhedra, 0 << 7 < co. We may introduce into
Tiop the structure of an additive commutative semigroup with zero by
means of the wedge operation

(2.1) P+Q=Pvg;

the zero is, of course, just the one-point space. Then

(2.2) Ess(P+Q) = min(Ess P, EssQ),

50 that T, is a subsemigroup of Fip; in fact, we have a filtration
(2.3) Fiop C oo C iy C 00" C oo C Thop C T = Fiop -

Let ¢ denote the collection of based homotopy classes (%) of based
compact polyhedra. The addition (2.1) passes from Ty, to T so that T
acquires the structure of an additive commutative quotient semigroup
of Fyop. Moreover, 1-essentiality is a homotopy invariant so that we get
2 natural quotient filtration of (2.3)

(2.4) 0=9°C..CI"Co"'C..CHCT=7.

Let X denote the reduced suspension operation. Then X may be
regaided a8 operating on Fip or §. We observe

PROPOSITION 2.5.

(i) Ziop 48 am endomorphism of the semigroup Fiop and Z(T5p) C g
n>=0.

(i) X és an endomorphism of the semigroup § and Z(3") C "™, n>0.

Let @(F) be the Grothendieck group of 7 with respect to the ad-
dition (2.1); we remark that this addition is, in fact, the coproduct (= sum)
in the appropriate topological or homotopical category. Let

(2.6) o: §>G(T)

be the natural map; we showed in [3] and will show agai11. in section 3
of this paper that ¢ is not one-one. Let T(F) be the torsion subgroup
of G(F) and let G(T) be the quotient group

(2.7) G(5) = G(9)T(S) .

Then g induces, by composition with the natural projection, the map
o: $G(9).

Let -

(2.8) GH(3) =70F .

() For connected polyhedra, based homotopy type coincides with homotopy type.
14
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We may, of course, and will apply definitions (2.6)-(2.8). to any sub-
semigroup of &. Let o{b denote the collection of isomorphism classes of
abelian groups, and let ofb, be the subcollection consisting of finitely
generated groups. Then «fb is an additive commutative semigroup with
zero under the direct sum operation

(2.9) A+B=A®B

and b, is a subsemigroup. We may form the Grothendieck groups & («(b),
G (b, and we remark, using the analogous definitions to (2.6)-(2.8),

PROPOSITION 2.10. 0! olby= G (oby).

In other words, if 4,, 4,, B are finitely generated abelian groups
and if there exists an integer t> 0 such that ¢4, B ~14,+4 B, then
A = A,.

- We2 now state our main theorem. Let m¢ be the ¢th homotopy group
functor (%), 4 > 1.

THROREM 2.11. The map mi: X' —>Ab factors through 7g: X9
G (ZgY).

We remark that =; is not a homomorphism of semigroups (that is,
an additive functor). Were it so, then Theorem 2.11 would be a trivial
consequence of Proposition 2.10, and the fact that «; maps X9t into Ab,.
Indeed, in that case, m; would factor through g: X9'-@(X9*) which is
more than the theorem claims.

Naturally, the theorem admits an interpretation along the lines
of Proposition 2.10: if (*) X,, X,, P ¢ X9 and if there exists an integer
>0 such that the polyhedra tX,+ P, tX,+ P are of the same homotopy
type, then
(2.12) a(Xy) o= m(X,), all 4.

We prepare the ground for the proof of the main theorem by in-
troducing a ring structure into the Grothendieck group G(9). This we

do by taking the product operation in Ttop t0 be the so-called smaghed
product,

(2:13)
Then
PQ=QP; Po=o0, where o is the one-point space; P8° = P;
(PQRE = P(QR);
P(Q+R)=PQ-+PR.

PQ=P%Q=PxQ[P+qQ.

(2.14)

() We may include the case ¢ = 1 as a trivial cage; for X9 C 9%, go that m X =0
for any X e« 21,

() We allow ourselves to write X ¢ it X is a based compact polyhedron.

* ©
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Moreover, the smashed product is compatible with the homotopy relation,
so that (2.14) holds in . Tt follows that this multiplication in ¢ induces
& unique ring structure in G(f) such that ¢ 18 a multiplicative homo-
morphism. Thus () may henceforth be regarded as a Ting; 7 itself we
will call a semiring. Notice that Tiop and G(F) contain a unity element 1
which is the zero-sphere. We next prove )
ProrosrrioN 2.15. Ess(PQ) > Ess P-EssQ.

Proof. The assertion is trivial if EssP — 0, Ess@ = 0. Suppose
Ess P > 0, BssQ = 0. Then @ is the union of connected components
Q=QyvQ,v..u Qs where @, contains the bage point, and so

PQ=PQ,+P X Qo X Q1+ ..+ P X Qufo XQn .
It is easy to see that Ess(P xQs)/(0 X Q) = Ess P, so that, in the light
of (2.2), it only remains to establish the proposition when EssP > 0,
Ess@ > 0. The assertion is then trivial if P or Q is contractible so let us
assume that EssP = p < oo, Bs8Q = ¢ < oo; thus the first non-vanishing
homotopy group of P is in dimension p, that of @ in dimension g. Then P
is equivalent to a complex P, whose cells of lowest positive dimension
are p-cells and @ is equivalent to a complex @, whose cells of lowest
positive dimension are g-cells, so that PQ is equivalent to the complex
P,Q; whose cells of lowest positive dimension are (p+4¢)-cells. Thus

Ess PQ = Ess P,Q, > p-+q= Ess P+ EssQ .

Remark. We note that equality holds if EssQ = 0, that is, Ess PQ
= EssP. On the other hand, equality need not hold if Ess P > 0, Bss@Q > 0.
For example, let P be a Moore space K'(Z,,p) and @ a Moore space
K'(Zy, q), 80 that Ess P = p, EssQ = ¢. Suppose that m, n are mutually
prime. Then it is plain from the Kiinneth formula that the inclusion
P 4@ —+P x @ induces homology isomorphisms. By van Kampen’s Theorem
the quotient PQ is simply-connected and we have shown it has vanishing
homology. Thus P@ is contractible. Thus there are, in fact, divisors of
zero in .

CoroLLARY 2.16. Ess2X >EssX-+1 (equality can only fail if
Ess X =1).

For XX = 8X where § is the circle.

CoROLLARY 2.17. §" is an ideal in T, for each n, 0 < n < co.

(It is plain what is meant by an ideal in a semiring.)

COROLIARY 2.18. G(T") is an ideal in G(F), for each n, 0 < n < oco.

‘We now introduce a new equivalence relation into the collection
of based compact polyhedra, broader than the homotopy relation. If
Y,, Y, are based compact polyhedra we write

(2.19) Y7 Y,
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to means ZY, ~XY,, ie.; 2Y; and XY, represent the same element in 4.
With respect to this relation we may restate the main theorem as follows.

TEEOREM 2.20. Let Y, Y,,Q be based compact connected polyhedra
and let t > 0 be an integer such that 1Y, 4+ QR1Y,+4-Q. Then m XY, = m; XY,
all 1.

We will prove the main theorem in this form. We first enunciate
some preliminary lemmas.

Leyvwa 2.21. If X, R Yy, Z,%Z,, then Y4+ Z R X,+ 2y, Y, 2,8 Y, 7,.

Proof. It is plainly sufficient to take Z, = Z, = Z. Obviously ZY,+
+2Z2XY,+ 27 i XY, ~2Y,. Also X(Y,Z)=(2Y)Z s0o 2(Y,Z)~
~2(Y,Z) it ZY,~2Y,.

Levma 2.22. Let Pu(Y,, Yo) =1 4 m=1; Pu(¥,, ¥y)= TP 1L
+ ¥ XY mo> L Then, if 1X,+QR1Y,+Q,

(2.23) tY;"—{—QP,MY,, Yz)KtY;ﬂ+QPM(Y1y Y)), m>1.
Proof. Evidently
(2.24) Ppia(Yy, Yo) = ¥ Pu(Yy, L)+ X5, m>1.

Thus we may prove (2.23) by induction on m, the case m = 1 being just
the hypothesis t¥,+Q7t¥,+Q. For if (2.23) holds for a particular value
of m, then tY¥7"'+QPny(Yy, ¥,) = Y1+ ¥,QP,(Y,, T,)+QYT %
RY Vot QY5+ Y,QPn ( Yy, Xo) 7 t YT QY04 T, QP( Yy, T,) = £¥ Tt
+ QP Yy, Ty).

Lemua 2.25. Let Qe j=1, ..., 5 Then

s Z(Qy+ .-+ Qs) g,é)l 7 2Q; ® @ m I,
where each Ty, is of the form

(2.26) Ty= PI™ P . P

with at least two exponents strictly positive.
This is the so-called Hilton-Milnor formuls (see Milnor [5]). The

number of terms T of a particular form is given by the Witt number [5]
but we need not make that explicit here.

.Proof of Theorem 2.20. We may certainly assume ¢ > 2 since
for o= 1 the assertion is frivial. Thus we choose an integer 4 > 2, which
i§ arbitrary but which will remain fixed throughout the proof.

We first suppose that @ — 0,

! I 80 that 1Y, 7t1Y,. If BssY, > 4, then
EsstY, > i, Ess 1Y, > t+1, Bss 21Y, > i+1, Ess Y, > i-+1. Thus m, XY,
= m 2¥, = 0. We may therefore make & downward induction on Hss Y,.
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By Lemma 2.22, if $¥,7tY, then t¥7'7t¥Y5, m >1; but Ess ¥7* > Bss ¥,
it m > 2, since Ess¥; > 1, so, by our inductive hypothesis,

(2.27) T ZY? o T ZY;A 5 m=2.

We now invoke Lemma 2.25, with s=1% and all the @; equal.
Then

(2.28) s 21Y) 2t XY, @ GLB 7ty 2T

where Ty is of the form

-lezyinty "nk>2-
Similarly
(2.29) g 2tY, et 2, D ? i El o ,
with

To=Y3%, mp>2.

Since m; maps X9 into fby, the theorem follows in this case from (2.27),
(2.28), (2.29) and Proposition 2.10.
We now revert to the general case t¥;+@7tY,} ¢ but suppose

EssQ > 4. Since t >0, we have #(¥;+@Q)x#(¥.+@) so that, by what

we have already proved, = Z(¥,+Q) o m Z(¥,-+Q). But Ess 2Q > i+1,
so that )
uZY, o mE(Y+0) =2 m (Y4 Q) 2 mi 2,

We may therefore make a downward induction on EssQ. By (2.23),
1YPQ +Q " Pu( Yy, ) RIT5Q + Q" Pu(Ts, Ta),
50 that, by our inductive hypothesis and Proposition 2.15,
s ZYPQ" oo m 2YZ Q"

m>=1, #nx=0,

{2.30) mz=l,n=20, m+n=>2.
However, by Lemma 2.25,

(2.31) Y4 Q) = tm ZY, @ m2Q @ 6% e 2T

where Ty is of the form

Typ= Y™Q™, mp>1l,n>0, mptm>2.
Similarly
(2.32) m ST, 4Q) =t 2V, @ i 2Q © D ZTans
with

mp=l, ng=0, mptne>2.

Tox = Y5*Q™,
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Since 7; maps 2T into by, the theorem now follows from (2.30), (2.31),
(2.32) and Proposition 2.10.

COROLLARY 2.33. Let f(Z) be any polynomial in the indeterminate Z
with coefficients in § and constant term in J1. Then if 1Y, 4-QA1Y,+Q,
with ¥, ¥,y Q T,

7 Zf(Yy) =2 m 2f(Ys) -

Proof. Write f/(¥,, Y,) for the formal quotient ]ﬂnlz):‘ﬂﬂ’

1 2

Then it follows immediately from Lemma 2.22 that
f(X0)+Qf (X1, Yoy hef (Vo) + 0 (Yo, Xo) -

Moreover, f(¥,), f(¥,) €%, since ¥;, ¥, ¢9* and the constant term in f
is in 9*; and @f'(¥Yy, ¥,) is in 9* since @ is in §*. Thus the corollary follows
from the main theorem.

Indeed it is plain that more is true. If f(Z,, Z,) is a polynomial in
the indeterminates Z,, Z, with coefficients in § and constant term in *
and if t¥Y,+QAtY,+Q with ¥, ¥,, @ 9%, then
(2.34) i Zf (Y1, ¥y) e e 2f (Y, Xp),  all 4.
We have only to define, as in Corollary 2.33, a suitable f'(¥;, ¥,). This
ig done by linearity once we have defined it for f(Z,, Z,) = Z{“Zi.
Then

[ if

My = My,
2y, Zy) =\ I 232 — Z3)[(Za—Z,)  if  my=my+s , 821,
PN~ B)(Z— ) i my=myt, 1> 1.

TeeoREM 2.35. Lot ¥,, ¥,,Q 9t with tY,4+Q7tY,+Q for some
>0 and l&¢ Y,, Y, be H-spaces. Then

mYyemY,, alli.

] Pr‘oof. If Y is an H-space the join ¥xY fibres over IY
with fibre Y. Moreover, the fibre is contractible in ¥ Y, and ¥Y+Y

has. the homotopy type of X¥2 Thus there is a direct sum decom-
position

XY o m IV @ me Y .

We thus have, in our case,
mZY, o mZY; @ 7 ¥,y
Iy = miZY3 @ mi ¥y,

all 7,
all ¢.
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But, by the main theorem and corollary, m; XY, o m; ZY,, m Z¥; o m Z¥s5
and all groups concerned lie in fb,. Thus Theorem 2.35 follows from
Proposition 2.10.

Remarks (i) As we have already noted, for an additive functor
F: ZF—>db,, it is trivial that F factors through &(Z'TY). Thus it follows
that if & is any homology or cohomology theory with coefficients of finite
type and if X;, X,, P e 29 with X, 4 P ~tX,+4 P, then h(X,;) =2 h(X,).
Thus the hypotheses of the main theorem, in the form leading to the
conclusion (2.12), also allow us to infer h(X;) = k(X,). In other words,
the polyhedra X, and X,, while in general of different homotopy types,
have isomorphic homotopy groups, homology groups and cohomology
groups.

(ii) The argument holds provided only that the collection of equiv-
alence clagses of spaces forms a semiring, that =;Z maps connected
spaces t0 ofby, and that Lemma 2.25 holds. It is thus possible to replace I
by. the collection of homotopy types of based polyhedra with countably
many cells and finitely generated homology. This generalization may
render Theorem 2.35 more interesting for we could then take Y, ¥,
to be loopspaces on l-connected polyhedra.

. 3. The unstable Freyd construction. In this section we
describe a simple way of constructing examples of polyhedra Y, ¥,
verifying the hypotheses of Theorem 2.20. Equivalently, we construct
their suspensions X, X,.

Let a e mp_s(8) be an element of finite order &, let I be prime to
and let 8= la. Let

X”—:Sﬂuﬁﬁm, Xg——-S’"uﬁe’”.
1

We show (compare [3])

THEOREM 3.1.

(i) Xyt 8" =X, 4875

() X, =X, if and only if (¥) £f = ao(+1).

Proof. (i) Consider K = 8" w, 6" up ¢™. Since § is a mulfiple of a,
K~ (8" u, 6™+ 8™ = X, + 8™ But since I is prime to k, a is a multiple
of g so that K ~X,+8™.

(i) ¥ k=1, then a=f=0, Xy =X, = 8"+ 8™, so suppose k > 1.
Then m > n+2, n > 2. Suppose f: X; ~X,. Then we may assume that f
maps S to §* and, as such, has degree +1. Passing to quotients, f induces
a map 8™ to 8™, also of degree 1. Moreover, by a form of the Blakers-

(%) Recall that the composition a(--1) means the homotopy class a followed by
the class 1.
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Massey- Theorem (see, e.g. p. 49 of [4]) it follows that there is a map
8™ 8™ of degree +1 such that the diagram

e
(32) lil j;{:l
A
B
{homotopy) commutes; that is, + 8= a(1).
Conversely, if 4 8= a(41), there are maps 8™ 18" §" 8" of

degree -+1 making (3.2) commutative and the induced map X, X, is
2 homotopy equivalence.

CoROLLARY 3.3. Suppose, in addition, that a is o suspension. Then
X, ~X, if and only if 1 = £1 (modk).

For then X, ~X, if and only if = +a.

THEOREM 3.4. If a is a suspension then X,+ 8" ~X,+ 8™

Proof. LBt}
=
w v

be a unimodular matrix. Then M may be regarded as a map S"+ 8"
8"+ 8" and, as such, it is a homotopy equivalence. Let (a, 0) be the

;En]?p attaching an m-cell to the first sphere in 8" 8" by means of a.
en

(8" 8") Vi €™ = (8" + 8" Uianr €™ -

But since o is a suspension, (e, 0)M = (8,0). Thus X,+ §"~X,+ 8"
We ( gove now towards a generalization of COorollary 3.3. Let

ai € oy —3(8") be of finite order %, ¢=1, ..., let I; be pri

o p e et s yees b i prime to %; and

'(3.5) Xii= i g o 3 Xz{ =8 g i .
Let o« be the (txt)-diagonal matrix with entries « i

2 0 4 down the diagonal
a,ngi let 8 be similarly defined. Then Theorem 1 has the evident genira,li-
zation.

THEOREM 3.6.
(1) Xu+...+ Xy+18™ X+ oot Xy 18™;

() Xiy oo Ty 2 Xy -4 Xy if and only i ;
@
{4xct)-matricss U and N suoh fhat U oo wn T BT

We now specialize the situation somewhat. Let « e m-1(S™) be a sus-

pension element of order & and let o = aia, Bi= bia where a4, by are

icm®
prime to k, ¢=1,...,1. Further, let y;= ¢;a, where ¢; is prime to %,
j=1,..,u and set, in addition to (3.5),
Q=8 Y e,
Let I; satisfy by = lia; (modk), i=1, ..., We prove
THEOREM 3.7. The following statements are equivalent:
(i) Llyorly = +1 (modk); '
(ii) X11+---+X11~’—"—Xz1+---+-x2t;
(i) Xyt o+ Xt @t o+ QueXy 4o+ Xt O+ oo+ Qe
Proof. (i)=(ii): Let Lz be the matrix

A
Lk=( b )
k

over Z;. Since Zy is a semilocal ring (%) and Iy is unimodular over Zg,
we may find a unimodular matrix L over Z which reduces to Ly over Zy.
The matrix I may be interpreted as a homotopy equivalence L: 18" >i8".
Then, if ¢ denotes the cone functor,
18" Uy OI8™ 1 18" Lp, CE8™

But since a is a suspension, «L = 8, 50 that Xy + ...+ Xy~ Xy + voet Xog.

(ii)= (iii): Trivial. .

(iii)= (i): By Theorem 3.6(ii) there are unimodular (¢-+ ) x (t4%)-
matrices M and N such that, in an obvious notation,

ba O aa 0 w
M 0 caf 0 e
Since a i3 a suspension element. we may regard (3.8) as a matrix
equality over Z. Taking determinants we have
A byby..-bi€1Csenn Gy = =085 0i61Cp - Ou (modk) .
Lly..ly = +1 (modk) .

We return now to the definition of X, and X, at the beginning of
this section but assume now that « is a suspension element. We then
have, as an immediate consequence of Theorem 3.7,

COROILARY 3.9. 1X,~tX, if and only if I' = +1 (modk). In particular,
o (k) Xy = (k) Xe,

where @ is the Buler funciion.
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j=1,.,u.

(3.8)

Thus

(%) The author is indebted to S. U. Chase for this remark, simplifying an earlier
argument. '
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The example given by Freyd consists essentially of taking m =9,
n=>5, a of order 8, § = 8a. Then (see [4])

X, + 8~ X,+8 by Theorem 3.1(i),

X, 4+ 8~X,4+8 by Theorem 3.4, since « is a suspension .
2X, ~2%X, by Corollary 3.9, since 32 =1 (mod8).
X, %X, by Corollary 3.3,
2X,54X,+X, Dy Theorem 3.7.

+From any of the first three relations we infer, by the main theorem,
(3.10) mX, =mX,, alli.

We may ‘also construct examples by taking a prime p; then m = n-+
+2p—2 in the stable range, a of order p, f = la with 1 <1 < p—1. Then

X+ 8 X, 8
X +8 =X, 48,

and if ¢ is the smallest positive integer such that 9= L1
= mod th
glp—1), ¢>1, and (modp), then

X, ~qX,,
rX; %X, 1<r<q.

Il.ldeed X, (¢-1)X,+X,, (—-2)X,+2X,, ..., X,+(¢—1) X, all have
]fifrfzz:nt homotopy types. On the other hand they have isomorphic
) oups, since i i
ot 6{ gzg aﬁl : B0 ixgdsthwo become homotopically equivalent on
Let us now look for the example of lowest dimensi i
construet by the methods of this section. We require (i)ofclh;;hf}: : ’ Izl;"};
be a suspension element of finite order k, (ii) that there exist Zm;’ime
@ k, such that 7 =4 +1 (modk). Then we wish m to be the smallest f)ositive
E;eger such that these requirements are fulfilled. Certainly % > 2 so
ths ;1 e?t ;;}j—4. Also 7> 38 since m,—y(8?) has no non-zero suspension
o fajf. us we cannot do better than n =3, m = 7. Thig, however,
- 0 8, a8 does =3, m =8 because there are then no suspension
mejl_lesnts <()1ft01:der k> 2. .However, we do find an example with n = 4,
o ,’94 e;.xio bl;l: ;,:ample 18 unique up to homotopy type; namely we take
ot e e ;uspensmn of a generator of z,(8%). Then a is of order 12
o this o = 5a. We thus have the minimal example with respect
onstruction, namely the suspension polyhedra X,, X, where

= St
X= 8. e, Xy=84ug €8,

icm°®
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such that
X, + 88~ X, 88
X, + 8t~ X, 48 so that m X, = mX,,
2X,~2X,,
X, #+X,.

Although this example is unstable in the sense that (8% is not in the
stable range, it is evident nevertheless that X; and X, are of different
9-types, for a suspends monomorphically, so that X7X, 5% X'X, for all
ji=o.

Remarks. (i) Except for Theorems 3.1 and 3.6, all the results of
this section have involved the assumption that « is a suspension element;
and our examples have also had o as a suspension element. This is necessary
for the application of the main theorem since the polyhedra X; and X,
must be suspensions (of ¥, and ¥, in the notation of Theorem 2.20).
However, it is certainly too strong an assumption for the results of this
section. For these results what is required is that the distributive law
a(y;+ys) = ay,+ay, hold. In fact, we only need this when y, and y,
are elements of 7a(S?), 7(S%); but this is, actually, a characterization of
those maps o e my—(S™) which are homomorphic with respect to the
comultiplications on §™*, 8% or H'-maps (see [1]). For example, for
any prime p, we may take a to generate Zy in m,(8°). Then o is an H'-map
but not a suspension. Corollary 3.3, Theorem 3.4, Theorem 3.7 and
Corollary 3.9 remain valid if we replace the assumption that o be a sus-
pension element by the weaker assumption that it be an H'-map. Even
this weaker assumption is by no means always necessary. For example,
if » is odd, then, for any integer s, and any @ € Tp—1(8™),

(3.11) as —sa = Hyla)® (‘*2_ Dra,

where H, is the (generalized) Hopf invariant and [, 1] € Tan—2(8") is the
. -1
Whitehead product element. Thus as = sa if and only if Hy(a) 8(82 )[l. ,t]

— 0. T » is odd then 2[i,]=0 so that certainly ok = ka, a = la if
k,1=0 or 1 mod4. It may then be shown that the conclusion of The-
orem 3.4 holds if # is odd, m < 4n—2, and k,1 =0 or 1 mod 4, with no
further restriction on a. Tf n =35 or 7, m < 4n—2, the conclusion holds
with no further restriction on k,! because [¢, ] = 0. It would thus be
of interest to try to extend the main theorem to apply not just to Z9*
but perhaps even to the whole of 92

(ii) Our examples establish the fact that we can have polyhedra
X,, X, such that X, %X, but tX,~tX, for some t>1. This, however,
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by no means implies that there is torsion in the Grothendieck group G(f).
For, in all our examples, X,+ P~X,+ P for a suitable polyhedron P
(indeed, a sphere). Thus the question of the existence of torsion in the
Grothendieck group remains open.
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A minimal hyperdegree
by
R. O. Gandy and G. E. Sacks* (Cambridge Mass.)

Two sets of natural numbers have the same hyperdegree if each is
hyperarithmetic in the other. A non-hyperarithmetic set is said to have
minimal hyperdegree if all sets of lower hyperdegree are hyperarithmetic.
In this paper we construct a set that has minimal hyperdegree, and we
study a certain class of models of the hyperarithmetic comprehension
axiom. We draw upon ideas oceurring in Spector’s eonstruction of a mini-
mal degree of unsolvability [9] and in Feferman’s application of forcing
to analysis [2]. Our argument mixes Cohen’s forcing method [1] with
classical truth considerations; however, the use of foreing is not essential
to the construction of a set of minimal hyperdegree. Instead of foreing
with finite conditions in the style of Feferman [2], we force with infinite,
hyperarithmetic conditions. As one might expect, foreing with infinite
conditions is much closer to truth than foreing with finite conditions.
A et generic with respect to our notion of forcing must necessarily have
minimal hyperdegree.

ATl of our foreing is with respect to a second order language L(S),
which is virtually isomorphic to Feferman’s language LXS) ([2], p- 335).
L(S) is the language of first order number theory augmented by the
constant symbol S, some second order variables, and the membership
symbol . Let O; be a 7+ subset of O [4], the set of all notations for re-
cursive ordinals, such that each recursive ordinal has precisely one nofa-
tion in O, [3]; if b is the unique notation in 0, for the recursive ordinal f,
we write |b| = g. In addition, the relation 1] < lo| is the restriction of
some Tecursively enumerable relation to 0,. For each be Oy, L(S) has
set variables X°, ¥, 2", ...; L(S) also has set variables X, Y, Z, ...,
number variables &, v, 2, ..., & numeral 7 for each natural number #,
and symbols for equality (=), suceessor (), addition (+) and multi-
plication (-)-

For each b e O, the variable X* is said to be ranked; the variable X
is said to be unramked. A formula § of L(S) is called ranked if every set

* The second-named anthor was partially supported by the Guggenheim Founda-
tion and by U. 8. A. Contract ARO-D-373.
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