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Some consequences of the normality
of the space of models*

by
Hidemitsu Sayeki (Montreal, Quebec)

The main purpose of the present paper is to give a new, and rather
simple proof of Craig’s Interpolation Theorem in first order predicate
caleulus [4]. We develop a bit further our knowledge of topological prop-
erties of the space of models, and we show that the Interpolation Theorem
is a consequence of the Hausdorff compactness of the space of models.

It was Tarski’s paper which interpreted for the first time Godel’s
completeness theorem as stating the compactness of a certain topological
space [11]. Afterwards E. W. Beth proved by a topological method the
theorem of Gddel and that of Lowenheim-Skolem [1]. Among subsequent
works in the topological treatment of the space of models we are indebted
above all to Taimanov’s paper in which a characterization of elemen-
tary classes was given [10].

In the following discussions we assume the Compactness Theorem of
Godel-Henkin—-Malcev:

THEOREM 0. Hvery comsistent set of seniences has a model,
in other words,

THEOREM 0'. If every finite subset of X has a model, then X has a model.

We shall not make use of AC nor GHC, but we assume elementary
facts concerning general topology, for which we can refer to [6] and
[9]. Our notations are due to A. Tarski [11], [12] and J. Keisler [5].

1. Preliminaries. We agsume that ordinal numbers have been
defined so that each ordinal number coincides with the set of all smaller
ordinal numbers. Cardinal number will be understood as the corresponding
initial ordinal number.

Throughout this paper set-theoretical notations e, C, v, ~ will be
used as usual. OK, Card K will mean the complement and the cardinality
of a set K, respectively.

* This paper is dedicated to Professor Motokichi Kondo on his 80th anniversary.

This paper was announced on the 4th of April, 1966 at the meeting of Association for
Symbolic Logie in New York,
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By a type we mean a function p such that the domain of u is an ordinal
number ¢ and its range C w. By a language L(u) of a type u, we shall
mean the first order predicate caleulus with denumerable number of
individual variables and x(A)-placed predicate symbol P; (1 < o) besides
identity. We shall use the symbols v, 71, 3 in the usual way. We assume
that the notions of formula, free variable and sentence are known.
- will mean deductive inference in the language and Cn(Z) will mean
the set of all deductive inferences of a set X of sentences. By §(u) we shall
mean the class of all sentences in L(u). A system IM = (M, R;)1<, is said
to be an interpretation of a language L(u), or a structure of type u, 1£ M
is a non-empty set and B, ¢ 22*® for 1 < o. We shall denote by I (u)
the class of all structures of type u, i.e. B (u) is the class of all interpretations
of the language L(u). We assume that the definition of truth in an inter-
pretation is also known. An interpretation Mt ¢ M () is said to be a model
of a sentence X e 8(u), in symbol: k;m X, if and only if X is true in M. Let
2 C 8(p). We shall mean by 2* the class of all interpretations M in I (x)
such that Fen X for every X in 2. If X' = {X}, we write X* igsteeud of {X}*.
In other words, X*= ") {X*: X ¢ X}. Dually, if K C M(u) we shall
mean by K* the class of all sentences X in §(u) such that kg X for every M
in K.If K = {IN} we write M* for {P}*. We note that K C (K*)*, T C (Z*)*
and XY if and only if X*C ¥*

Let K C M (u). K is said to be an elementary class, or to be findtely
aziomatizable, in symbol: K ¢ EC, if and oply if there is a sentenmce X
in 8(u) such that K = X* K is said to be an elementary class in wider
sense, or to be amiomatizable, in symbol: K e EQ,, if and only if there
is a set X of sentences in S(u) such that K = X*. Every axiomatizable
clags is an intersection of finitely axiomatizable classes.

2. Space of models. Two interpretations 9, N in M (u) are
said to be elementarily equivalent in L(u), in symbol: M ~ N, if and only
if for any sentence X in 8(u), Fm X implies kn X and vice versa. A clags K
of interpretations in M (u) is called elementarily dlosed, in symbol: K e ACL,
if and only if M e K and M ~ N imply % ¢ K. Note that K e EQ, implies
K ¢ ACL. We shall denote by M(x) the family of equivalence classes
of M () with respect to elementary equivalence relation. Natural mapping
of M(u) onto M (u) will be denoted by o, (or by o, in the case free from
ambiguity). We introduce a topology into M (u) taking {cX*: X ¢ 8(u)}
a8 a basis for open sets. In fact, every interpretation in M (4) is a model
of some sentences. If o € oX* ~ ¢ ¥*, then oM « o(XAX)* C oX* ~ oX*
And if o, o9t € o X* and oM £ oN, then there is o ¥ e 8{u) such that
ReX* Me(n1Y)", whence oR e o(X A Y)* C oX*,

THEOREM 2.1 (Taimanov [10]). Let K C 8 (u). K e BO, if and only
if K= o \(F) for some closed set F in M (u).

L]
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Proof. Let us assume K = X* X C S(u). It is sufficient to show
that ¢2* is closed since then X is elementarily closed. If oI e M (u)— 0.5%,
then we can find a sentence X in X such that ¢ ¢ cX*, whence oM
eo(1X)* And o(TX)* ~ 0Z* = 0 implies o(1X)* C M (p)— o.Z*.

Conversely, suppose that K = ¢~*(¥) and F is closed in M (). Let
o ¢ oK = F. Then there is a sentence X in 8(u) such that o9 e o X*
and oX* ~ oK = 0. Let

Z={1X; X ¢8(u), oM € 6X*, 6X* ~ oK = 0} .
Then
o2* = {e(X)*; X e8(u), oM e ¢X*, 6 X* ~ oK =0}
= {0X* X ¢8(u), oM ¢ 0X*, 0K C 6X*} = oK,

since oK is closed. So we have K = X*, for K — o~(F).

COROLLARY 2.2. Assume K C M (u). K « EC if and only if K = o-\(F),
F is a clopen (i.e., open and closed simulianeously) subset of M (u).

TREOREM 2.8. M (u) is o compact Hausdorff topological space.

Proof. Let oMt and oM be two distinet elements of M(x). Then
there is a sentence X such that kg X and not Eq X. Hence oM e oX*,
Neo(1X)* and oX* ~ (N X)* = 0. :

Let & = {F'y; i eI} be a family of closed sets in M (u) which has the
finite intersection property. By Theorem 2.1 we can assume that F; — T,
2:C S(u) for each iel. Let X= | J{Zi; ieI}). Then for every finite
set 2’ of X we can find a finite subset I' of indices of I such that
{Zi; i eI’} includes X’. By the finite intersection property M {Fy;
1 e I'} is non-void, ie., [ J{Zy; ¢ ¢ I’} has a model which is a model of 2.
Hence, by Theorem 0’, X has a model, i.e., ¥ has a non-void intersection.

COROLLARY 2.4. M (i) is a normal space.

Proof. Due to the fact that every compact Hausdorff space is
normal.

3. Continuous mappings on M(u). Suppose that u’ is a type
which includes a type u. Let the domain of 4’ be an ordinal number p’.
Every formula defined in L(x) is also a formula of L(u’). By the u-reduct
of an interpretation (M, R;yi<, of L(u') we shall mean the interpretation
My Bdico 0f L(p). Let M, N be two interpretations of L(u’). It M, %
are elementarily equivalent in L(u’), then the u-reducts of Mt and N are
also elementarily equivalent in L (). A mapping w,.., defined on M (u') is
called the u-reduction of M (u')if and only if it assigns to every element o
of M (u') the element of M (u) whose representative is the p-reduct’of M.
4,BC M(u') and A C B imply m(4) C my(B). I w2 4’ D p, then
Touttory = Tptsy Trrnye . When 1o confusion seems possible we may forget
to mention the domain of u-reduction and denote it by Ty
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8.1. Tet p D p and lot K C M(w'). If K = m(K"), then K* = (K')*
~ 8(p)-

Proof. Note that if ' eM(u'), then M =m, (M) implies
M* = (M)* ~ S(u). Hence

= M {*; M= m,(WW), D' « X'}
= N {D)* ~ S(u); M e K} = (K')* ~ 8(p).

TEsoREM 3.2. Let u’ D p. Then the p-reduction of M (u') is @ continuous
mapping of M(u') onto M (u).

Proof. Assume that X is a sentence in S(u). Then X is true in an
interpretation M in M(p') if and only if X is true in the p-reduct of M.
Hence according to Theorem 2.1 the inverse image of a closed subset
of M(p) under the x-reduction is closed.

38.3. Suppose u’ D p. The inverse image of every element of M (u) under
the p-reduction is o closed compact subset of M (u').

Proof. By Theorem 2.3 every point in M (u) is closed. Hence the
theorem follows from Theorem 3.2 and the faet that every closed set
contained in a compact space is compact.

TraEoREM 3.4. Let p’ D u. Then the w-reduction of M (u') is a dlosed
mapping (i.e., the image of each closed set is closed).

Proof. The theorem follows from Theorems 2.1, 2.3 and 3.2 and
the facts that (1) in a compact space every closed set is compact, (2)
compactness of a subset is invariant under continuous mapping: X Y,
if X is a compact space and Y is a Hausdorff space and (3) in a Hausdorff
space every compact set is closed.

3.5. Let p' D p omd let X' C 8(u'). Then

w0 (2)* = {oX* '} X in L(w'), X e 8(n)} .

Proof. According to Theorem 3.4, m,¢(2")* is known to be closed
in M (). Hence the theorem follows from the fact that every closed set
coincides with its closure, i.e., the intersection of all closed sets which
include the set.

Let K C M(u). K is said to be a pseudo-elementary class (in wider
sense), in symbol: K ¢ PC (PC,), if and only if there is a type u’ D u such
that K is the class of all u-reducts of interpretations in an elementary
class (in wider semse) in M(p'). If K, K’ ¢PC (PC,), then K v K’,
K ~AK’e¢PC (PCy), but CK is not necessarily in PO (POy).

CoroLrLARY 8.6. Let K C H(y). Then K PO, if and only if oK is
closed in M (u).

CoROLLARY 3.7 (Biichi-Craig [4]). K PO, and K ¢ ACL imply
K EEOA.
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Let K C M (p). X will be called a quasi- elementary class (in wider
sense), in symbol K € QC (QC,), if and only if there is a type u’ D u
such that = '(cK) e BO (BC,). If K, K’ <QOC, then CK, KUK, Kn
~ K €QQC.

3.8. Q0 C PC C QC, = P0,.

Proof. QC C PC, PC C PC,, Q04 C PC, follow from the definitions.
Assume that oK C M (u) and K ¢ PCy. Then Theorem 3.4 implies that ¢K
is closed in M (u). Hence m, YoK) is closed in M (u'), where ## is the p-re-
duction of M (u') for p’ D p. From here it follows that K e QO4.

3.9. K ¢ QC and K ¢ ACL imply K ¢ EC.

Proof. Assume K C M () and K e QC. Let 4’ be the type D u such
that z, is the p-reduction of M(4') and K’ = z; (K) is clopen in M (u’).
Then both K = m,(K’) and CK = m,(CK’) are closed, whence K is
clopen in M (u).

4. Definability. The y-reduction s, of M (u’) induces an equiv-
alence relation m;'m, on M (u'), i.e. (M, N) e m; 'm, it and only if m (DY)
= m,(M). And the equivalence induces a decomposition D of M (u'). Due
to Theorem 3.4 the projection (quotient map) of M (u’) onto D is closed
and M (u) is homeomorphic to the quotient space.

THEOREM 4.2. The decomposition D is upper semi-continuous (i.e., for
eack D in D and each open set U containing D there is an open set V such
that D CV C U and V is the union of members of D).

- Proof. The theorem follows from Theorem 3.4 and the fact that
a decomposgition D of a topological space X is upper semi-continuous if
and only if the projection of X onto D is closed [6].

Let u' D p. A class K of interpretations in M (u’) is called definable
in L(u) if and only if 7, ‘w(K)=

4.2. Let ' D u, K, K' C M(y') and let K be definable in L(u). Then
K ~K' =0 implies n(E) ~ m(E') = 0.

Proof. Assume M em(K) ~m(K'). Then =z (M) ~K #0 and
(M) C my ' m,(K) = K, whence K ~ K’ # 0.

A sen‘nence X in 8 (u') is said to be definable in L (u) if and only if o X*
is definable in L(u). If X and Y are definable in L(u), then XA Y, XVY
are definable in L(u). And then m, 17:,‘((}(‘0'X")) = 0(0X*), s0 7.X is also
definable in L (u).

4.3. Let u' D p and X e 8(y'). X s definable in L(p) if and only if
there is a sentence Y in S(u) such that X and Y are deductively equivalent
(l.e, X Y and ¥ X) in L(p'). '

Proof. If X is definable in L(x), then =,(0cX*) is clopen in M (u),
since m,(0X*) and m,o(1X)* are disjoint closed subsets whose union
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is M (u). Hence there is a sentence ¥ in §(u) such that n,,.(aX*) = gY*,
Hence oX* = m; 'm,(0X*) = m, (¢X*) = ¢T¥*. The converse is obvious.

Agsume that u’ D p and the language L (') can be obtained from I (u)
by adjoining a sequence a (possibly empty) of new predicates. For con-
venience, we offen represent the type u’ by the notation u4 a.

A predicate P is said to be definable n L(u) if and only if every
sentence in L(u+{P}) is definable in L(u). A predicate P is definable
in L(u) if and only if M (u-+{P}) is'a homeomorph of M (u).

Due to E. Beth [2] a predicate is said to be implicitly definable in L (u)
if and only if the u-reduction of M(u-{F}) is a one-to-ome mapping.

TaEOREM 4.4. A predicate P is definable in L(u) if and only if P
is implicitly definable in L(p).

Proof. Due to the fact that every continuous one-to-one mapping
of a compact space onto a Hausdorff space is a homeomorphism.

5. Interpolation Theorem.

TeeorEM 6.1. Let p' D p. If K', K" are two disjoint closed sets of
M(u') and if m,K' ~ m, K" = 0, then there is a clopen set K of M (u') such
that E'C K, K~ K" =0 and K is definable in L(u).

Proof. According to Theorem 3.4, =, K’ and =, K" are disjoint
closed subsets of M (u). Hence by normality and compactness of the
space M (u) there is a clopen neighbourhood ¢X* such that =, K’ C ¢X*
CO(mE"), X 8(p). Then K = m; (¢ X*) is the required clopen set.

Assume that «, f are two disjoint sequences of predicates and that

= p+a+p. Two sets X', 2 of sentences in S(u’) are said to be prime
modulo p if and only if every sentence in 2’ is definable in L(u-+a), and
every sentence in X'" is definable in L(u+ ).

LevMa 5.2. Let w' D p. Assume that X', 2" C 8(u’) and that X'
and 2" are prime modulo p. If for some interpretation M in M (u), 77 (M) A
NoZ* £ 0 and m (D) A o Z7* £ 0, then w5 (M) A 65™ A o X' £ 0.

Proof. Let a= {Pa}aca; = {Ps}s<s be disjoint sequences of predicates
such that p'= p+-a4-p and 2, 2" be definable in L(x+ a), L{p+B),
respectively. Let M = (M, B;)1<, and

M = <M5 Rl; R;, Rl’l>l<g,a<a,ll<ﬂ € n,Tl(EIR) ~oX* s
W = (M, By Bey B Yacqacabep € w5 (IR) A 027 .

Then we can verify that (M, R, Ri, Ry >icoacanep € 7 (M) A 057 A
X,

LemmA 5.3. Let p' D p. Assume that 22 C 8w and thet X
and X' are prime modulo u. If 6Z™* ~ ¢ X' — 0 in M(u'), then m,(cZ™) A
nm(cZ"*) =0,
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Proof. Direct consequence of Lemma 5.2.
The following is a generalization of Craig’s Theorem:

TeEOREM 5.4, Let p' 2D p. Assume that X7, 2" C 8y and that X'
and X' are prime modulo p. If X' v X" is inconsisient in L(u'), then there
s a sentence X in 8(u) such that X « On(Z") and X" w {X} is inconsistent
in L(p').

Proof. Due to Theorem 5.1 and Lemma 5.3.

6. A remark on the Interpolation Theorem. It has been shown
by K. Sciitte that the Oraig’s Interpolation Theorem holds in intuitionistic
logic, [8] (*). However our Theorem 5.4, a generalized form of the In-
terpolation Theorem seems to fail in intuitionistic logic.

‘We shall distinguigh intuitionistic notions from classical ones, by
adding the symbol ’ as a superseript.

In order to preserve the characterization of axiomatizable classes
we introduce a somewhat stronger topology into the class M'(u) of all
interpretations of L'(u), the intuitionistic predicate caleulus of type u. Let
{M; not kp X, X € 8'(u)} be a basis for the open sets. Then M'(u) is a T, -
space but it is not a Hausdorff space. In fact, let M, N be two distinet in-
terpretations of L'(u) such that all sentences true in M are also true in N;
then for some sentence X e §'(u), N e X* and M ¢ X*. Hence both of M
and 9 have neighbourhoods {2; not ky—1X}, {B; not ky.X} which are
disjoint from M, M, respectively, though they may meet each other.
It is not difficult to verify that K C #'(u) is axiomatizable if and only
if K = ¢'~*(F) for some closed set F in M ’(u) in this topology. Therefore 5.4
represent so-called Tietze’s (or T,-) Separation Axiom, and it is easy
to see that every T,-space with T,-axiom ghould be a Hausdorf space.

7. Appendix. Point set theoretical properties of M(u).
In this section we supplement some point set-theoretical properties of
M (u).

A set X of semtences in §(p) is said to be complete if and only if for
every sentence X in S(u), either X ¢ On(ZX) or 1.X e Cn(X). It is trivial
that if K is inconsistent or if K is empty, then K is complete.

TumorEM 7.1. The following conditions are equivalent:

(1) X is a non-emply consistent and complete set of sentences in S (u).

(2) oZ* consists of a single point in M (u).

(3) M* = On(X) for some interpretation M e M (u).

(*) For this information the author thanks Professor Giaishi Takeuti. The author
is also indebted to Dr. Mitsuru Yasuhara who gave a proof of this fact indepen-
dently.
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Proof. (1)~(2). If X is complete, two interpretations of L(u)
in which X hold are elementarily equivalent, for otherwise, X has two
models M, N in I (u) and kg X, 51X for some X in 8(u). Then by
Theorem 0 both K u {X} and Kwu {nX} are consistent, whence
neither X nor 71X is a deductive inference of K.

The implication (2)->(8) is clear.

(3)~>(1). Assume that MM* = Cn(Z). Then for any sentence X in S (u),
either o* e oX* or oM*eo(X)* that is, either X eOn(X) or
11X € On(3).

CoROLLARY 7.2 (A. Robinson [7]). If X is a non-empty complete set
of sentences and X', X' are two consistent sets of sentences such that % Cin
A Z' then X' o X" is consistent.

The following fundamental theorems are also easy to see as conge-
quences of Theorem 7.1 and of the compactness of M (u):

TreoreM 7.3 (Lindenbaum). Hvery non-emply consistent set of sen-
tences has a complete and consistent extension.

THEOREM 7.4 (Tarski). Every non-empty consistent set of sentences is
the intersection of all its complete and consistent emtensions.

1.5. X is a non-emply, consistent and complete finite set of sentences
in 8(u) if and only if oX* is an isolated point in M (u).

Proof. A point # in a topological space is isolated if and only if {w}
is open, whence the theorem follows from Corollary 2.2.

As an application of Vaught’s Test for completeness, we know that
the elementary theory of densely ordered system with first and last
elements provides an example of non-empty consistent and complete
finite system. Hence the space M (u) is not dense itself if L(u) has the
binary relation < besides identity.

TEEOREM 7.6. Let X be a non-empty consistent finite set of sentences.
If Card(cX*) < ¢, then there is a finite extension of X which s consistent
and complete. ,

Proof. Assume that X has no finite extension which is congistent
and complete. Then ¢Z* does not contain any isolated point of M (u).
Moreover, oZ* is a clopen set, whence is a perfect subset of M(u). The
theorem follows from the fact that every non-empty perfect and compact
set contained in a normal space has cardinal > ¢ [91.

If we assume that the domain ¢ of the type u is an ordinal C w,ie.
that the language L(u) has denumerable number of predicates, then
Theorem 7.6 can be strengthened as follows:

7.7. Let X be a non-emply consistent finite set of sentences. If every
finite consistent extension of % is not complete, then Card (cZ*) = e.

Proof. The theorem follows from Theorem 7.6 and the fact that
every topological space with a countable basis has cardinal < e,
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