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Proof. Let k be a fixed integer different from 0. We have
1) EAtE = {neN: cosn-cos(n—Ek) < 0}.

Moreover, the sequence a, = cosn- cos(n—¥k) i8 almost periodic (in
the sense of H. Bohr) and for some n takes a negative value. The last
properties of {a,} and (1) easily imply that F is a s.a. set.

Let us observe finally that a reasoning analogous to the proof of
Theorem gives the following:

ProposTTION. Let X be a totally - discomnected, compact, Hausdorff
space and let t be @ homeomorphism of X onfo itself. Let & be the Boolean
algebra of all clopen subsets of X. The the following conditions are equivalent:

" (i) The set of all positive iterations of t is equicontinuous.
(ii) The same for negative iterations.
(iii) For every clopen set B C X there is a k +# 0 such that t*E = E.

(iv) The algebra £ is a union of a family of t-invariant tmd finite
subalgebms of #.
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1. Introduction. A. Spadek [10] has introduced the concept of
a random metric consisting of a set § together with a probability measure y
on the set of all mappings of § x § into the reals and such that u(M) =1,
M being the set of all ordinary metrics for S. In [5], Menger, Schweizer
and Sklar clarified the relationship between this concept and that of
a probabilistic (statistical) metric ([3], [4], [6], [7]) and showed that the
condition p(M)==1 is extremely restrictive.

In this paper we continue the study of this relationship by investigating
the probabilistic metric spaces which are generated (in the sense of def-
inition 1) by a random metric and show that they are indeed of a very
special type (Theorems 2 and 4). In part 3, we obtain a representation
theorem giving sufficient conditions for a given probabilistic metric space
to be generated in this way. We conclude by showing that our repre-
sentation theorem is a best possible result in this direction.

For explicit definitions the reader is referred either to the paper [7]
by Schweizer and Sklar or the paper [11] by Thorp. Also, following
a previously established convention, we shall abbreviate “probabﬂxstlc
metric space’ to “PM space’.

2, Metrically generated PM spaces. Let S be a set, let D
be a collection of ordinary metries for S, and let u be a measure for D
(i.e., 2 non-negative, countably additive set function defined on a o-algebra
of subsets of D, called u-measurable sels) such that

(A) for any pair p, q of points in 8 and any real number v, the set
{deD; d(p, q) <x} is p-measurable, and

(B) u(D) =

From the u-measurability of the sets in (A), it follows that for each
pair p, g of points in §, d(p, ¢) is a numerically valued random variable
on D whose distribution function Fy, is given by

(1) Fpg(@) = p{d e D; d(p, q) <o} .
* This research was partially supported by NSF grant GP-2555 and constitutes
a portion of the author’s doctoral dissertation, written at the University of Arizona
under the direction of Professor Berthold Schweizer,
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Let ¥ be the mapping from § x § into the set of one-dimensional distribu-
tion functions defined by F(p, ¢) = Fpe. Then we have

TerorEM 1. If 8, D, u satisfy (A) and (B) and F is defined by (1)
then (S, F) is a PM space.

Proof. It is immediate that:

(I) Fpo()=1 for all > 0 if and only if p = ¢;

(IT) Fpe(0) = 0;

(L) Fpg = Fpg; and

(IV) if Fpe(w) =1 and F(y) = 1, then Fp(z+y) = 1.

Motivated by Theorem 1, we make the following:

Dermvirion 1. A PM space (S,F) is metrically generated i and
only if there exists D, u such that

(12) 8, D, 4 satisty (A) and (B), and
(1b) Foglm) = u{deD; d(p, q) <}, for all p, ¢ in S and all real .
THEOREM 2. If (8,F) is a metrically generated PM space then:
() (8,F) is a Menger space under the t-norm T, , defined by
Tn(a, b) = Max (a+b—1, 0);
(i) Bwery distribution function Fyy (p 7 q) is continuous at zero.
Proof. To verify (i) we have to show that the Menger triangle
inequality under Ty, i.e., the inequality
Fplz+y) > TM(FM(-”); Far(?/)) ’
is satisfied. To this end, let p, ¢, 7 in § and = »¥ =0 be given. Define
By ={d; d(p, q) <a},
(%) By={d; d(q,7) <y},
' By={d; d(p,r) <o+y}.
Since d(p,r) < d(p, q)+d(q,r), it follows that E, ~E,CHE, and
Forl+y) = p(B) > p(B, ~ B)
= p(B) +p(By)— p(By v B
= Fpg(®) +Forly)— k(B v By
2 Fpo(#)+Fly)—1.
Since Fp.(z+y) is always > 0, the desired inequality follows.

To verity (ii), let {4} be a decreasing sequence of positive real numbers
whose limit is zero. Let

Bn={d; d(p, q) < @n};
Then limF, = & and, since #(H) < oo,
Y Pog(n) = lim s (Hp) = (@) = 0 = Fp(0) , .

!

n=1,2,..

icm°®
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which, together with the fact that Fp.(w) = 0 for # <0, shows that Fpy
is continuous at zero.

Theorem 2 is a best possible result. This is shown by

TeeorEM 3. If T' is & t-norm stronger than Ty, then there ewists
a metrically generated PM space (8, F) which is not a Menger space under T.
Moreover, the space may be chosen so that the distance distribution functions Fpg
(p # q) are continuous.

Proof. Since T is stronger than Ty, for some a, b from the open
interval (0,1) we have 7'(a;b) > Tu(a, b). We consider two cases.

Case 1. a-+b < 1. Let (8, F) be the PM space which is metrically
generated by §, D, 4 where:

8= {p,q,r}, a three element set;
D= {d; 0 <t <1},

where the d; are metrics for § given by

dt(P,!Z)=t+37 dt(Q:T)=t+57 dt(p;r)=t+8; for 0<t<‘%;
and
&p, Q) =1+5, da&g,r)=1t+3, dp,r)=1+8, for }<i<l;
let g be the function defined on (0,1) by
8at , o<,
o ={
8(1—a)(t—%), i<t<l

and let x4 be the measure for D defined by

n(D) = [gma

where the integral is taken in the Lebesgue sense over the set of all ¢
in (0, 1) for which d e D, for any set .D C D for which this integral exists,
i.e., for which {; d; e D} is Lebesgue measurable. Routine calculations
show that the distance distribution functions Fpy, Fyr, Fpr are continuous
everywhere and that

Fpr(d+4) = 0= Tpla,b) < T(a,b) < T(a,1—a)
= T(sz(4)y qu(4)) ’
whence (8, F) is not a Menger space under T.
Case 2. a+b > 1. Let (8, F) be the PM space which is metrically
generated by S, D, 4 where:

8= {p,q,7},
D= {d; 0 <t<1},

a three element set;
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where the d; are metrics for § given by
&y, ) =1+1, &g, =1t+8, dp,n=1=t+6, for 0<I<Y
di(p;Q)=t+2; dt(aﬂ'):t‘l‘zy dt(pyy)=t+4a for %<t<%;
dfp,q)=1+56, dfg,r)=1+1, dfp,r)=1+6, for F<t<l.
Let g be defined on (0,1) by
18(1—b)t, 0<t<t,
gt) =1 18(a+b-1)(t—%), I<i<},

18(1—a)(t—%), i<t<l,

and let u be the measure for D defined by

p(D) = [ g(t)t

where the integral is taken as in the previous case.
As in case 1, the distance distribution functions are continuous and

Fpr(3+3) = a+b—1= Tn(a, b) < T(a,b) = T(Fpy(3), Fer(3)} ,
50 that (8, F) is not a Menger space under the ¢-norm 7.

Schweizer, Sklar and Thorp ([8], Theorem 2) have shown that if
(8,F) is a Menger space under a continuous ¢-norm, then the ¢, A-topology
for § is metrizable. Since Ty is continuous, this, together with Theorem 2
above, yields

THEOREM 4. If (8,F) is a metrically generated PM space, then the
g, A-topology for S is metrizable.

If, for some % > 0, the kth moments of the random variables d(p, ¢)
are finite, then a metric for § can be explicitly exhibited in terms of these
moments.

Levma, Let (S, F) be a PM space, metrically generated by (S, D, p).
~ Let k>0 be given and suppose that for any p, q in 8, the k-th moment

[ &, 9)du
D

of d(p, q) is finite. Then the function oy from 8 x 8 into the non-negative
reals defined by

[ap, s if o<k<1,
‘57:(?7 Q) =
[ g{ g, dul” ¥ k>,
is @ meiric for 8.

Proof. For 0 <% <1, @ is a metric for § and the ordinary triangle
inequality is satisfied. For 7.: > 1, the conclusion of the lemma is an imme-
diate consequence of Minkowski’s inequality.
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TumorEM 5. If the PM space (8,F) is metrically generated by (8, D, p)
and if, for some k> 0, the k-th moments of the random variables d(p, q)
are finite, then the &, A-topology for 8 is weaker than the 8x-metric topology
for 8, in the sense that each &, A-open set is a Ox-open set.

Proof. By Theorem 7.2 of [7], the &, A-neighborhoods
Np(ey 2) = {g e 8; Fpple) >1—2}, ¢,4>0,

form a base for the &, A-topology. Thus it suffices to show that any
&, A-neighborhood of a point p in § contains an open sphere of the form

Bp(r) = {g € 8; ou(p, @) <7}.
We shall show that for any ¢> 0, 1> 0 and any peS:

(i) Sp(eFA) C Ny(e, 4) i 0<k<1;
and
(ii) Sp(edti®) C Nple, A) it Ek>1.

Suppose 0 <k <1 and that (i) does not hold. Then there exist &> 0,
A>0 and p, ¢ in 8 such that '

0P, @) <eFh  and  Fpyle) < 1-—
Let B = {d; d(p,q) >} Then u(F) >4 and

3ilp, 9 = f ap, g)dp = f ekdp

= 5",u (B) = €.
This contradiction completes the proof of (i).

If k> 1 and (i) does not hold, then there exist ¢ > 0, A> 0 and p,
q in 8 such that

P @) <edF  and  Fygle) < 1—
Let B = {d; d(p,q) > ¢}. Then u(B) > A and

o, @) = [}_ﬂf d¥(p, q) d,“] th = [1'3[ s"d,u]llk
— yi{B) > ohle

This contradiction completes the proof of (ii).

THEOREM 6. If the PM space (8, F) is metrically generated by 8, D, u
and if for some k > 0, the (2k)-th moments of the random variables d(p, q)
are finite and wniformly bounded, then the e, A-iopology and the &x-metrio
topology for S are equivalent. )

Proof. By hypothesis, there is an M > 0 such that, for all p, ¢ in 8,

[ @, gyau< .
D
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It follows from this inequality that the kth moments are finite. Thus,
in view of Theorem 5, it suffices to show that for any p ¢ § and any ¢ > 0,
there exists 1> 0 such that

Np(A, 4) C Sple) .

We again consider the two cases separately.

Case (). 0<k<1.

Let p €8 and let £> 0. Choose 1> 0 so small that
(MA24- 2% < ¢,

and suppose that g € Np(4, ). Then Fpy(d) > 1—A. Let B = {d; d(p, q) = 1}
and let yz be the characteristic function of E. Since pu(H) < 4, we have

5, @)= [ &, du+ [ &, Qdu
E D-r
= [, 9 gpip+ [ &, 0du
E D-E

<[ e, 0a]"| J x%d#]llz—{—l"m [Edﬂ

< MR 42k < (MAYR A < g

Thus, q € Sy(e) and Np(, 1) C p(e).
Case (ii). k> 1.
Let p €8 and let £> 0. Choose 1> 0 so that

(MAY2A- 2k < *

a,nd_ suppose that ¢ e Ny(2, ). Then Fpy(4) > 1— 1. Let E and gz be as
defined above. Since x(H) < 4, we have

8w, 9 = ﬁ{ A, Qdu < (M4 7% < &,

Thus é,f(p, q) <e and ¢ e Sye).
This shows that ¥,(i, 1) C 8y(c) and completes the proof.

8. Me.trlc generation of PM spaces. The previous section was
devoted primarily to the derivation of various properties of metrically
genez:a_ted PM spaces. Many of its results may be viewed as necessary
cond'ltmns for a PM space to be metrically generated. In this section we
c(.n%mder the converse question—that is to say, we seek sufficient con-
ditions for a PM space to be metrically generated. We begin with the

following necessary and sufficient condition for a si -
: n for a simpl
to be metrically generated. imple space (see [7])
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TamorEM 7. Let (8, F) be a simple space generated by the metric space
(8, d) and the distribution function G, so that for any p # ¢ in 8 and any
230, Fpw) = Gle/d(p, q)). Then (8,F) is metrically gemerated if and
only if @ is continuous ai zero.

Proof. The necessity of the condition follows from Theorem 2.
To show sufficiency, let D= {dy; ¥ > 0} where the dj, are metrics for §
defined by

dyp,q) =y -d(p,q) foralp,qgin § and all y>0.

Let ¢ be the Lebesgue—Stieltjes meagure for the open half line y > 0
determined by the distribution function @ and let u be the measure for D
defined by

u(D) = afy > 0; dy e D}
for all sets D C D for which {y > 0; dy ¢ D} is o-meagurable. It is routine
to show that §, D, u satisty (A) and (B). Furthermore, for all p # ¢
in § and for all real # we have

Fpo(w) = G(afd(p, ) = oy > 0; y < a/d(p, g)}
o{y > 0; y-d(p, q) <2}
p{dy e D; dy(p, q) <}
Thus (8, F) is metrically generated by §, D, u.

In order to present the main results concerning metric generation
of PM spaces, we need the concept of the quasi-inverse of a distribution
function, as introduced by Sklar in [9].

DEFINITION 2. Let F be a distribution function. The quasi-inverse F*
of F is the function defined on the open interval 0 < ¢ <1 by

F*(it) = sup {z; F(r) <i}.

We also list the following conditions which a given PM space (8, F)
may or may not satisfy: _
(0) For each 0 <t <1, the function d defined on 8 x 8 by

ap, ) = Fro(t)

[

f

is a metrio for S.

(D) (8, F) is metrically generated by 8, D, u where D is linearly ordered
([1], p. 14) by the relation:

d,<dy, if ond only if du(p,q) < du(p,q) for all p,qin 8.

E) (8, F) is a Menger space under the t-norm T = Min, given by
a, of a<b,

Mm(a’b)={b, if a>0b.
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TieoreM 8. If (S, F) is a PM space, then the following implications
hold:

(©)= D)= (B) .

Proof. (i) Suppose that (8, F) satisfies (C). Let D = {d;; 0 <t <1},
where the d; are the metrics for S given in (C), and let u be the measure
for D defined by

u(D)=9v{0 <it<1; dyeD}
(where » is the Lebesgue measure for 0 < ¢ < 1) for all sets .D such that
{te(0,1); d; e D} is Lebesgue measurable.

It is straightforward to show that (§,F) is metrically generated
by 8, D, p. Further, D is linearly ordered by < since the quasi-inverses 7,
are non-decreasing functions of ¢ on (0, 1). Thus, condition (D) is satisfied.

(ii) Suppose that (8, F) satisfies condition (D). Let p, ¢,r be in §
and let @, y > 0. Let E,, H,, E; be defined as in (%) of the proof of Theo-
rem 2. We first show that either B, C F, or F, C I;. To this end, suppose
;slhat B, § B, and that d, ¢ B,— F,. Then, since D is linearly ordered, we

ave

(a) for all A< dy, deBy,

(b} dy(g,7) = v,

(c) for all d e B, d(g,r) <y < dy(g,r) and d < d,.

From ga) and (e) it follows that ¥, C F,, whence either B, C H, or
B, C E,. Pinally, since ¥, n E, C F,, -

Fonlo+y) = w(Bs) > u(By ~ By) = Min (u(B), p(By))
= Min (Fpo(@), Far(y) -

Thus, (8, F) is a Menger space under Min and the proof is complete.
E\_TBEOBEM 9. If (8,F) is a PM space whose distance distribution
Junetions Fyy (p # q) are continuous then (C), (D), and (B) are equivalent.
Proof. In view of Theorem 8, it suffices to show that (B) i i
[ implies (C).
Sﬁ;ﬁ)o;e thelzl'efore that (8, F) satisties condition (E). Let 0 <t < 1. (We
8 show that the function d; given in (C) is a metric for 8. Cl
any te(0,1) and all p, ¢ in 8, i ve&ﬂY, o
(a) di(p, 9) >0, and dp, g) = 0 if and only if p= g,
(®) &(p, 9) = dig, p). ‘

If p, g, r are distinct points of & th i
) en, since 7, -
tinuous, there exist @, y > 0 such that ’ o 0 T w0 con

and t= Fpo(w) = Foy) -

e=Tpt), y=F%).
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Using the assumption that (9, F) is a Menger space under the #-norm
T = Min, we have

Fon(Fp(t) +F5(1)) = Fonlw-+y) > Min (Fpy(), Finly)) = Min (5, ) = 7 .

It follows that Fig(t)+Fe(t) = Fpelt); ie., that

(C) di(pi 7’) < dt(P; Q)‘!“dl(% 7)-

(We note that (c) is obviously satisfied if p, ¢, r are not all distinet.)
Thus d; is a metric for 8 and (8, F) satisfies condition (C).

The following theorem follows immediately from Theorem 9 and is
the main result concerning metric generation of PM spaces.

TasoreM 10. If (8, F) is a Menger space under the t-norm T = Min
and if each distance distribution function Fpg (P # @) 18 continuous, then
(8, F) is metrically generated.

Since Min is the strongest possible ¢-norm, one might conjecture
that Theorem 10 admits a considerable improvement. This, however,
is not the case. For our final result, we show that Theorem 10 is best
possible in the sense that if the {-norm Min is replaced by any weaker
continuous f-norm, then the resulting proposition is false.

TEROREM 11. Let T be a continuous t-norm which is weaker than Min.
Then there ewists a PM space (S,F) such that

@) (8,F) is a Menger space under T’

(i) each Fpy (p +# q) 8 continuous;

(iii) (8, F) is not meirically generated.

Proof. The hypothesis implies that there exists 0 <a <1 such
that T'(a, a) < a. Let (8,F) be the PM space defined by:

(1) 8= {p, q, 7}, a three element set;

(2) The distance distribution functions Fpg, Fory Fpr are

0, o<,
a’(4'77_1),7 << %,
Fog#) = Foe(m) =y @ <o,
A—a)(la—3)+a, P<o<i,
|1, 1<

and

Fo () = oiltlng(FM(m— 1), Fpe(t)) for all 0.

Tt is easily verified that (8, F) satisfies (i) and (ii). Also,

To(l)=T(a,0) and Fp(lB)=T(l,0)=a.
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Suppose now that there exists D and u such that (8, F) is metrically
generated by 8, D, u. Then we would have

1—a=1-Fp(Lb5) = 1—pu{d; d(p, r) < 1.5}
= pid; d(p, r) > 1.5}
< p{d; d(p,r) > 1.5 and d(p, q) <.5 and d(g,r) < .5}
+up{d; d(p,r) > 1.5 and d(p, q) < .5 and B <d(g,r) <1}
+pfd; dp,r) =15 and 5 <d(p,q) <1 and d(g,r) < .5}
+p{d; d{p,7) > 15 and 5 <d(p,¢) <1 and B < d(g,r) <1}
+u{d;dp,9) =1 or d(g,r) =1},
since the x-measurable sets on the right side of the inequality cover the
set {d; d(p,r) >1.5}. The ordinary triangle inequality implies that the

first three terms on the right side are zero. The fifth term is zero since
Fpg(1) = For(1) = 1. Thus,

I—azp{d;d(p,r) > 15 and 5<d(p,q) <1 and B < d(q,r) <1}
<u{d; dip,q) > .5 and d(g,7) > 5}
=1—u{d;d(p,q) < .b or d(q,r) < .5}
=1—[p{d; d(p, @) < B}-+p{d; d(g,7) < .5}

—u{d; d(p,q) < .5 and d(g,7) < .B}]

= 1—Fpy(5)—Fop(.5)+ p{d; d(p, ¢) < .5 and d(g, r) < .5}
<l—a—atp{d;d(p,r) <1}
=1-2a+Fp(l) = 1—2a+T(a, a).

Thus 1—a§1—2a+1’(a, a) and @ < T'(a, a), which is contrary
to the hypothesis. Therefore, (8, F) is not metrically generated and the
proof is complete, :
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