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Topologies with T,-complements
by

E. F. Steiner and A. K. Steiner (Albuquerque, New Mexico)

The family of all topologies definable on an arbitrary set X forms
a complete lattice = under the partial ordering: 7, <7, if and only if
7, C7,. The lattice operations A and v are defined as: HAT,=1T7 "7,
and 7,V7, is the topology generated by the base $ = {B: B= U, n U,
U, ev, and U, et} The greatest element, 1, is the discrete topology
and the least element, 0, is the trivial topology. The lattice 2 has been
recently studied ([2], [3], [4]) and has been shown to be complemented [5].

The family of all T,-topologies definable on X forms a complete
sublattice A of X, with greatest element 1, and least element, the co-finite
topology €= {U: U= @ or X— U is finite}. However, an example has
been given [6] to show that 4 is not a complemented lattice, unless X
is a finite set. :

The question arises as to which T,-topologies on X do have T,-com-
plements and whether it is possible to characterize these topologies.
Several large classes of T,-topologies which have T'-complements have
already been investigated ([1], [6]), but no characterization has been
given. It is not even known if the set of real numbers with the usual
topology has a T)-complement.

Tt is the purpose of this paper to present more classes of I'-topologies
which have T;-complements and to give some topological properties
of a T,-complement for the real numbers, if one exists.

Tt is shown that if a Hausdorff space (X, 7) satistying the first axiom
of countability has a T-complement ', then 7’ is countably compact
on. co-finite subsets of X. It is also shown that if a dense subspace (Y, ;)
of (X,7) has a T;-complement which is compact on co-finite subsets
of Y, theu 7 has a T,-complement which is compact on co-finite subsets
of X. (However, the converse of this theorem fails to be true.) Thus, if
the rational numbers have a T,-complement, so do the real numbers.

If 7 ¢ A, then 7' is a T,-complement for v if 7’ ¢ 4, and v’ =1 and
AT = C.

Define I(X) to be the family of co-finite subsets of X; that is, F(X) ==
{UCX: X— U is finite}. )
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The symbol [X| will be used to denote the cardinality of the set X.

TaEEOREM 1. The order topology on any well-ordered set X has a T'-com-

plement.

. Proof. Let  be the order topology on a well-ordered set X. Let 7’
be the T,-topology generated by unions of sets of the form:

(i) U, where U e J(X),

(ii) {&}, where @ is a limit ordinal in the well-order of X.

Let @ ¢ X. If # is a limit ordinal, then {z} ¢ 7" and if not, {x} ¢ v. Thus,
7vt’ = 1. Clearly, it U erar’ and U 5 @, then U eI (X) and A7 = C.

TEEOREM 2. Let (X, 7) be a Hausdorff space satisfying the first awiom
of countability. If = has a T, -complement v', then ©' must be countably compact
on co-finite subsets of X.

Proof. Since the discrete topology has a T, -complement, compact
on co-finite subsets, we can assume that v s 1.

Suppose that there is a T;-topology 7’ such that vve'=1 and
AT’ = C. Let B be a co-finite subset of X, that is F ¢ J(X), and assume
that there is a countable open covering §= {Un: Unev’, n=1,2,..}
of E such that no finite subeollection of § covers E.

Well-order the elements of B as {w,: a< u}, where u iz the smallest
ordinal of cardinality |E|.

Let 9, be an element of U, and define 8, = U,—{y,}. Since 7' is
a T,-topology, 8, €7’. Denote by y, the first =, ¢ F such that =, ¢ S; and
¥1 < %,. Such an @, exists since no finite number of U, covers F. Define
8y =8, v (Uy— {41, ¥2})- Then S,e7’ and y,y,¢8,. If Sp has heen
defined for all k< n, denote by y. the first x, ¢ B such that ®, ¢ Sp.a
and Yn—y < #,. Define Sp = 81 U {Un— {1, ¥s; ..., ¥a}}. Then

n
By = gl{U:—{yu Yoy oy Yn}) €7’

For each n=1,2,..,8¢7, 50 615’,. et and lf]«fj Spe=¥ ==
ne= fw=

. 0
{ynt n=1,2,...}. Thus X— | J 8= Y v K, where K iy a finite gubset
of X— . el

Sinee zAt" = C, the only closed sets which can be common. to = and ' ave
either finite subsets of X, or X. And since K v Y is cloged in v/, it K v ¥
is closed in v then K v ¥ = X, But if K v ¥ = X, then &, = @ for each
n=1, 2, ... This implies that each Uy, is finite and that for each v ¢ B,
{#} e7’. Bowever, since 7 iy Hausdorff and = s 1, there is a w ¢ X such
that w has no finite neighborhood in v. Let & ¢ B such that @ = w, Then
1:1_1ere are disjoint open sets V; and V, in + such that w eV, and @ ¢ V,.
Since X—F is finite, V, ~nHer and V, ~n B ev'. But, V, C X—{V, ~ T}
and V; is not.finite. Hence, V, ~ B ¢ G, and vA7' # C.
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Thus K v Y is not closed in 7, and since K is finite, ¥ is not closed
in 7. However, 7 ig first countable and Hausdorff and so there exists
a subsequence {y;} of {y»} which converges to a point 2z ¢ X, and the set
Y = {2, ¥1, ¥z, ...} is closed in 7.
Define

n
R, = Ul{Ui—{'y{,yé, vy Yny 2t} for each m=1,2, ...
. =

‘ o
Since v’ is a Ty-topology, Ra e’ for each n and | J R, e7’. Hence X
n=1

~|JRs= Y U K’, where K' is a finite subset of X~ &, is closed in =

n=1
and in v’ and is different from X. This contradicts the assumption that v’
is a T,-complement for v and therefore z" must be countably compact
on co-finite subsets of X.

CoROLLARY. Let (X, 1) be a countable Hausdorff space. If = has a T -com-

plement ©', then v must be compact on co-finite subsets of X.

THEOREM 3. If a. countable Hausdorff space (X,v) has a Ty-com-
plement, v', then ' camnot be Hausdorff.

Proof. Let us suppose that ¢' is Hausdorff and let # ¢« X. By the
corollary to Theorem 2, X—{w} is compact in the topology z’. Hence
(v being Hausdorff), X— {z} is a closed subset of (X, ’). This implies
that v = 1 and since 7’ is a T,-complement for 7, it implies that = C.
This is a contradiction since r is Hausdorff.

THEOREM 4. Let (X,7) be a T-space satisfying the second axiom of
countability, where |X|> xy. If © has a T,-complement ', then v’ cannot
be second countable.

Proof. If 7 and v’ both have a countable base, then 7vz’ has a count-

able base. If |X| > &,, the discrete topology on X does not have a count-
able base, s0 TVt # 1.

TomorEM 5. Let X be an open dense subset of a T,-space (Y,7). If
7| X = tx has a T,-complement v’, then © has a T';-complement.

Proof. Let v* be the T;-topology generated by unions of sets of
the form:

() {y}, for ye Y—X,

(i) U v F, where U etk and F «J(¥Y—X).

Since 7% is a Ty-topology, =’ is Ty. Also, 7'|X = 7%.

If y e Y— X, then {y} ¢7’. If y € X, there exist sets U evx and Vet
such that {8} =U~V. But Uer and V*=V v (¥T—X)ev s0 {2} =
U AV*ervr'. Hence vV’ = 1.


GUEST


26 E. ¥. Steiner and A. K. Steiner

Tet UewAr, U#@. Then UnX etxAty, 80 U n XeJ3(X).
(Since X is dense, U n X # 0.) But U e’ implies that U e 3(Y). Hence
At =C.

However, the converse of Theorem 5 is not true, as may be seen from
the following example.

Tet ¥ =, uH,u s, where H, B, and 8§ are mutually disjoint
infinite subsets of Y. Let 7 be the T;-topology on Y generated by sets
of the form:

(i) {&}, for »e By,
(iiy T, where U e I(H,),

(iii) {s} v W, where s¢8 and W eI (B, v By),

(iv) W, where W e 3(H, v Ey).

Tet ¢ be the T,-topology on Y generated by sets of the form:

(i) U, where U «3(8),

(i) {#} vV, where v ¢ B, and V eI (S v E),

(iii) V, where V e J(8 v E).

Tt may easily be seen that ¢’ is a I'-complement for z. Now, let
X = F, v H,. Then X is an open, dense subset of Y. However, |X has
no T,-complement (for the proof, see [6]).

TEEOREM 6. Let X be o dense subset of a Ty-space (¥, 7). If vx = 7|X
has o Ty -complement v which is compact on co-finite subsets of X, then
has & Ty-complement which s compact on co-fimite subsets of Y.

Proof. Let ¢ be the T,-topology whose base B’ consists of sets
of the form:

(i) () for y e T—X,

(ii) V—F, where V = (T—X) vV, V ek, ¥ = clgV and F is a finite
subset of ¥—X. :

If Uev’, then

U=[UT—~FJ1v[U s

If Ve, then ¥ ~ X =7, so #'|X = v%. Since 7% it a Ty-topology,
7 is also T.

'If yeY~X then {y}ev’. If y e X, then there are sets U evx and
Ye-cx such that {y}=U~V. But U= W ~ X, where W ev. Since v
is .Tl,. W—{y} €T and Y—(W—{y}) is closed, contains V, and hence
contains V. Therefore {y} = W AV erve’ and vv'=1.

Let U e tAt’ and suppose U = @. Since X is denge in ¥, U ~ X # @.
Thus U~ X etxAty and U ~ X e J(X). Now, U v’ implies that U =
[UVe—F)lvllU{ys}l, s0 UAX= ]V, Since v% is compact.on

and T nX=Vsetk.
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co-finite subsets of X, U ~n X = L“) Vi. And since X is dense in Y, L"J Vi=
i=1 =1
Y—K,, where K, is a finite subset of X. Now,

(7= i3 7= (0 Ta- T3 {79

{=1
- {Q1V¢~X} o {Q}V‘} —{T—-X}u{Un X}

= Y—K,, where K, is a finite gubset of X .

~ n o~
But ) (Fo—F)C U, so P CUUF, where F is a finite subset of
i=1 i=1

Y— X.Therefore {T—X} v {Un X} =YK, CU vFandthus YCU v
wF UK, Hence Ue3J(Y) and A7 =C.

Tet G be an open covering of E in 7', where E e3(Y). Bach G €S
is the union of base elements of v’ s0 §' = {By: G=\JB, B.eB, Ge S}
also covers B and thus covers B ~ X. The family §"” = {B.~ X: B, §’}
covers B ~ X and is a subcollection of z’s 50 finite number of B, ~ X
cover B ~ X; that is,

FnX=JBinX=Ti.
i==1 {=l
Since Vi—F¢ C By, for i =1,2, ..., 1
n [ n
UB:D iul(V¢~Fi) = {_UIV;—-X} v {BA~X}—-F
= s

il

={Y—X} {8~ X}—F e3(XY),

n
where B is a finite subset of ¥—X. Each B:i C @i €S so | )G covers
i=1

a1l but @ finite number of elements of B. Therefore a finite subcollection
of 8 covers B and «' is compact on co-finite subsets of Y.

The following example shows that the converse of Theorem 6 is
noti true:

Let ¥ = B, v B, v B, u E,, where By, B, B, and E, are mutually
disjoint infinite sets. Let v be a T,-topology on ¥ generated by sets of
the form:

(i) {=} ‘for zeklh,

(ii) {#} v U, where # ¢ B, and U ¢ 3(Hy),
(iii) {x} vV, where » ¢ F; and V e 3(By),
(iv) V, where V e I (H,).
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Let 7' be the T'-topology on ¥ generated by sets of the form:
(i) U, where U eJ(Y),
(ii) V, where V ¢ J(H,),

(iii) W, where W e J(H;),

(iv) {8} OV v W, where ¢ E,, VeI (H,), and W eI (H,).

It can easily be seen that vvt' =1 and zA7' = C. Moreover, since
any co-finite subset of ¥ must contain points of Z, and since any open
set in v’ eontaining points of HF, must itself be co-finite, v’ is compact on
co-finite subsets of Y. However, if X = B, v H,, then X is a dense subset
of ¥ and vx = 7|X has the following properties: By, E, e vy, vx|H, = 1
and 7x|B, = C. Therefore 7x has no T)-complement (for proof, see [b‘])f

Since the real numbers with the usual topology R satisfy the hypo-
theses of Theorems 2 and 4, if R has a T, -complement R', then R’ cemimot
have a countable base and must be countably compact on all co-finite
sets of real numbers.

] Similarly, if R¢ denotes the usual topology on the rational numbers
Rois a T -complement for Rq only if Rj is compact on all co-finite subset;x
of rational numbers and R§ is not Hausdorff.

Therefore, by Theorem 6, if R has a 7)-complement then R has
a T';-complement which is compact on co-finite subsets of real numbersA
and which is not Hausdorff. However, if R¢ has no Tl-complement:

;10 conclusion can be drawn about the existence of a IT,-complement
or R. : ‘
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An extension of a theorem of Gaifman-Hales-Solovay
by
Saul A. Kripke (Omaha, Nebraska)

Solovay [1] has found a remarkably simple proof of a theorem of
Gaitman [2] and Hales [3]: There are countably generated complete Boolean
algebras of arbitrarily high cardinality. Here we show that Solovay’s
methods can be extended to prove the stronger theorem: Huery Boolean
algebra can be completely embedded in a countably gemerated complete Boolean
algebra. (A complete embedding of a Boolean algebra B into a complete
Boolean algebra B’ is a monomorphism of B into B’ preserving all suprema
that happen to exist in B. If B is itself a complete Boolean algebra, this
means that all suprema are preserved (*).)

Like Solovay’s [1], the present work was suggested by Cohen’s notion
of forcing [5]. We will follow Solovay, however, in making the present
proof independent of any knowledge of Cohen’s work, leaving the con-
nection with Cohen to be divined by the cognoscenti (*).

Let 8 be any discrete topological space, and let 8” be the product
space of § taken countably many times as & factor. An element of 8%
can be represented as a function 7 from the positive integers into S. If we
are given a finite sequence o= {8, -, sp> of elements of §, the set of
all functions e 8° with f(i)=s; (¢=1,..,n) is an open set of the
product space 8°; eall it O(c). The sets of form D(c) form a basis for
the product topology of 8“. We explicitly include the empty finite se-
quence; the corresponding basic open set is the entire space 8.

Solovay [1] has shown that the regular open algebra of 8%, where 8
is any discrete space, is a countably generated complete Boolean algebra.

Limva 1. Let S be a discrete space, and let B' be the regular open al-
gebra of S°. For each element s « S and positive integer n, let o(n, 8) be the

(f) We use the notations of Halmos [4] for finite and infinite Boolean operations,
exeept that the complement of b is denoted by —b. For all unexplained terminology,
the reader ghould consult [1], [2], [3], or [4].

In the terminology of [4], p. 34, Ex. 6, Theorem 1 of the prosent paper would vend:
Buery Boolean algebra is isomorphic to a regular subalgebra of a countably generated com.
plete Boolean algebra. (So in particular, every complete Boolean algebra is isomorphic
to a complete subalgebra of a countably generated complete Boolean algebra).

(*) The connection between Boolean algebras and forcing will be developed in
a fortheoming paper by Scott and Solovay. I have not yet seen this paper, but I have
benefited from hearing both authors expound some of their: ideas.
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