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A unique factorization theorem
for countable products of circles

. by
Carl Eberhart* (Lexington, Ky.)

To say that X is a factor space of ¥ means that ¥ is homeomorphic
with X xXZ for some space Z. One can often say something about X if
something is known about Y. For example, it is not hard to show that
if ¥ is a compact, connected, locally connected metric space, then so is X.
As a further example, it can be shown that every one-dimensional faetor
space of the Hilbert cube is a tree (non-degenerate locally connected
metric continuum containing no simple closed curve). R.D. Anderson
has proved that in fact every tree is a factor space of the Hilbert cube [1].
In this note -we consider the analogous problem of determining the one-
dimensional factor spaces of countable products of circles, It is found
that the circle is the only one. The author wighes to thank R. D. Anderson
and A. Lelek for their suggestions.

The notion of an inessential space [2] will prove useful. An inessential
space is a space X such that there is a homotopy H: [0, 1] x X »X with
the property that H (1, «) = & for each # ¢ X and H(0, X} # X; in words,
X can be continuously deformed to a proper subset of itself with a homo-
topy starting at the identity. A space is essential if no such homotopy
exigts. It follows from Lemma 1 of [3] that a countable product of circles
is essential.

Lmyva 1. Let X be a tree and let p be an endpoint of X. Then there
is a homotopy H: [0,1] x X X such that H(1,x) = o for » ¢ X, H(0, X)
=p and H(t,p)=p for each 1¢[0,1]. Consequently X is inessential.

Proof. This is a corollary of Theorem A of [4], which states that X
can be made into a semilattice with identity and zero p.

LeMva 2. Bvery factor space of am essential space is essential.

* The results in this paper are contained in the author's dissertation written
under the direction of Professor R. J. Koch.
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a Oﬁi:gf' I‘Hft [l(; 2? a}me;senpé}ail ts]f)ace. L.et dY be any space. Given then 4 o B is a fignre eight, and a retraction of X onto 4 v B can be
py £: 19, XA >4 Wi 6 required property, define constructed by a simplification of the procedure used in Case 1. As in
E: [0,1]Xx X xY X xY by K(t,2,y)= (E(t,),y). Case 1, this implies that IT;(X) is non-abelian. If 4 ~ O* = {p, ¢} where
. P # ¢, then 4 v O*is a 0 curve. Label the components of A\{p, ¢} D and E.
Then K demqnstrates the inessentiality of X x¥. Hence the product There are two possibilities:

of an inessential space with any space is inessential. (i) 0, D, and B do not all lie in the same component of X\{p, ¢}.
CoROLLARY 3. Let X be a one-dimensional factor space of a countable Then there is a component K of X\{p, g} containing exactly one of 0, D,
product of circles. Then X must contain at least one circle. and B, say C. Let K’ = X\K. Note that K* and K’ are closed subsets
Proot. If X contained no circle, then X would be a tree. This con- of X with K*~K'= {p,q} and E* v K’'=X, TUsing Theorem VI 4
tradicts the fact that X is essential. of [5] and the Tietze extention theorem, there are retractions g: K'—A
. . and h: K*->(*. The union of g and A is then a retraction of X onto 4 v C*.

Levwa 4. Let X be a one-dimensional factor space of a countable We conclude that IT,(X) is non-abelian.

product of circles. Then X contains at ircle.
f e o most one cirele (ii) 0, D, and F lie in the same component of X\{p, ¢}. Let F be

Proof. Suppose that X contains more than one circle. We will show an are in X\{p ich joi
. ¢ , ¢} which joins exactly two of 0, D, and ¥, say € and D.
f;lizrz]zi i;ndzlf%ﬂ_t&l group of X, IL(X), is then non-abelian. But X x¥ Let r and s denote the endpoints of F, with 7 € 0, s ¢ D. Now if the subarc
omorphic wi aprf)duct of circles which ]:'Las an abelian fundamental (p, ) of D lies in a component of X\{p, s} not containing ¢, then we can
ﬁiﬁpt;];mf;eltt ;fm a;n I;,r;nse}copne':cted topological group. This together retract X onto a 6 curve as in (i). Hence we may assume that there is
hat I1.CT) s et m;( axcoil Ejaéizﬁgzphéi Wlfth 1;171(X)®111( Y) implies an arc @ joining (p, s) with (4 v 0 v F)\[p, s]. In fact, we may assume
e ma,y’be g . The facts about fundamental that @ joins (p, s) with the subare (r, g) of C; otherwise, it is seen that X
To establish the claim that if ¥ . tai . containg two disjoint circles or a figure eight. By the same reasoning
IIX) is non-ahelian contains more than one circle then we may assume there iy an arc H joining E with F\{r, s}. Now in the
Tlllere are oo ’t suppose that A and B are distinct circles in X. figure 4w ¢ F U G v H, there are two disjoint circles. Hence IT,(X)
0 consider: must be non-abelian. This concludes the proof of Lemma 4. The author
) Case 1: 4 and B are disjoint., Since X is arcwise connected, there is grateful to Dr. H. Patkowska for pointing out an error in the original

:sfa.g arFe O'in X such that 4 ~ €= ¢ and B ~ 0= b are the end points version of Lemma 4.
T U {Zofi : ”; Z§§21}’1$’hegm; {?é ];exc :loggé ?/)f<U%d(93, 4 v O)}, and *1615 TEEOREM 5. Let X be a one-dimensional factor space of a countable
A O, Note alie 33 o ot T, containg B and U i product of circles. Then X is a circle. Thus the factorization of a countable
at B v (U*\U) is a closed subset of U* with product of circles into one-dimensional factor spaces is unigue.

Bn (*U*\U) = b. Hence, by theorem VI 4, page 83, of [5], there is a map
g: U*->B such that g(s) = 2 for # ¢ B and g(@) = b for # e U\ U. Now
for each weA\g, let V,= {ycX: d(@,y) < 3d(z, U* o )} and let

Proof. Let A denote the circle in X and assume that X\4 is non-
void. Let ¢ be one of the components of X\A. Then O* is a tree which
V=1U{Vs: © e A\a}. Agai meetys 4 in a point p. Take a homotopy H: [0,1]x C*—~C* such that
b T A e 0 L L I e o) Ty
K=2X\(UuV). Then ¢ u (UN\U) v (VX\F) is a closed subset (')f } a homotopy exists by Lemma 1). Extend H to [0,1] XX by defining
with VAV ~ UN\U = @, the empty set. By the Tietze extengion theorem H(t,») = @ for all # ¢ X\C* and all [0, 1]. Then H demonstrates the
there is a map %: K - ( such that k(@) =wtoruwe 0, k(x) = bforwe UNT inessentiality of X. But X is essential. Therefore X = 4, and the proof

and k(@) = a for @ ¢« V*\V. Hence the ma x . is complete.
. : : A4 w0 . . ..
F=gvhokisaretraction of X onto 4 L OpufB. T—liere;;re IZ& ilvgi %})r It appears to the author that Theorem 5 should hold for arbitrary

is isomorphic with a subgroup of II(X). Since II(A v 0 U B) is n products of circles. In connection with this, it would be nice to know the
abelian, we conclude that IT(X) is non-abelian. ! on- answer to the following question: Is every one-dimensional factor space
Case 2. A~ Bi Y of a product of circles metric? Indeed, one can ask the same question

~ B 18 non-void. Let C be a component of B\A. Then about finite-dimensional factor spaces of products of metric spaces in

clearly O* is an are which meets A in its endpoints or O* —.B. If 0*=B general
general.
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A counter-example in dimension theory
by
T. H. Walton (Swansea)

In proving results involving the strong induciive dimension ‘Ind’
of a topological space one frequently uses the following

LemmA. Let A be a subset of the hereditarily mormal space X. If
dim A < 0 then for any pair of a closed set B and an open set G with T C G
there exists an open set V such that

FCVCE, bV)nA=0
where b(V) = V\V is the boundary of V (see, e.g. Morita [1], Hurewicz and
Wallman [2}, Nagata [3]).
That this is not true for every normal gpace is shown by the con-
struction which follows.

Let w, be the firgt infinite ordmal and let o, be the first uncountable
ordinal and provide each of the sets

= {k: %k and ordinal, 0 < % < wy},
= {a: a an ordinal, 0 < a < wy}
with the order topology.

Let the set I= {t: ¢ real, 0 <¢< 1} be provided with the usual
topology. Form the topological product

Z=PxIxXN.
Then since P, I, N are all compact Hausdorff spaces, so is their product Z.
Finally, form the quotient space X by identifying all points of Z with

the same t-coordinate for a = w,, that is, define a decomposition D of Z
whose members are:

the singletons {2} = {(a,?, k)} if a # o,
the sets B = {(a,?, k) a= o, 0 <k < wo}

and provide the family D of equivalence classes with the quotient topology
thereby obtaining the quotient space X in which a subset U is open if
and only if m~[ U] is open in Z, where m: Z+>X is the projection of Z
onto X.
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