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Let 7' be the T'-topology on ¥ generated by sets of the form:
(i) U, where U eJ(Y),
(ii) V, where V ¢ J(H,),

(iii) W, where W e J(H;),

(iv) {8} OV v W, where ¢ E,, VeI (H,), and W eI (H,).

It can easily be seen that vvt' =1 and zA7' = C. Moreover, since
any co-finite subset of ¥ must contain points of Z, and since any open
set in v’ eontaining points of HF, must itself be co-finite, v’ is compact on
co-finite subsets of Y. However, if X = B, v H,, then X is a dense subset
of ¥ and vx = 7|X has the following properties: By, E, e vy, vx|H, = 1
and 7x|B, = C. Therefore 7x has no T)-complement (for proof, see [b‘])f

Since the real numbers with the usual topology R satisfy the hypo-
theses of Theorems 2 and 4, if R has a T, -complement R', then R’ cemimot
have a countable base and must be countably compact on all co-finite
sets of real numbers.

] Similarly, if R¢ denotes the usual topology on the rational numbers
Rois a T -complement for Rq only if Rj is compact on all co-finite subset;x
of rational numbers and R§ is not Hausdorff.

Therefore, by Theorem 6, if R has a 7)-complement then R has
a T';-complement which is compact on co-finite subsets of real numbersA
and which is not Hausdorff. However, if R¢ has no Tl-complement:

;10 conclusion can be drawn about the existence of a IT,-complement
or R. : ‘
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An extension of a theorem of Gaifman-Hales-Solovay
by
Saul A. Kripke (Omaha, Nebraska)

Solovay [1] has found a remarkably simple proof of a theorem of
Gaitman [2] and Hales [3]: There are countably generated complete Boolean
algebras of arbitrarily high cardinality. Here we show that Solovay’s
methods can be extended to prove the stronger theorem: Huery Boolean
algebra can be completely embedded in a countably gemerated complete Boolean
algebra. (A complete embedding of a Boolean algebra B into a complete
Boolean algebra B’ is a monomorphism of B into B’ preserving all suprema
that happen to exist in B. If B is itself a complete Boolean algebra, this
means that all suprema are preserved (*).)

Like Solovay’s [1], the present work was suggested by Cohen’s notion
of forcing [5]. We will follow Solovay, however, in making the present
proof independent of any knowledge of Cohen’s work, leaving the con-
nection with Cohen to be divined by the cognoscenti (*).

Let 8 be any discrete topological space, and let 8” be the product
space of § taken countably many times as & factor. An element of 8%
can be represented as a function 7 from the positive integers into S. If we
are given a finite sequence o= {8, -, sp> of elements of §, the set of
all functions e 8° with f(i)=s; (¢=1,..,n) is an open set of the
product space 8°; eall it O(c). The sets of form D(c) form a basis for
the product topology of 8“. We explicitly include the empty finite se-
quence; the corresponding basic open set is the entire space 8.

Solovay [1] has shown that the regular open algebra of 8%, where 8
is any discrete space, is a countably generated complete Boolean algebra.

Limva 1. Let S be a discrete space, and let B' be the regular open al-
gebra of S°. For each element s « S and positive integer n, let o(n, 8) be the

(f) We use the notations of Halmos [4] for finite and infinite Boolean operations,
exeept that the complement of b is denoted by —b. For all unexplained terminology,
the reader ghould consult [1], [2], [3], or [4].

In the terminology of [4], p. 34, Ex. 6, Theorem 1 of the prosent paper would vend:
Buery Boolean algebra is isomorphic to a regular subalgebra of a countably generated com.
plete Boolean algebra. (So in particular, every complete Boolean algebra is isomorphic
to a complete subalgebra of a countably generated complete Boolean algebra).

(*) The connection between Boolean algebras and forcing will be developed in
a fortheoming paper by Scott and Solovay. I have not yet seen this paper, but I have
benefited from hearing both authors expound some of their: ideas.
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set of all f € 8° such that f(n) = s. Then for each fized 8 e 8, the supremum

of the g(n, 8) for all positive integers n in the complete Boolean algebra B’ is 1.

Proof. For fixed s, o(n,s) is open and closed in 8%, 80 g(n,s) is

a regular open set. The supremum V ¢(n,s)=int cl(|Je(n,s)). To
n

n
show that this is 1,-it'is-necessary and sufficient o prove that the closure
of |Jo(n,s) is §°.
n

Let fe 8”; we show that every basic open set containing 7 inter-
sects L”JQ(’”«: ). Let o be a finite sequence of elements of § and f ¢ D (o).

If o is the empty sequence, O(o) = 8” and of course intersects | ¢(n, ).
»

Otherwise, since fe O(0), 0 = {f(1), ..., f(m))> for some m. Define g ¢ §”
by saying g(n)=f(n) if n# m41, and g(m-+1)=s. Then geD(o)
and g e p(m-+1,s). Hence O(o) intersects | Jo(n, s). This is the desired
result, since every basic open set has the fo;m O (o) for some o. QE.D.

TEEOREM 1. Bvery Boolean algebra can be completely embedded in
a countably generated complete Boolean algebra.

Proof. Let B be a Boolean algebra. We assume a fixed well-ordering
of B to be given. Let § be the set of all non-empty subsets s of B which
have a supremum in B. Every finite non-empty subset of B is automatic-
ally in 8; if B is a complete Boolean algebra, S contains all non-empty
subsets of B. We consider § to be a topological space with the diserete
topology. Let B’ be the regular open algebra of §°; B’ is a countably
generated complete Boolean algebra. ‘

To each finite sequence ¢ of elements of 8, we correspond a non-zero
element 7(o) of B. We define (o) by induction on the length of the se-
quence ¢. If o is the empty sequence, set 7(c) = 1. If ¢ has length # -1
and 7 has been defined for sequences of length n, let s be the last (n-+1th)
term of o. Lt-at o’ come from ¢ by dropping the last term ¢; ¢’ has length =,
s0 7(0') % 0 is defined. Now s = {by| i I} is a subset of B with a supremum
in B; we set 7(0) = 7(a")Ab’, where b’ is the least element ; of s (in the
given we]l—ordfzring of B) such that v(o’) A by # 0, if such an element
exists; otherwise, b’ =e¢=—\ b;. We mneed to show that (o) s 0.
Since YI bive=1, o

7(0") = 7(0’) A ({\‘/Ibi v c);:iyl (¢(e') A b) v (5(0") A o) .

Hence since 7(o") 5= 0, either 7(o") A by" i € ]

I ¢ # 0 for some i ¢ I g b
This shows that v(c) = 0. ) Pelorml@)noRl
N It is clear_th_at if ¢ is a finite sequence of elements of § and ¢’ comes

om ¢ by omitting the last term of o, then (o) < v(o'). It follows that

if and are fi ite sequences elem 1 i ini
1 2 nts f S ) D!
0; ’I a. © )ll.g . of () [4) and o, is an initial Eegmenb
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Let b be any element of B. Define ¢(b) to be the supremum in B’
of those basic open sets O (o) of 8 such that (o) < b. ¢ maps B into B’
we need to show that ¢ is a complete monomorphism. We first show
that ¢ is a complete homomorphism; i.e., it preserves complementation
and all suprema that exist in B.

Let b be any element of B; to show that @(—b) is the complement
of p(b) in B’, we need to show ¢(b) A p(—b) = 0 and o(b) v p(—b) = 1.
Since

D) ADP(=D)= (t(ﬂ\)/ng(al)) A (r(“)\é_bD(a))

= \V D(ar) A D(a),
(1)<, T(oa)<—b

the assertion @(b) A p(—b) = 0 amounts to saying that if o; and o, are
finite sequences such that v(o;) < b and 7(oy) < —b, then O(oy) and O (o)
are disjoint. Now D (o,) and O(a,) will be digjoint, unless either o, is an
initial segment of o, or o, is an initial segment of o;. Suppose that oy is
an initial segment of 6. Then 7(0,) < 7(0y) < b, and 7(o;) < —b; hence
7(0,) = 0, contrary to what has been proved above. So o, is not an initial
segment of o,. Similarly o, is not an initial segment of oy, 80 D(c;) and
D(o,) are disjoint, and ¢(b) A ¢(—b) = 0.

To show @(b) V ¢(—b)=1, we need only show that for each =,
o(n, (B}) < ¢b) Vp(=D); for them, by Lemma 1, 1=\Ve(n,{B}) <

@(b)Ve(—Db). Let f € g(n, {b}), let o be the finite sequence <f(1), ..., f(n)>,
and let ¢’ be <f(1), ..., f(n—1)> (the empty sequence, if » = 1). Since
fe oln, b)), fin)= {b}. So either v(o) =7(c") A b or 7(0) = 7(¢’) A (—D).
T 7(¢) =7(c") A b, then D(o) <¢(d), since 7(o) < b; hence, since
feD(o), fep(d). Similarly, if z(o')=z(0) A (—b), then fep(—b). So
o(n, (b)) C ¢(b) U p(—b); hence o(n, {8}) <g(b) V p(=D), as desired.

We now show that, for any set s = {i| bie I} C B,

V g(bs) = p(V bi)
iel i€l

whenever \/ by exists. If s is empty, this is trivial, so we assume § non-
iel
empty and \/ b; exists; i.e., s« 8. To show that VIzp(b¢) < of VIbg), we
i€l i€ i€
need only show that for each i eI, p(bs) < el i\/Ibi). But, using the defi-
€

nition of @, this amounts to the assertion that if (o) < by, then also
(o) < V. by, which is trivial. 30 we need only show that (P(i\/I bi) < y1¢(b1).
iel € €

To show this, it suffices to show for each =, that
o(n, 8) A @(V ) <V (bi):
i€l i€l
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for then, using Lemma 1,
PN =1 A (Vb= (Y aln, &) AoV )

=V (e, 9) A 9((V0) < V. p(B).

Let f e g(n,8) n qv(i\e/lbf)- Then f(n) = 8. Let o = <f(1), ..., f(n)), and let
g': (f(l)., wey fn~1))> (empty, if n=1). Then either v(o) == 7(a’) A b,
for some 4 eI or 7v(¢) = v(c') A (— ‘\‘/Ilu). Suppose (o) = z(0”) A (— \/ by).
Then tel
D(e)<ol= Vb= ~p(\ by).
€ iel

Since feD(o) ' fe ——(p(“\/Ibi), which contradicts our hypothesis that
fe ¢(in by). This contradiction shows that v(c) # 7(¢") A (—V by); 80 for
iel )

some 4el,7(o)=1(0’) A b;. Hence v(o) <bsy, 80 D(o) < (b
f € p(bs), and hence f ¢ ~\/qu(b;). This shows\tha’t (¢) < #{ba), henoe
1€

ey 8) A g(V b)) <V g(by)
as desired. o e ’
Finally, we need to show that ¢ i i [ ]
@ 18 a monomorphism. Let b ¢ B, b 5= 03
;v«; sglow( tp)(b) #* O.bLet o be the one-termed sequence <{b}>. The’n :iénct;
y 7(6)=1A b=>. Hence O(o)<¢p(b). Sine i . b
Ay ’\(p( ) e D(o) is non-empty,
Theorem 1 includes the result of Gaifman i
; and Hales, since the
are Boolean algebras of arbitrarily high cardinality; it also’includes tllx‘g
known result that every Boolean algebra can be completely embedded in

a complete Boolean algebra, which is usuall
oo L21, mmatiom. o1, y y proved by other methods
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Recu par la Rédaction le 5. 7. 1966

Core decompositions of continua
by

R. W. FitzGerald (Madison, Wis.) and P. M. Swingle * (Miami, Fla.)

Let S be the space consisting of the sin(1/z) curve, 0 <z <1, and
its limit continuum € on the y-axis. Shrinking C to a point gives rise
to a decomposition & of 8. The decomposition & is monotone with an
arc as hyperspace, and if H is any other monotone decomposition of 8
whose hyperspace is an are, then @ refines H. Thus we say that ¢ is the
core decomposition of S with respect to the property — “Ts monotone
with an arc as hyperspace”. (See Definition 1.1.).

Let P be a property of decompositions and § a class of topological
spaces. By & mefhod of core decomposition for § with respect to P, we mean
2 method of decomposition which, when applied to any S €8, yields the
core decomposition of § with respect to P. Thus Kuratowski, by his
decomposition into «trgnches” ([7], p- 248), has described a methed
of core decomposition for the class § of compact continua irreducible
between two points and P the property — “Is monotone with locally
connected hyperspace”. W. A. Wilson’s decomposition into ‘oscillatory
sets” ([15], p- 881) is a method of core decomposition for P as above
and § the class of compact, one- dimensional, m-cyclic, and separable
continua.

The principle result of this work is a method of core decompositicn
for the class § of compact Hausdorff continua and P the property — “Is
monotone with semi-locally-connected hyperspace’.

1¢ M and N are set functions on a set 8, then M is an eXPaANSLON
of IV if and only if M(A4)D N(4) for all A C 8. Our method consists of
three successive expansions of the useful set function T of [1], [2] and
of Definition 1.2 below. We first expand T to its minimal closure I
(4], p. 61) of Definition 3.1 below and use T* to obtain a modification
of H. Hahn’s prime parts of a continuum ([5], p- 225). But {T*(x): @ ¢ S}
iz not a decomposition for every compact continuum S. We next, by
a chaining process, expand T* to its recursive chain closure MChT of
Definition 4.4 below. For compact continuum 8, {MChT (#): <8} is

* This work was done under National Qeience Foundation Grant G 19672, with
partial support from the University of Wisconsin Center System.
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