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for then, using Lemma 1,
PN =1 A (Vb= (Y aln, &) AoV )

=V (e, 9) A 9((V0) < V. p(B).

Let f e g(n,8) n qv(i\e/lbf)- Then f(n) = 8. Let o = <f(1), ..., f(n)), and let
g': (f(l)., wey fn~1))> (empty, if n=1). Then either v(o) == 7(a’) A b,
for some 4 eI or 7v(¢) = v(c') A (— ‘\‘/Ilu). Suppose (o) = z(0”) A (— \/ by).
Then tel
D(e)<ol= Vb= ~p(\ by).
€ iel

Since feD(o) ' fe ——(p(“\/Ibi), which contradicts our hypothesis that
fe ¢(in by). This contradiction shows that v(c) # 7(¢") A (—V by); 80 for
iel )

some 4el,7(o)=1(0’) A b;. Hence v(o) <bsy, 80 D(o) < (b
f € p(bs), and hence f ¢ ~\/qu(b;). This shows\tha’t (¢) < #{ba), henoe
1€

ey 8) A g(V b)) <V g(by)
as desired. o e ’
Finally, we need to show that ¢ i i [ ]
@ 18 a monomorphism. Let b ¢ B, b 5= 03
;v«; sglow( tp)(b) #* O.bLet o be the one-termed sequence <{b}>. The’n :iénct;
y 7(6)=1A b=>. Hence O(o)<¢p(b). Sine i . b
Ay ’\(p( ) e D(o) is non-empty,
Theorem 1 includes the result of Gaifman i
; and Hales, since the
are Boolean algebras of arbitrarily high cardinality; it also’includes tllx‘g
known result that every Boolean algebra can be completely embedded in

a complete Boolean algebra, which is usuall
oo L21, mmatiom. o1, y y proved by other methods
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Core decompositions of continua
by

R. W. FitzGerald (Madison, Wis.) and P. M. Swingle * (Miami, Fla.)

Let S be the space consisting of the sin(1/z) curve, 0 <z <1, and
its limit continuum € on the y-axis. Shrinking C to a point gives rise
to a decomposition & of 8. The decomposition & is monotone with an
arc as hyperspace, and if H is any other monotone decomposition of 8
whose hyperspace is an are, then @ refines H. Thus we say that ¢ is the
core decomposition of S with respect to the property — “Ts monotone
with an arc as hyperspace”. (See Definition 1.1.).

Let P be a property of decompositions and § a class of topological
spaces. By & mefhod of core decomposition for § with respect to P, we mean
2 method of decomposition which, when applied to any S €8, yields the
core decomposition of § with respect to P. Thus Kuratowski, by his
decomposition into «trgnches” ([7], p- 248), has described a methed
of core decomposition for the class § of compact continua irreducible
between two points and P the property — “Is monotone with locally
connected hyperspace”. W. A. Wilson’s decomposition into ‘oscillatory
sets” ([15], p- 881) is a method of core decomposition for P as above
and § the class of compact, one- dimensional, m-cyclic, and separable
continua.

The principle result of this work is a method of core decompositicn
for the class § of compact Hausdorff continua and P the property — “Is
monotone with semi-locally-connected hyperspace’.

1¢ M and N are set functions on a set 8, then M is an eXPaANSLON
of IV if and only if M(A4)D N(4) for all A C 8. Our method consists of
three successive expansions of the useful set function T of [1], [2] and
of Definition 1.2 below. We first expand T to its minimal closure I
(4], p. 61) of Definition 3.1 below and use T* to obtain a modification
of H. Hahn’s prime parts of a continuum ([5], p- 225). But {T*(x): @ ¢ S}
iz not a decomposition for every compact continuum S. We next, by
a chaining process, expand T* to its recursive chain closure MChT of
Definition 4.4 below. For compact continuum 8, {MChT (#): <8} is

* This work was done under National Qeience Foundation Grant G 19672, with
partial support from the University of Wisconsin Center System.
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a decomposition of § into continua, and it iy identical with the core de-
compositions of Kuratowski and Wilson when § is restricted, respectively,
to the continua they consider; but this decomposition is not upper semi-
continuous for every compact Hausdorff continuum. The direct limit
expansion of MChT overcomes this last obstacle, by use of MCh, and
gives our desired core decomposition. In general our expansion procedure
will yield core decompositiong provided property P can be appropriately
agsociated with an expansive set function.

Much of our bagic theory is given for any expangive set function W,
with the aposyndetie function T and the Hausdorif function 0 as concrete
examples of the use of the theory; our general result in Thoorem 7.2
illustrates that one can go a long way by the elementary operations of
iteration and chaining in developing theory of core decompositions.

1. Detinitions and the set functions T and 0. We denote the
empty set by @. A continuum is a closed and connected point sef, and
space means topological space.

Let § be a set and G be any decomposition of 8. For x eS8 we let
G (2) denote the unique element of G that contains . If H is a decomporition
of 8, we say that & refines H, and write G < H, if and only if & () C H (x)
for all z € 8. If {Gs: G, A}, is a collection of decompositions of §, let
the common intersection element M (#)= ") {G.(2): G, e M}; and note
that the class {M(x): » ¢ §} iz a decompogition of §. We denote this
decomposition by A{G.: G.e M}; it is precisely the greatest lower bound
of the G, under the partial order < on the set of all decompositions of S.

DerinitioN 1.1, Let § be a set and ¥ be the family of all decom-
positions of § that have a certain property P. We say that G iy the core
decomposition of 8 with respect to P if and only if G = A {Hy H,e 16}
and G e X. We say that G is atomic with respect to P if and only if

1) Gede and

(2) HeX and H < @ implies H = G,

Note that core and atomic are distinct concepts, and that the core
decomposition of § with respect to P is characterized by having property P
and refining all other decompositions of § that have property I,

We need the terminology of set functions and the properties of the
set functions T and 6 given below.

It § is a set, then a set function on § iy a function N which assigns
to each subset 4 of § a unique subset N (4) of 8. A set function N on §
is sai-d to be [4]: enlarging, it A C N (4) for all A C 8; isotonie,itA CBCS
i.mphes N(4)C N(B); expansive, if N is both enlarging and isotonic;
idempotent, it N (N(4)) = N(A) for all ACS; a dosure fumction, it N is

12;)&1) eij:msive and idempotent. A subset A4 of § iz N-closed means

* ©
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DEFINITION 1.2. The set function T is defined on any space § as
follows: for A C 8, T'(4) is the set of all y ¢ § for which there does not
exist both an open set @ and continuum W such that y e Q C WC S— A.

The set function 7' was defined in [2] and has its origin in Jones’
concept of aposyndetic [6]. The first part of Lemma 1.3, below, follows
directly from the definition of 7' (or see Lemmas 1 and 3 of [2], pp. 114,
116); the second part is Corollary 1.1 of [2], p. 115.

Lemma 1.3. (1) If S is any space then T is expansive on 8 and T(A)
is closed for all ACS.

(i) If A is a connected subset of a compact Hausdorff continuum then
T(4) is & continuum.

We extend Whyburn’s definition of semi-locally-connected (which
we abbreviate s.l.c. as in [12], p. 19) and say S is s.le. at A CS if and
only if for every open subset U of §, such that A C U, there exists an
open subset V of § such that 4 CV C U and 8—V has only a finite number
of components; a space S is sl.c. if and only if it is sl.c. at each of its
points. The relation between T'-closed sets and Whyburn’s s.l.c. is given
in Lemma 1.4, whose proof parallels those of Jones’ Theorems 3 and 4
in [6], pp. 546-547.

Lemma 1.4. If 8 is a compact Hausdorff space and A C S, then 4
is T-closed if amd only if A is closed and 8 is s.lc. at A. Consequently,
8 is sle. if and only if T(2)= = for all 8.

DEFINITION 1.5. The set function 6 is defined on any space § as
follows: for A C 8, 6(4) is the set of all y « § for which there does not
ewist an open set @ such that y ¢Q CQC 8—A.

The set function § comes straight from the definition of the Haus-
dorff property, and we have at once the following:

Levwa 1.6. If 8 is any space, then 0 is expansive on 8, 6(4) is closed
for all AC S8, and 8 is Hausdorff if and only if 6(p)=p for all p ¢ 8.

TxampLE 1.7. Let the embedding space be the plane and d its usual
metrie. Let R(x,s) = {y: d(z,y) < ¢}, where & is always a positive real
number. For i=1,2, ..., let 4;= {(»,y): #=1/i, 0 <y <1/i} and let
i = (#,0) be chosen such that 1/(¢4+1) < @; < 1fi, and let p = (0, 0).
Tet 8=p v ({Up) v (JA4:). The basic open sets for p are the sets
R(p, &) ~ 8, the basic open sets for a ¢ A; are the sets R(a,e) ~ Aq, and
the basic open sets for p; are the sets piw {(#,y) e A y <} v {(®,y) e Aiya:
y < &}. Let § have the topology generated by the above basis. Then 8
is compact and connected, and points are closed sets. Note 6(p,) = Py v D2,
0(p,) = 0(0(py)) = Py Py Py, and in general 6™(py) = P1 v Daee VU Putas
Thus 9 is not idempotent on this S.

3*
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Examprz 1.8. Let P be the closed triangular region. of the plane
determined by the points (0,1), (1,0) and (2,0). For 1=10,1,2,..,
let A= P~ {(@,9) 1-1/2° <y <1— 1/27*}, and let I; be an indecom-
posable continuum such that I; C As. Furthermore, let the I be such
that for all m, Iy, Iy ..., In is & simple chain and such that the line segment
joining (1/2,1/2) to (1,0) lies in I. Tet A= (0,1) v (T and let
A’ = (0,1) v (U I} be the reflection. of A about the y-axis. Let M be
the line segment joining (—1,0) to (1,0), and for i=1,2, .., let M,
be the horizontal line segment irreducible from Ip to I, and pasysing through
(0,1/2). Let § = 4 U A’ & M v (U My). Then 8 is a compact continuum,
guch that T(@)=a for all ze8— (4w 4'), and for @ ==(0,1). For
we(L—1L), T(w)=1I,, T*@)=I, v I, apd T"@) =Ly v Liv o v Iy,
The sets 4 and A’ are both T-closed but 4w .4’ is not, because
0,0)e T(4 v A").

Example 1.8 is a very critical type in the development of our theory
below, because 4 v A’ is not T'-closed.

2. Existence of core decompositions. We establish here the
existence of our basic core decompositions,

The hyperspace ([91, pp. 42-43) of & space S with respect to a de-
composition @ of § is denoted by the ordered pair (8, @), and = denotes
the decomposition map of S onto (8, &). We abbreviate upper semi-
continuous by w.s.c. and say that G iy monofone if and only if & iy ws.c.
and each ¢ € G iy a continuum.

TrmoREM 2.1. Let 8 be any space, {G.: G e 6} a collection of de-
compositions of 8, and G = A {Ga: G.e M} If, for each G, (S, @G,) is
o Hausdorff space, then (S, @) is a Hausdorff space.

Proof. Consider distinet points #' and %' in (§,@). For some &
and y in 8, G(&) = aYz'), G(y)=n'(y") and G(x) # G(y). Then for
some G,, G.(®) # Go(y). Because (9, G,) is Hausdorff, there exist disjoint
open sets @ and V of § such that Gu(w) CQ, Gu(y)CV, and such that @
and V are each unions of elements of G,. Sirice @G < G4, both @ and V
are exactly unions of elements of @, and so =(Q) and »(V) are disjoint
open sety in (8, @) containing, respectively, »' and y’. Thus (8, @) is
Hausdorff.

COROLLARY 2.2. If S is any space, then there cwists a core decom-
position G of 8 with respect to the property: “The hyperspace t¢ Hausdorff”.

THEOREM 2.3. If @ 48 an u.8.c. decomposition of a compact Hausdorff

continuum S and each g e G is T-closed in 8, then (S, G) is semi-locally-
connected.

‘ Proof. By Lemma 1.4, it is sufficient to show T(z') = 2’ for all &'
in (8, @). Let 4’ and y' be distinet points in (8, ¢). Then, for some

* ©
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and y in 8, G(z)=n"e), G(y) =="*y') and G(z) # G(y). Since G(y)
is compact and G(y) C 8—G(z) = 8—T (G(m)), there exists a finite col-
lection of open sets @; and corresponding continua Wi (i=1,2,...,7)
such that G(y)CUQC U WiCS8—G(@). Let V= 1{geG: gC Qe
Sinee @ is w.s.c., w(V) is open in (8, &). We have y en(V)C U 7(We)
C(8,@—a', and so y' lies in the interior of one of the m components
of | mn(Wy), where m < n. Thus y'¢ T(a).

TarorEM 2.4. If G is a monotone decomposition of a compact Haus-
dorff continuum S then (S, @) is semi-locally-connected if and only if each
g @G is T-closed in 8.

Proof. Theorem 2.4 follows from Theorem 2.3 and the fact that =
is 2 monotone map when @ is a monotone decomposition.

TEEOREM 2.5. If N is any ewpansive set function on a compact Hays-
dorff continuuwm 8, then there ewists a core decomposition G of 8 with respect
to the property: “G is w.s.c. with N -closed elements”.

Proof. Let N denote the collection of all u.s.c. decompositions
of 8 into N -closed sets. Since {S} « I, we see that N 7 @. Let ¢ = A {Gu:
G,e N} It is well known that a decomposition. H of a compact
space § iz w.s.e. if and only if (8, H) is Hausdorff. Since each G, e N
is u.s.c., and hence each (8,@,) is Hausdorff, it follows from The-
orem 2.1 that (S, ) is Haunsdorff, and hence that G is w.s.c. Let G (@)
=" {G{#): Ga €N} e an element of @. Then G(») is N -closed because
each G(#) is N -closed and, for N expansive, the intersection of any
collection of N -closed sets is N-closed. Thus @ eXN’, and so G is the
desired core decomposition.

Lomwa 2.6. If 8 is a compact Hausdorff continuum and C is a com-
ponent of a T-closed subset A of 8 then C is T - closed.

Proof. By hypothesis T(4)= A4, and, by Lemma 1.3, T is ex-
pansive. Thus 0 C T'(0) C T(4) = A. Since C is a component of A and,
by Lemma 1.3, T(C) is a continuum, it follows T(0)= C.

TreoREM 2.7. If 8 is a compact Hausdorff continuum there ewists
a unique decomposition G of S such that:

(1) G is the core decomposition of 8 with respect 1o being w.8.c. with
T-closed elements;

(2) @ is monotone with sl.c. hyperspace; and

(8) G is the core decomposition of 8 with respect lo being monotone
with 8.l.c. hyperspace.

Proof. Let G be the core decomposition of § with respect to being
we.e. with T-closed elements, which exists by Theorem 2.5. Thus &
satisfies (1). By definition of core, G is w.s.c. with T-closed elements,
and hence, by Theorem 2.3, (8, &) is 8.l.c. Let H be the decomposition
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of § into the components of elements of G. It follows that H ig u.s.c. and,
by Lemma 2.6, the elements of H are T'-closed. By the definitiong of H
and @, both the inequalities H < ¢ and @ < H hold, and hence ¢ = 1
and @ is monotone. Thus & also satisfies (2). If H is any monotons de-
composition of § with s.l.c. hyperspace then, by Theorem 2.4, the elementsy
of H are T'-closed, and hence ¢ < H. Thus G satisfies (3).

We have established, in Corollary 2.2 and Theorem 2.7, the existence
of our basic core decompositions. We proceed now to deseribe our method
of core decomposition, which is the systematic expansion of 7' and .
Since T and 0 need not be idempotent, as shown in Uxamples 1.8 and 1.7,
our first step is to expand T and 0 to closure functions.

3. Minimal closure expansion. If N is an expansive set function
on a set 8, then the intersection of any collection of N -closed sets is
itself N -closed. Hence, for N expansive and .4 C 8, N{dasACA,

"= DN(4,)} is the unigue minimal N -closed subget of § containing 4.

DermNrrion 3.1. If N is an expansive set function on a set 8, then
the set function N* is defined as follows: for 4 C 8, N *(4) is the unique
minimal N-closed subset of § containing 4.

Lemwma 3.2. If N is am empansive set function on a sel 8, then N* is
a closure fumction.

Proof. It follows directly from Definition 3.1 that N* is enlarging,
igotonie, and idempotent.

For N expansive on § and 4 C 8, the set N*(4) may be realized
through iterated composition ([4], pp. 60-61). Let N°(4) = A. For a non-
limit ordinal e, let N%(4)= N (N““‘(A)), and, for a limit ordinal «, let

N d)= J{N4): 1< a}. There iy no difficulty in proving Lemma 3.3
below.

Lumwma 3.3. If N is an expoansive set function on a set § and A C S,
then there exists a first ordinal number 1 such that N‘(A) = N**4) and,
for this A, N*(4) = N'(4).

EXAMPLE 3.4. Let 8 be the space of Hxample 1.8, p = (0,1),
@ed—A',andy ¢ A'— 4. Then T*(w) = T°*(o) = 4, I*y) = T"(y) = A’,
and T*(p)= p. Thus T(w) ~ T*(y) = T*(p), and so {T*(w): wel} is
not a decomposition of §. In the space of Example 1.7, 0*(x)==a for
®¢{Upi, and 6*(@)= | Jp, for v e U p1.

Levma 3.5. If A is a connected subset of a compact Hausdorff com-
tinuum then T*(A) is a continuum,

Proof. Since T%4) is a T-closed
set. Sinee 1*(4) is minima] for being
from Lemma 9.6 that T*(4)

set, it is, by Lemma 1.4, a cloged
T-closed and containing 4, it follows
iy connected.

icm°®
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Only under strong hypothesis do the sets T™(w) constitute the core
decomposition G of Theorem 2.7. . '

LemyA 3.6. If S is a compact Hausdorff continuum, n is an integer,
{T™(x): eS8} is a decomposition of 8, and TH(z)= T™x) for all @ e,
then {T™@): @ € 8} is the core decomposition G of Theorem 2.7.

Proof. For a compact metric § this follows from Theorems 3.3, 3.6
and Corollary 3.5 of [3], pp. 113-115. Here we outline proof for Haus-
dorft § and need first prove {I™x): » ¢ 8} is w.s.c.; thus we must prove
for T (%) C U open. ([12], p.122), there exists open_V Sllc;}’l that lz(w)
CYCVCU andif T"#) ~nV # @, then T"(z) C U. Since I" = T.*, T™(x)
is closed and 7T-cloged; thus by compact Hausdorff progfrmes and
Lemma 1.4, there exists open ¥’ such that I™w)CV'C I,/ cU a,n-(l
S—V'=U0;(f=1,2, ..., h), C; a continuum. Let U-—:V,,,and.V = V,. This
argument can be repeated, with V, in place of U, to obtain V,_; such
that T"@) C Va1 C Vn1 C Vs and finally Vi (i=1,2,...,n) such that
T"@)CViCViCVis and 8—Vi= JCy (f=1,2,.., k) where Oy is
a continuum. B ,

Let y e T"(2) ~V,. Suppose y' e Cyn (8— V,); then y'e@ (open)
C(0yC8—V, and so y' ¢ T(Vy)CV,. Since y eVy, by Lemma 1.3,

Ty)CT(V)CVCV,.
Similarly _
Ty) C IV C T (Vo) CV,C Vs,
and finally ~
TYy) = T™2) C TV) CT" V) Co. CT(Vu) CVnC V1= U.

Thus V, is the desired V above, and so {T"(x): @ € S} is ws.C. with T-closed
elements. Thus G(z) C T%=) for all © ¢ 8. Bach G(w) is T-clofed; hence,
by Definition 3.1, T™%)= T*=)C G(z) C T"(«) and ¢ = {T (.?v): Te S}

TEEOREM 3.7. If 8 is a compact Hausdorff continuum wred.umble
between two of its points and 8 contains mo n-indecomposable subcontinuum
then {T""(x): @ e 8} is the core decomposition @ of Theorem 2.7. o

Proof. By Theorems 5 and 3 of [2], 8 ssutisﬁes‘ the hypothesis of
Lemma 3.6, One can show, under conditions entirely ennalogqus tq
those in Lemma 3.6, that {0"(x): @ eS8} is the core decomposition of
Corollary 2.2. For giving core decompositions, 0* behaves no better than
does T*.

The prime parts decomposition of Hahn ([8], p. 223) suggests the
following general method of decomposition.

THEOREM 3.8. Let 8 be any compact Hausdorff continuum, B = {x ¢ 8:
T (@) # %}, and H be the decomposition of 8 whose elements are the com:'pomnts
of T*(B) and the points of S—T*(B). Then H is monotone, (8, H) is s.l.c.,
and if 8 is sl.c. then (S, H)= 8.
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Proof. The elements of H are continua, and, since the non-degene-
rate elements of H are components of the T'-closed set I%(B), H is w.s.c..
The elements of H are either points » where T'(x) =2 or components
of the T-closed set T*(B). Hence, by Lemma 2.6, the clements of H are
T-closed. By Theorem 2.3, (8, H) is s.de.. If § is slc., then B= @,
hence T*(B)= @ and (8, H)= 8.

The left figure on p. 132 of [9] shows that H in Theorem 3.8 need
not be core (nor atomie) with respeet to being monotone with sl.c.
hyperspace.

4. Decompositions and the set function MChN. As our next
step in building up from the set funetion I to the core decomporition
of Theorem 2.7, we expand T to a set function MChI having the property
that MChT(z) is a continuum and {MChT(x): @ eS8} is the finest de-
composition of § into 7-closed sets. While these sets fail to be u.s.c. in
every compact Hausdorff continuum, they nevertheless are sufficient
to give the classic decomposition of Wilson ([15], pp. 385, 386) and Kura~
towski ([7], p. 248).

DErmNITION 4.1. We say that C can be F-chained fo D if and only
if there exists a simple chain from € to D whose links are of the type
F(m,), F(wg), ..., F(2,), where O and D are subsets of a set § and I is
9 set function. on 8. For a get function N on § we define, for all 4 C 8,
ChyN(4) = N(4) and [Oh,N(4)= N({#: 2 can be XN -chained to .4}).
We next define, for all A C 8, Ch, N (A) == N{2: # can be Ch,N -chained
to A}, noting this definition is permissible, since Ch, N iz defined for
all fsubsets of 8. We continue in this way and define, for « a nonlimit
ordinal and 4 C§8, Ch,N(4)= N{e: # can be Ch, N -chained to A4},
and for ¢ a limit ordinal and A C 8, Ch, N(4) = | {Chy N (4): 0 < 4 < a}.
It follows by transfinite induction that for each ordinal a, Ch, NV is a well
defined set function on §.

Lewwa 4.2. If N is an expansive set function on a set §, A C8, and
0<a< f, then Ch,N(4)C ChyN(4).

Proof. Lemma 4.2 is obviously true for a limit ordinal £ and easily
proved for g=1. We assume Oh,.N (X)C Ohs_ N (X) for 0 < a < f~1
gnd for all X C 8, where § is a nonlimit ordinal and g > 1. Since Ch,N ()

h0!1,g_1N (w) for all we 8 and a< f—1, each z<Q that can be Ch,N-
(c: g,med t0 4 can also be Ohy.., N-chained to 4 and, therefore, Chy; N (4)
h,géV (4), for all a < ﬂml'. From the induetion hypothesis, since g > L
?jﬁ hﬁV(ﬁ) cohlcN(A), it follows that Ohg_y N (A4)= | {Ohup N (4):

—1}. Hence Chs-; N(4)C ChyN (4 L L2 i

transfinite induction. (4 end Temma 43 s fruo by
ftEJIE?REM 43 Ij N is an ewpansive set function on a set 8, then there
ewist a first ordinal number a such that Ch, N (A) = Chyys N (4) for all 4. C8.

* ©
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Proof. Let § be an ordinal number whose cardinal number exceeds
the cardinal number of the set of subsets of 8. Suppose for some 4 C 8§,
ChpN (A) # Chpy1 N (4). By Lemma 4.2, {Oh, N (A): A< B} is a well
ordering of distinet subsets of S, which gives a contradiction. Thus g
is an ordinal such that ChsN(4)= Chpy N (4) for all A C8. Let « be
the first such ordinal number.

DEFINITION 4.4. Let N be an expansive set function on a set 8.
The set function MChY is the function Ch,, where o is the fivst ordinal
such that Oh N (4) = Ch,yy N(4) for all A CS. To avoid confusion we
will sometimes write MCh(N) for MChN.

TrEoREM 4.5. If N is an expansive set function on a set 8, then MChN
is expansive and {MChN (x): e 8} is the core decomposition of S with
respect to having N -closed elements.

Proof. Let a be the ordinal such that MChN = Ch,N. The expansive
property of Ch,N follows easily by induction from Definition 4.1 and
Lemma 4.2,

By Definition 4.1, Ch.N(#) ~ ChN(y) @ implies Ch, N (x)
C Chus1 N (y). By the definition of MCh¥, Ch.N (y) = Chg1 N (y). There-
fore, for all # and y in 8, ChuX (@) ~ Ch N (y) # O implies Ch, N ()
C Ch, N (y). Hence {Ch,N(z): # ¢ 8} is a decomposition of 8.

Since Ch, N = Chay N, we have, for all # ¢ 8, Ch, NV (z) = N{e: 2 can
be Ch,N-chaind to #}. However, since {Ch,N(2): z € 8} is a decomposi-
tion. of 8§,

{z: 2 can be Ch,N -chained to #} = Ch.N (%), for all ze8.

Consequently,
Ch, N (z) = N (Ch,N(z)) for all ze8.

We have proved that {MChN(2): ¢S} is a decomposition of §
into N-closed sets. Let @ be any other such decomposition of S. Since
the elements of G are digjoint and N-closed, every simple chain N (),
N (@), -.., N (#z) must have all of its links in but one element of @. Hence,
for all z ¢ 8, {z: ¢ can be N -chained to z} C G (x). Since N(G(2)) = G(x)
and N is isotonie, it follows that Ch, N (z) C G(z) for all » e 8. By in-
duction, Ch,N (2) C G(#) for all z ¢ 8, and so {MCh¥ (z): we S} <G

Lewwa 4.6, If 8 is a compact Hausdorff continuum, then MChT (w)
is a continuum for all xeS.

Proof. Lemma 4.6 is a direct consequence of Lemma 2.6 and the fact
that {MChT(z): @ e 8} is the finest decomposition of §into 7T'-closed sets.

For an expansive N we can replace N in its every occurrence in
Definition 4.1 by N* of Definition 3.1, and thus define Ch,(*) and
MCh(N*). It follows that MCh(N*) is a closure function such that N*(4)
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C MOW(N*)(4) and, for 2¢8, MOh(N*)(z)= MCh¥(v) (see below);
but these functions can disagree at A C 8. Hence we may use either ¥
or N* in the recursive chaining process of Definition 4.1 to obtain the
core decomposition of § into N -closed sets.

For the space § of Example 1.8, MChT(#) = Chy( Tz) for all me §
and {MChT(x): S} is us.c Example 4.7, typical in theory trouble
below, shows that {MChT (z): » e 8} is not always w.s.c.

ExAMPLE 4.7. We modify the continuum ¢ described and illu-
strated in [9], p. 195. The vertical segments used in the construction
of ¢ divide each horizontal segment M, = {(z,¥%): 0 <@ <1, y = 1/2"}
(m=0,1,2,..) of ¢into 2" subintervals Jnx, (k=1,2, ..., 2™+ each
of length 1/2"%, Let (' be the continuum obtained by replacing each Jyy
by an indecomposable continuum I, such that I, containg both end-
points of Jp, and such thab I,x lies entirely in the closed circular disk
whose center is the midpoint of Jy% and whose radius is 1/2™% In ¢,
MOWT = Ch, T. Let Cp= \J {Lns: 1 <% <2™"'}. Then {MChT (%): < §}
has precisely the sets O, as non degenerate elements and is clearly not
u.8.c. at any point (z, 0) in C'.

Since concepts of Definitions 3.1, 4.1 and 4.4 can be intuitively
tricky, we give the following example and two lemmas with proofs.

LemmA 4.8. If N is an expansive set function on space S, then
MCh(N*) (%) = MChN (%) for & €8.

Proof. Let H* = {MCh(N*)(»): z ¢ 8} and H = {MChN (®): » e S}
By Theorem 4.5, H* is the core decomposition of § into N*-closed
elements and by Lemma 3.3 N* = N* also H is decomposition of § into
N-closed, and hence N*-closed elements. Thus H* < H. But by Theo-
rem 4.5, H iy core decomposition of § into N-closed elements, and H*
is a decomposition of § into N-closed elements. Therefore H < H*
< H = H*

LemmA 4.9. If N is an ewxpansive set function on S and A C 8, then

(1) MChN (A4)= N{z: MChN(2) ~ A * O} and MCh(N*)(A) = N*{z:
MOh(N*)(2) ~ A # O}

(2) if also N (%)== for all x e S, then MChN (v) = o and MChN (4)
= N(A) and MCh(N*)(4) = N*(4).

Proof. Let 4 of Lemma 3.3 be & for ¥ and p for N* Then by
Definition 4.1, MChN (4) = N{z: # can be Ch; N (w;)-chained to 4} and
MCh(N*)(A)= N*{z: 2 can be Ch,N*(w:)-chained to A}, But Ch, N
= MCh¥ and Ch,N*= MCh(¥*); and by Lemma 4.8, MChN (%)
= MCh(N*)(2:). Thus MChN(A)= N{z: ¢ can be MOLN (;)-chained
to A}; and since H above is a decomposition, only one link chains are
possible. Therefore MChN(4)= N {z: MChN (2) ~ A = @}, and gimi-
larly, (1) of the lemma is true for N*; then (2) follows at once from (1).
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ExampLe 4.10. Let 8, be a “ladder” type of set with countable
infinite number of “rungs” as in Example 2 of [2], p. 122, and one such
i also a subset of ¢ in Example 4.7 above with the M,’s as rungs —
let M be the arc limiting set of these rungs, with ¢ and & as end points
of M. Let 8, be the union of two Cantor triangles ([1], p. 267) with com-
mon bage, one Wwith vertex at a, the other with vertex at o as in Example 4
of [2], . 125. Let § = 8, v 8., taken so that 8; n 8y =a v o' C M—o—d.
Lot in (2) of Lemma 4.9, 4 =c¢w d, N = T. Then T(z)= for all s S,
T = T2, THA) ¢ Ohy T(4) = T(4)= MChT(A). But MOCh(IT*)(4)= Mo
o 8, = T*(4). Hence this is an § and 4 such that MChT(A)
MCh(T*)(A).

One may casily verify the following characterization of the sets
MCh¥ (x).

TuporEM 4.11. If N is an expansive set function on a set S then
{MChN (%): @ 8} consists of ewactly those subsets B of 8 such that

(1) B is N-closed;

(2) B is mot the union of two or more disjoint non empty N -closed seis;

(3) B is mamimal with respect to (1) and (2),

5. Relation to classical core decompositions. We show
here that our decomposition {MChZT'(w): @< 8} gives the classical de-
compositions of Kurabowski [7] and Wilson [15].

Drrmrron 5.1. A continuum § is connected im kleinen ([11], D 89)
at BC A if and only if for every open set U such that BCUCS
there exists an open set ¥V and a continnum W such that BCVCWCU.

There is no difficulty in proving Theorem 5.2 below.

TrEOREM 5.2. If G is o monotone decomposition of a compact Hous-
dorff continuum S, then (8, @) is locally connecied if and only if 8 s con-
nected im Kleinen at each g e @.

THEoREM 5.3. If 8 is a compact Hausdorff continuum such that
T(B) = | {T(b): b e B} for all closed subseis B of 8 and if G is any de-
composition (not necessarily w.s.c.) of S into conmected T-closed sets, then 8
is connected im kleinen ab each g e G.

Proof. Let gC UCK where U is open and g ¢ @. Consider any
weg. For each yeS—U, gn@Gly)=0 and T{yC T () = G )
Thus o ¢ | {T(y): y ¢« §— U}. From the hypothesis on closed subsets,
it follows that @ ¢ T'(S— U). Thus for each # € g there exists open @, and
continuum. W, such that # ¢Q,C W, C U. Since ¢ is compact and con-
nected, there exists open @ and continuum W such that g C @ CwWCU.

THEOREM 5.4. If 8 48 a compact Hausdorff continuwum such t?mt
T(B)= | {T(b): beB} for all closed subsets B of 8, then there exisis
a core decomposition G of 8 with respect to the property: “is monotone with
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locally connected hyperspace”. Furthermore, G is identical with the core
decomposition of 8 with respect to being monotone with sl.c. hyperspace.

Proof. Let G be the core decomposition of § with. respect to being
monotone with s.l.c. hyperspace given by Theorem 2.7. By Theorem 2.7 )
G is monotone with T-closed elements. Hence, by Theorem 5.3 and 5.2,
(8, @) is locally connected. If H is any monotone decomposition of §
such that (8, H) is locally comnected, then H is monotone with slec,
hyperspace, and hence, by Theorem 2.7, @ < H.

DrFINITION 5.5. A continuwm is hereditarily finitely coherent (%-co-
herent) if and only if the intersection of any two of ity subcontinus hag
at most a finite number of components (at most T - components),

Lmvma 5.6. If 8 4s a compact Hausdorff hereditarily finitely coherent
continuwm then T(B)= J{T(b): b e B} for all closed subsels B of 8.

Proof. Since T' is expansive we need only prove I(B) C J{T®):
b ¢ B}. Consider & ¢ {J {T'(b): b ¢ B}. For each b ¢ B there exists an open
set @ and continuum W, such that z e @y C Wy, C8—b. The sets 8 —W,
cover the compact set B. Hence there exists a collection {Wa C{W,}
{i=1,2, ..., n) and corresponding Q; such that o e MN@CN WiCS—B.
Since § is hereditarily finitely coherent, M Wy has but a finite number
of components €y, Cj, ..., Cy, With, say, @ € 0;. There exists open V C 8
such that e V.C8— (JC; (j=1¢ for i 1). Then eV ~ (Me)Caq
C8—B, and so « ¢ T(B).

Lemwia 5.7. If 8 4s a compact Hausdorff hereditarity - coherent
?ontinuum and G is a decomposition of § into conmected T - closed sets, then @
s u.8.C.

Proof. Let g, g, be distinct elements of G. It follows from
Lemma 5.6 and Theorem 5.3 that there exist disjoint continua W, and W,
and corresponding open gets @, and @, with g, CQ, C W, and 6B CQ,CW,.
Since § is hereditarily k-coherent, at most % elements du € G meet both
@, and @, and so we may take @ and @, such that no Ja € G meets both
@1 and @,. Thus @, as an equivalence relation, is a closed subset of § % 8
and consequently @ is u.s.c.

.THEOREM 5.8. If 8 is a compact Hausdorff hereditarily ¥-coherent
continuum, then {MChT(x): e 8)} is the core decomposition of 8 with
respect to the property: is monotone with, locally connectod hyperspace.

Proof. By Theorem 4.5, Lemma 4.6, and Lemma 5.7, it follows
that {MChT (»)} is u.s.c. Consequently, by Theorem 4.5, and Theorem 2.7,
{MChT (z): e 8} is the core decomposition of § with regpect to being
monotone with s.l.e. hyperspace. Theorem 5.8 follows from this last
fact, Lemma 5.6 and Theorem 5.3 ([14], p. 41).

An important property of T'-closed gets ig given in Lemma 5.9, below,

whose proof is the same as that of Theorem 16 (1], p. 274).

icm°®
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Tmmma 5.9, If 8 is any space, P is a T-closed subset of 8, and 4 « B
C 8—P, then either there ewisis a continuum O C 8—P joining 4 to B,
or S—P = H o K where H and K are mutually separate ([11], p. 1) with
ACH and BC K.

TumorEM 5.10. If 8 8 o compact Hausdorff continuum irreducible
between & « 8 and b e 8 and G is a decomposition of 8 into connected T-closed
sets, then G 4s w.s.c.

Proof. We will prove that for g and ¢" in @ there exists a ¢"’ in @
guch that g'* separates g from ¢'. This will show that ¢ is saturated, and
therefore, by Theorem 4,21 of [12], p. 128, that & is ws.c.

Let ¢ and ¢’ be in &, g # ¢'. Consider the case where (a v b) C8—g.
In this cage, by Lemma 5.9, §—g is not connected, and hence, by Theo-
rem (II, 3) of [9], p. 133, §—g= H u K where both H and K are con-
nected open sets, H ~ K = @, G(a)CH and G(b) .CK. We 1may assume
¢’ C K. Since H and K are connected, there can exist no separation S.~g
— A u B with ¢’ C.4 and G(b)C B. Hence, by Lemma 5.9, there exists
a continuum M C K joining ¢’ to G(b). Since K is open, K = M v g’ v
U G(). Lot ze K— (M wg v @) and take g” = G(2). There can be
no continuum ¢ joining g and ¢’ in 8—g", for then (H v g) U (CoMv
v g’ v G(b)) would be a proper subcontinuum of § containing alnd b.
Hence, by Lemma 5.9, there is a separation S—¢'=A4AvB,yg ,C 4,9'C Bé
By symmetry, the only remaining case is where a € g and b € g’. The proo
for this case follows directly from the above argument.

TrmorEM 5.11. If 8 s a compact Hausdorff comtinuum 'iwedu.oi'ble
between a e S and b e 8, then {MOLT(z): @ ¢ 8} is the core decomposition
of S with respect to the property: ‘“is monotone with Tocally conmected hyper-
space”.

Proof. By Theorem 6 of [2], p. 119, T(B)= U {T®): be‘B} for
all closed B C 8, and, by Theorem 5.10 above, {MCLT(x): »el}is u;;.c.
Hence the proof of Theorem 5.11 is parallel to that of Theorem 5.8.

'mEoREM B.12. If 8 is a compaot separable metric continuum m:edumble
betwettlm two of its poif;{ts, then {MOLT (z): @ € 8} is the decomposition of 8
into ils tranches ([7], p. 260). N

Proof. For w e 8, let Tr(z) denote the tranche of 8 conf:ajxmng. ::h
Tt is shown in [7] that {Tr(x): @ € S} is & monotone decomposmionbme
an are or single point as hyperspace. Hence, by'Theorem 5.1 a (arli;
MChT (x) C Tr(w) for all @ ¢ §. Theorem 5.11 ?Jnd 1t§ proo.f shov;,l%néa’ire
separable metric case, that {MOhT (v): @ € 8} is seml-contmuege q];l(m) °
(7], p. 227); hence, by Théoréme Fondamental ([7]; P- 259),
C MChT(x) for all weS.
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THEOREM 5.13. If 8 is a compact, separable, one-dimensional, m-cyclic,
metric continuum, then {MOLT (»): » e 8} is the decomposition of § into
its irreducible elements ([15], p. 38B).

Proof. This follows from Lemma 5.8, above, and Theorem 18 of [15),
p. 385.

6. Direct limit and MChN spectra. We show here that the
core decomposition of Corollary 2.2 may be realized as a direet limit
of MChf decompositions and that the core decomposition of Theorem 2.7
may be realized as a direct limit of MChZ and MChO decompositions.
We denote direct limit by lim.

DEFINITION 6.1. A collection G = {G: aed} of decompositions of
a space is ascending if and only if given G, and G in § there exists ¢,
in § such that both G, < G4 and G5 < G4. If {Gu: ac A} is ascending,
then we define \ {G,: a <A} to be the decomposition & defined by

G(z) = {y ¢ 8: for some aed, Gv)= G y)}.

The following remarks will be helpful in Definition 6.2 below. Let
{@.: ae A} be an ascending collection of decompositions of a space S.
The index set .4 becomes & directed set if we define, for « and g in 4,
a < fif and only if &, < Gs. For a < f the decomposition maps m,: S~
~~(8, &) and m;: 8—>(8, Gp) induce a map fup= mpoz > of (8, @) onto
(8, G5). It is easy to verify that {(S, @), fus, 4} is a direct limit system
such that (8, V {Go: a €A} =1im{(8, Go), fos, A}.

DEFINITION 6.2. Let N be a set function, suech as T' or 0, which
is defined and expansive on any set 8. If § is any space, then we let
(8, MChN) denote the hyperspace of § with respect to the decomposition
{MChN (2): @« 8}, and call the associated decomposition map an MChLN
decomposition map. It f: X 7Y is any mapping we let [f™*] denote {f " (y):
¥ € Y} For an ordinal a, 2(a)= {1: 0 < A< o}. By the MOLN specirum
for 8 we mean the direct limit system {8}, f1,., (a)} obtained as follows:
Let 8, = 8 and let §;= (8, MChN) with f,, the MChN decomposition
map. Let 8, = (8;, MChN), f,, be the MChN decomposition map and
for = fi2foa. By finite induction we continue this way and define
8n = (8p—1, MCOLN), f,—1,nthe MChN decomposition mayp and fon = frimX
X fon—1. The decompositions [fy,] are ascending, so we let: 8, = (8, \/ [fou])-
BY transfinite induction and the preceding remarks, we may continue
this process out to any given ordinal f# and obtain a divect limit system
{81, f1.s, Q(B)}. Since the collection {[f;i]: A< B} is ascending, there
exists a first ordinal « such that 8, = S,4s. Then {84, f14y 2(a)} is & direct
limit gystem such that for a nonlimit ordinal 2 < @, fr-1,1 is the MChN
map and for a limit ordinal f < a, 8 = (8, \/ {fil: A< f}).
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TaporEM 6.3. Let 8 be any space and G be the core decomposition
of 8 with respect to the property: “the hyperspace is Hausdorff’. Then (8, &)
= 1im {8, faur 2()}, where {81, fau, 2(a)} 48 the MChO spectrum for §.

Proot. We note that Lm{Si, fiu, L(a)}= 8 and S.= (8, k-
Since S, = Sar1, MCHO ig the identity on 8. Hence S, is a Hausdorff
space and [foa] is a decomposition of § into 0 closed sets. Thus & < [foal-
We must show that [foa] < &, which we do by induction. Since i
— {MChO(@): @< 8), clearly by Lemma 1.6 and Theorem 4.5, [fo1] < 6.
Suppose for a nonlimit ordinal A < a, [foi-1] < &. Then aifoia: Spa—
(8, @) is a map, where g 8-»(8, @) is the decomposition map. Since
(8, @) is Hausdortt, [(wf53-1) "] i8 @ decomposition of 8- info § closed
sets. Since s is the MOLO map, [filya] < [(wfai-s) "), from which it
follows, since fos = fa-safoa-1, that [for] < [n7%]= G. If § < ais a non-
limit ordinal and [fi] < & for all A<, then dearly [fo3]=V {[fo}]:
A< B} < G. Thus by transfinite induction [fo, = 6.

DEFNITION 6.4. By the Hausdorff map we mean the decomposition
map h: 8—(8, @) where G is the core decomposition of § with respect
to giving a Hausdorff hyperspace. Let § be any space and N as in Defini-
tion 6.2. The h-MOWN spectrum for § is the direct limit system
{81, fau, 2(a)} obtained by modifying the construction of the MChN
spectrum as follows: for a nonlimit ordinal A > 1 let 8; be obtained from
831 BY f1—11 = hpa_y Where @, is the MChN map and b is the Hausdorff
map, and we define 85—, and S by

SA—-I'E.:"S;'—-ILSA;
for & limit ordinal 8 let 5= (8, V {{fe"): <)) and 8= h(8p).

TEEOREM 6.5. Let S be a compact Hausdorff continuum and @ be
the core decomposition of 8 with respect to being T.8.C. with s.l.c. hyperspace.
Then (8, @) = Hm{Sy, fou, ()}, where {83, fam Q(a)} is the h- MChT
spectrum of 8.

Proof. We have (8, MOhT)>8, and fou=hp. It follows,
because § is compact, [fii]= A |G {MOLT (0)} < Ge and @ is ws.c.},
Then, since each MCOhT (@) is a continuum, [fo, 1] is a monotone decom-
position and f,, i & monotone map. By induction if follows that all
maps f;, in the h-MChZ spectrum are monotone, and that each 8; is
a compact Hausdorff continuum. Thus, by following the proof of Theo-
rem 6.3 and making use of Theorem 2.4, one obtains a proof of Theorem 6.5.
(For 8 of Bxample 4.7, 8§ = (8, MChT) is not a Hausdorff space, bub
S, = (85, MCh6) is Hausdorff and 8 = (8, &) of Theorem 6.5.)

Generalizations of Theorem 6.3 and Theorem 6.5 are clearly suggest.ed
by the above proofs, but we Will not labor this here. Instead we give
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2 method for attaining our basic core decompositions which is closely
related to the direct limit method, but which arises from a considerably
different point of view.

7. Upper-semi-continuity by modifications of MCOLN, We
show here that a simple modification of Definition 4.1 leads to a set
function MCHN such that {MCHN (#): « 8} is the core decomposition
of § with respect to being u.s.c. with N -closed elements, where § is any
compact space and N any expansive seb function on §.

DeriNrrioN 7.1. For an expansive set function NV on a space § we
define, for all AC#, CH,N(4)= N(4). For we 8, define Fyz) by
y ¢ Fo(w) it and only if there exist disjoint open sets Uy and V, such that
OH,N (y)C Uy, CH,N(2) CV, where U, and V, are both unions of sets
COH,N (2). Let L,= {Fy#): #¢8}. Now define, for 4CS, CH,N(4)
= N{z: 2 can be simply chained to 4 by sets of type OH,N () or elements
of Ls}. For a nonlimit ordinal «, define O, N (4) = N {z: # can be simply
chained to A4 by links of either type CH,_.N(x) or elements of L, .},
where L,.; is defined with respect to CH,_;N exactly as L, is defined
with respect to OH,N. For a limit ordinal «, define CH,N(4)
= J{CH;N(4): A< a}. We define MCHN (4)= CH,N(4), where a
is the first ordinal number such that CH,N (B)= CH,..N(B) for all
B C 8. (The existence of such an « follows by exactly the same arguments
used to prove Lemmas 4.2 and 4.3.)

THEEOREM 7.2. If 8 is any space and N any expansive sel function
on 8, then {MCHN (2): @ ¢ 8} is the core decomposition of 8 with respect
to having N -closed elements and giving a Hausdorff hyperspace.

Proof. Let @ be the core decomyposition of § with respect to having
N-closed elements and giving a Hausdorff hyperspace. That G exists
follows from Theorem 2.1 and the last part of the proof of Theorem 2.5.
By definition 7.1, CH,NV (#) C G (=) for each » € 8. Since & gives a Hausdorff
hyperspace, it follows Fo(x) C @G(z) for each # ¢ 8. Consequently no simple
chain with links of type either CH, N (#:) or Fy(x:) can meet two different
elements of G. Thus CH, N (¢) C G(x), for all @ ¢ 8. It follows by induction
that MCHXY () C G(x) for all #¢ 8. It iy obvious from Definition 7.1
that {MCHN (2): @ « 8} is a decomposition of § into N -closed elements
and gives a Hausdorff hyperspace. Hence, by definition of core,
G = {MCHN (2): % ¢ 8}.

In the case of a compact §, {MCHN (): » e 8} is w.8.c. (because the
hyperspace is Hausdorff) and obviously gives the decompositions of
Corollary 2.2 and Theorem 2.7.

The MCHN and direct limit decompositions of Section 6 do not
agree in general. For example, there exists & locally compact Hausdorft
continuum 8§ where {MCHT (#): z ¢ S} does not give a s.l.e. hyperspace

* composition, but not with respect to any of the properties we
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while the dirvect limit decomposition does give a s.l.c. hyperspace. (These
examples are tricky. The basic cause of this disagreement is that
in MCHN everything happens in 8, while in the limit process the space
keeps changing.)

8. Relation to McAuley’s decomposition. We show here that
the decomposition given by McAuley in his Theorem 3.1 ([10], p. 3) is
our core (and hence atomic) decomposition of Theorem 2.7.

Lemma 8.1 below, whose proof is straight forward, is helpful in under-
standing MeAuley’s Theorem 3.1. Definition 8.2 below is due to McAuley;
it is a simplification of Definition 1.1 in [10], p. 2.

Tmmma 8.1, Let 8 be a compact Hausdorff space and K be any given
collection of closed separators of S, and let, for each w8, L(x)= {y <8:
no ke K separates @ from y}. Then the following are equivalent:

(1) If & e K separates the points a and b in S and if o ek then either
some &' ¢ K separates a from o or some k' ¢ K separates b from c.

(2) {L(w): @8} is a decomposition of 8.
(3) {L(w): e} is an us.c. decomposition of 8.

DermNiTioN 8.2, Let § be any space, and for each pe S8 let M(p)
denote the set of all points y e § for which there does not ewist a collection K
of closed separators of S such that (1) some % ¢ K separates. p from y
and (2) for ke X and any separation §—%k =4 v B and points @€ 4,
beB and c¢ek there exists &' <K, open set @, and continuum W such
that 6 ¢ Q C'W and ' separates ¢ W from b.

TugorEM 8.3. If S is a compact Hausdorff continuum, M={M (]?):
p e 8}, and G s the core decomposition of 8 with respect to being .8.c. with
T-closed elements, then M = G-

Proof. For each collection of closed separators K, which has prop-
erty (2) of Definition 8.2, let M, = {Li(e): # ¢ 8} Where L, is .d.efined
with respect to K, as in Lemma 8.1, Then by Lemma 8.1 and condition (2)
of Definition 8.2 each M, is an w.8.c. decomposition of § into T-closed
sets. Furthermore, M = A {M,} and so by the proof of Theorem 2.5
M is ws.c. with T-closed elements. Thus & < M.

Suppose M < & and so for some @ and y in S we have y ¢ M(2) but
¥ ¢ G(). Since y ¢ G(w), there exists a decomposition H of 8, which by
Theorem 2.7 woe may assume to be monotone with (8, H) s..c., such
that H(z) + H(y). Let m be the decomposition map associated With
(8, H), and K = {=-*(k): ¥ is & closed separator of 8}. Because z is & MoN0-
tone map K has both properties of Definition 8.2 with respect to ® any ¥,
and 50 y ¢ M (w) which is a contradiction. Thus M < @, and 50 M=6

The decomposition given in Theorem 8.2 of [10], p. 9, i8 = core de-
: have considered;
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this decomposition is core with respect to satisfying Mc Auley’s condition I.(,,
([10], p. 9), but is not core (or atomic) with respect to giving an aposyndetic
hyperspace, nor is it core with respect to having T-closed elements.
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Spaces in which sequences suffice II
by
S. P. Franklin (Pittsburgh, Pennsylvania)

4. Introduction. In this paper we continue the work begun
in [6] presenting some new facts on sequential and Fréchet spaces (Sec-
tions 5 and 6) and paying particular attention to those sequential spaces
which are not Fréchet spaces (Section 7).

5. Sequential spaces II. The category of sequential spaces
fails to have two important permanence properties; it is neither hereditary
([6], Example 1.8) nor productive ([6], Example 1.11). There is another
example of a non-sequential subspace of a sequential space (due
essentially to Arens [1]) which plays a critical role in what follows.

5.1. EXAMPLE. There is a countable, normal sequential space M with
a non-sequential subspace.

Proof. Let M =(NXN)yuNu {0} with each (m,n)e NxN an
isolated point, where N denotes the set of natural numbers. For a basis
of neighborhoods at =, ¢ IV, take all sets of the form {n,} w {(m, ny)| m = m,}.
U will be a neighborhood of 0 if and only if 0 ¢ U and U is a neighbor-
hood of all but finitely many # e N. One verifies routinely that M is normal
and sequential. We shall show that {0} is sequentially open but not open
in M\N. ’

Since 0 e cly(IVx N), {0} is not open in M\N. If {(m¢, ny)} iy any
sequence in VXN, either there is some #,¢N such that n;=n, for
infinitely many 4, or there is no such n,. In the first case, {(mq, ns)} has
a cluster point in the set {ny} v {(m, n,)| m ¢ N} and hence does not
converge to 0. In the second case one easily construets a neighborhood
of 0 disjoint from {(mi, n¢)}.

We are left by these examples with the problem of characterizing
those subspaces of a sequential space X which are themselves sequential.
Such a characterization can be effected in terms of X as a quotient (under
the quotient map ¢x) of X*, the topological sum of its convergent sequences
(see 1.12, [6]) as follows.

5.2. PrROPOSITION. A subspace Y of a sequential space X is sequential
iff exlez(X) is a quotient map.
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