[27] J.-P. Serre, Modules projectifs et espaces fibrés à vectorielle, Sém. fibre Dubreil, Paris, 1958.

[28] S. P. Novikov, On manifolds with free abelian fundamental group and applications (Pontrjagin classes, smoothings, high dimensional knots), Izvestia Akad. Nauk S. S. S. R. 30 (1966), pp. 208-246.

[29] J. Levine, A classification of differentiable knots, Ann. of Math. 82 (1965), pp. 15-50.

[30] M. Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967), pp. 77-102.

[31] D. Sullivan, Triangulating and smoothing homotopy equivalences and homeomorphisms, notes, Princeton University, 1967; also On the Hauptvermutung for manifolds, Bull. Amer. Math. Soc. 73 (1967), pp. 598-600.

DEPARTMENT OF PURE MATHEMATICS, THE UNIVERSITY OF LIVERPOOL

Reçu par la Rédaction 18, 7, 1966

The hypothesis $2^{\kappa_0} \leqslant \kappa_n$ and ambiguous points of planar functions

b

F. Bagemihl (Milwaukee, Wis.)

Let P be the set of all points in the Euclidean plane provided with a Cartesian coordinate system having a horizontal x-axis and a vertical y-axis. By a line with direction θ we shall mean a straight line in the plane P whose angle of inclination is θ , where $0 \le \theta < \pi$. Suppose that n is a natural number and that $0 \le \theta_1 < \theta_2 < ... < \theta_n < \pi$ (1). We define the relation

$$P = E_1(\theta_1; K_1) \cup E_2(\theta_2; K_2) \cup ... \cup E_n(\theta_n; K_n)$$

to mean that P is the union of n sets, $E_1, E_2, ..., E_n$, where E_f (j=1,2,...,n) intersects every line with direction θ_f in a subset of that line satisfying the condition K_f . In this paper, K_f will take one of the following forms: (i) $< \kappa_{\alpha}$, (ii) $< \kappa_{\alpha}$, (iii) n.d., where $E_f(\theta_f; K_f)$ then means, respectively, that E_f intersects every line with direction θ_f in a set of power less than κ_{α} , in a set of power less than or equal to κ_{α} , in a linear nowhere dense set of points.

We shall be concerned with the following specific propositions:

$$(\mathbf{H}_n) 2^{\aleph_0} \leqslant \aleph_n ,$$

$$(Q_n) \quad P = E_1(\theta_1; < \kappa_0) \cup E_2(\theta_2; < \kappa_0) \cup E_3(\theta_3; < \kappa_0) \cup ... \cup E_{n+2}(\theta_{n+2}; < \kappa_0) ,$$

$$(\mathbf{B}_n) \quad P = E_1(\theta_1; \, \mathbf{n.d.}) \cup E_2(\theta_2; \leqslant \aleph_0) \cup E_3(\theta_3; \leqslant \aleph_1) \cup ... \cup E_{n+2}(\theta_{n+2}; \leqslant \aleph_n) .$$

It is evident that $(Q_n) \Rightarrow (B_n)$. I showed [1] that $(B_1) \Rightarrow (H_1)$, and Davies showed [4] that $(H_1) \Rightarrow (Q_1)$. Subsequently Davies proved [5] that $(H_n) \Rightarrow (Q_n)$ and $(Q_n) \Rightarrow (H_n)$ for every n.

I shall prove that $(B_n) \Rightarrow (H_n)$ for every n, and I shall then apply this result to show that the existence of a function with a certain kind of ambiguous behavior (this term will be defined in the next paragraph) implies (H_n) (whereas the result $(Q_n) \Rightarrow (H_n)$ is insufficient to show this).

Let $\zeta \in P$. By a segment Λ at ζ we mean a rectilinear segment extending from a point $\dot{\zeta}' \in P$, with $\zeta' \neq \zeta$, to the point ζ ; Λ is regarded

⁽¹⁾ What is essential here is not that the thetas be in this particular order, but that they be distinct.

as containing ξ' but not ζ . Suppose that f(z) is an arbitrary single-valued complex-valued function of $z \in P$. If Λ is a segment at ζ , then the cluster set of f at ζ along Λ , denoted by $C_{\Lambda}(f,\zeta)$, is defined to be the set of all points ω on the Riemann sphere with the property that, for some sequence of points $\{z_n\}$ on Λ for which $\lim_{n\to\infty} z_n = \zeta$, we have $\lim_{n\to\infty} f(z_n) = \omega$. We say that a point $\zeta \in P$ is an ambiguous point of f (more precisely, a rectilinearly oppositely ambiguous point of f; see [2]), provided that there exist collinear segments Λ_1 and Λ_2 at ζ with $\Lambda_1 \cap \Lambda_2 = \emptyset$ such that

$$C_{A_1}(f,\zeta) \cap C_{A_2}(f,\zeta) = \emptyset$$
.

If the line through ζ that contains A_1 and A_2 has direction θ , then θ is called a corresponding direction of ambiguity of f at ζ .

Let $0 \le \theta_1 < \theta_2 < \theta_3 < \pi$. It was shown in [2], Theorem 11, that (\mathbf{H}_1) implies the existence of a function f whose range is an at most enumerable set, such that every point of P is an ambiguous point of f with θ_1 or θ_2 or θ_3 as direction of ambiguity. This result was improved in [3], Theorem 7, by showing that the number of points in the range of f can be reduced to four; it cannot, however, be reduced to three ([3], Theorem 8). Conversely ([3], Theorem 9), the existence of a function f whose range is an at most enumerable set, such that every point of P is an ambiguous point of f with θ_1 or θ_2 or θ_3 as direction of ambiguity, implies (\mathbf{H}_1) . These results will be generalized in the present paper.

We begin by proving

THEOREM 1. Let n be a natural number, and suppose that $0 \le \theta_1 < \theta_2 < ... < \theta_{n+2} < \pi$. Then $(B_n) \Rightarrow (H_n)$.

Proof. The argument we use is a modification of that given by Davies ([5], pp. 277-278) to prove that $(Q_n) \Rightarrow (H_n)$. Assume to the contrary that (B_n) is true and (H_n) is false. Then

$$1 < \kappa_0 < \kappa_1 < ... < \kappa_{n+1} \leqslant 2^{\kappa_0}$$
.

We define n+3 subsets C_0 , C_1 , C_2 , ..., C_{n+2} of P as follows. Let C_0 consist of some single point $\zeta \in P$. Let C_1 be an enumerable everywhere dense subset of the line with direction θ_1 that contains ζ . For $j=2,\ldots,n+2$, let C_j be the union of \mathbf{x}_{j-1} disjoint sets, each of which is a translation of C_{j-1} in the direction θ_j , where C_j lies on \mathbf{x}_{j-2} lines with direction θ_j . That these sets exist is evident from the analysis given by Davies. Thus we have

$$|C_0| = 1$$
, $|C_1| = \aleph_0$, $|C_2| = \aleph_1$, ..., $|C_{n+2}| = \aleph_{n+1}$.

Now the set C_{n+2} lies on κ_n lines with direction θ_{n+2} . Each of these lines, according to (B_n) , contains at most κ_n points of the set E_{n+2} . Consequently, these κ_n lines contain altogether at most $\kappa_n^2 = \kappa_n$ points of E_{n+2} .

But C_{n+2} is the union of κ_{n+1} disjoint congruent sets, and if each of these sets contained a point of E_{n+2} , we should have at least κ_{n+1} points of E_{n+2} on the κ_n lines in question, which is impossible. Hence, at least one of the κ_{n+1} disjoint sets congruent to C_{n+1} , call it C'_{n+1} , contains no point of E_{n+2} . Pursuing a similar argument with the set C'_{n+1} now, we arrive at the conclusion that one of the κ_n disjoint sets congruent to C_n of which C'_{n+1} is the union, call it C'_n , contains no point of E_{n+1} . Continuing in this manner, we obtain a descending sequence of sets

$$C'_{n+1}\supset C'_n\supset\ldots\supset C'_1$$
,

where C_j' is congruent to C_j and contains no point of E_{j+1} (j=1,2,...,n+1). Consider, finally, the set C_1' . Since it is congruent by translation to C_1 , the set C_1' is an enumerable everywhere dense subset of some line with direction θ_1 . But by (B_n) , this line intersects E_1 in a linear nowhere dense set of points, and hence C_1' contains a point ζ' that does not belong to E_1 . The point ζ' , however, does not belong to any of the sets E_j (j=2,3,...,n+2) either, which contradicts (B_n) . Our assumption is therefore untenable, and the theorem is proved.

We are now in a position to establish

THEOREM 2. Let n be a natural number, and suppose that $0 \le \theta_1 < \theta_2 < ... < \theta_{n+2} < \pi$. Then the existence of a function f with an at most enumerable range such that every point of P is an ambiguous point of f with θ_1 or θ_2 or ... or θ_{n+2} as direction of ambiguity, implies (\mathbf{H}_n) .

Proof. Assume that a function f possessing the indicated property exists. Define E_f (j=1,2,...,n+2) to be the set of all those points of P that are ambiguous points of f with θ_f as direction of ambiguity. Then $P = \bigcup_{j=1}^{n+2} E_f$. According to [3], Theorem 3, E_1 intersects every line with direction θ_1 in a linear nowhere dense set of points, and by [2], Theorem 7, E_f (j=2,...,n+2) intersects every line with direction θ_f in an at most enumerable set. Hence (B_n) is true, and this, according to Theorem 1, implies (H_n) .

THEOREM 3. Let n be a natural number, and suppose that $0 \le \theta_1 < \theta_2 < \ldots < \theta_{n+2} < \pi$. Then (H_n) implies the existence of a function f whose range is a set of at most $2^{n+2}-1$ values, such that every point of P is an ambiguous point of f with θ_1 or θ_2 or ... or θ_{n+2} as direction of ambiguity.

Proof. Assume (\mathbf{H}_n) to be true. According to Davies ([5], p. 278), P is the union of n+2 mutually exclusive sets E_j (j=1,2,...,n+2) such that every line with direction θ_j intersects E_j in only a finite number of points. If L is a straight line in the plane and (x_0, y_0) is a point of L, we say that a point (x, y) of L different from (x_0, y_0) precedes (x_0, y_0) if $y < y_0$ or both $y = y_0$ and $x < x_0$, but succeeds (x_0, y_0) otherwise. If

 $z_0 \in L$, and if $z \in L$ precedes z_0 , we write $z \leq z_0$, whereas if z succeeds z_0 , we write $z \geq z_0$.

We first define n+2 functions $f_j(z)$ (j=1,2,...,n+2) for $z \in P$ as follows. Given $z \in P$, denote by $L^{(j)}$ the unique line with direction θ_j that contains the point z, and let E_k be the unique one of the aforementioned n+2 sets that contains z. First of all, we put $f_k(z)=0$. Next, let $\{z_1^{(j)}, z_2^{(j)}, ..., z_{m(D)}^{(j)}\}$ be the (possibly empty) set of finitely many points of E_j that lie on $L^{(j)}$ $(j=1,2,...,n+2; j \neq k)$, where

$$z_1^{(f)} \preceq z_2^{(f)} \preceq ... \preceq z_{m(L^{(f)})}^{(f)}$$
.

If this set is empty, put $f_j(z) = 0$. If this set is not empty, we continue in the following way. If $z < z_1^{(j)}$, put $f_j(z) = 0$. If $z > z_{m(L^{(j)})}^{(j)}$, put f(z) = 0 or $2/3^j$ according as $m(L^{(j)})$ is even or odd. If neither of these two relations holds, then since $z \notin E_j$, there exists a unique natural number r such that $z_r^{(j)} < z < z_{r+1}^{(j)}$. Put $f_j(z) = 0$ or $2/3^j$ according as r is even or odd. This completes the definition of the functions $f_j(z)$ (j = 1, 2, ..., n + 2). Now define

$$f(z) = \sum_{j=1}^{n+2} f_j(z) \qquad (z \in P) .$$

It is easy to verify that the range of f is a set of at most $2^{n+2}-1$ values, since every value of f is of the form

$$\sum_{j=1}^{n+2} \frac{t_j}{3^j},$$

where each t_j is either 0 or 2 and at least one t_j is 0. Suppose finally that $\zeta \in P$. Then there is a unique natural number j_0 $(1 \le j_0 \le n+2)$ such that $\zeta \in E_{j_0}$, as well as a unique line $L^{(j_0)}$ with direction θ_{j_0} such that $\zeta \in L^{(j_0)}$. If z and z' are points of $L^{(j_0)}$ on opposite sides of ζ and sufficiently close to ζ , then the distance between the points f(z) and f(z') is at least $1/3^{j_0}$, so that ζ is an ambiguous point of f with θ_{j_0} as direction of ambiguity, and the proof of the theorem is complete.

By combining Theorems 2 and 3, we obtain the following

COROLLARY. If n is a natural number and $0 \le \theta_1 < \theta_2 < ... < \theta_{n+2} < \pi$, then (\mathbf{H}_n) is equivalent to the existence of a function f whose range is a set of at most $2^{n+2}-1$ values, such that every point of P is an ambiguous point of f with θ_1 or θ_2 or ... or θ_{n+2} as direction of ambiguity.

Remark. In connection with Theorem 3, let $\varrho(n)$ be the smallest possible number of values in the range of a function f with the indicated ambiguous behavior whose existence is implied by (\mathbb{H}_n) . It has been shown in [3], Theorems 7 and 8, that $\varrho(1) = 4$, whereas the value of the

expression $2^{n+2}-1$ appearing in Theorem 3 is 7 for n=1. It is very likely, therefore, that $\varrho(n)<2^{n+2}-1$ for n>1. The proof that $\varrho(1)=4$ might lead one to conjecture that $\varrho(n)=2^{n+1}$ for every natural number n, but this remains an open problem.

References

[1] F. Bagemihl, A proposition of elementary plane geometry that implies the continuum hypothesis, Zeitschr. f. math. Logik und Grundlagen d. Math. 7 (1961), pp. 77-79.

 [2] — Ambiguous points of arbitrary planar sets and functions, ibidem 12 (1966), pp. 205-217.

[3] F. Bagemihl and S. Koo, The continuum hypothesis and ambiguous points of planar functions, ibidem (to appear).

[4] R. O. Davies, Equivalence to the continuum hypothesis of a certain proposition of elementary plane geometry, Zeitschr. f. math. Logik und Grundlagen d. Math. 8 (1962), pp. 109-111.

[5] — The power of the continuum and some propositions of plane geometry, Fund. Math. 52 (1963), pp. 277-281.

UNIVERSITY OF WISCONSIN-MILWAUKEE

Reçu par la Rédaction le 25. 7. 1966