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The hypothesis 2* <s, and ambiguous points
of planar functions

by
F. Bagemihl (Milwaukee, Wis.)

Let P be the set of all points in the Euclidean plane provided with
a Cartesian coordinate system having a horizontal z-axis and a vertical
y-axis. By a line with direction 6 we shall mean a straight line in the
plane P whose angle of inclination is §, where 0 < 6 < #. Suppose that n
is a natural number and that 0 < 6 < < ... < Os <z (1). We define
the relation

P = By(0:; K1) © By by Ks) © .. v Bn(n; Kn)

to mean that P is the union of n sets, H, E, vy Bn, where Iy
(j=1,2,..,n) intersects every line with direction 6; in a subset of that
line satisfying the condition K;. In this paper, K; will take one of the

* following forms: (i) << 84, (ii) < 84, (iii) n.d., where B;(0;; K;) then means,

 (Hn)

respectively, that E; intersects every line with direction 0; in a set of
power less than ®,, in a set of power less than or equal to 8., in a linear
nowhere: .dense set of points.

We shall be coneerned with the following specific propositions:

2% < ¥
(Qn) P = B85 < 8) w By 0 < %) v Ha 035 < 8) ¥ oo U By Opia3 < %) 5
(Ba) P = Ey(0;n.d.) By by; < %) v Ey( 05 <81) © oee U B yoOpga5 <n) -

It is evident that (Qn)=(Bx). I showed [1] that (B,)=(H,), and
Davies showed [4] that (H;)=(Q,). Subsequently Davies proved [5]
that (Ha)=>(Qa) and (Qn)=>(Hs) for every «.

I shall prove that (Ba)=-(Hx) for every n, and I shall then apply
this result to show that the existence of a function with a ecertain kind
of ambiguous behavior (this term will be defined in the hext paragraph)
implies (H,) (whereas the result (Qn)=(Hj) is insufficient to show this).

Let £ e P. By a segment A at { we mean a rectilinear segment ex-
tending from a point ¢’ e P, with ¢’ # ¢, to the point {; A is regarded

(*) What is essential here is not that the thetas be in this particular or&er, but

that they be distinct.
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as containing ¢’ but not {. Suppose that f(2) is an arbitrary single-valued m“

complex-valued function of z ¢ P. If 4 is a segment at {, then the cluster
set of f at ¢ along A, denoted by Culf, ), is defined to be the set of all
points o on the Riemann sphere with the property that, for some sequence
of points {¢,} on A for which }birgloz1l = {, we have %1590 H#a) = o. We say
that a point {ePigan dmbiguous point of f (more precisely, a rectilinearly
oppositely ambiguous point of f; see [2]), provided that there exist collinear
- segments A, and A, at ¢ with A, ~ 4y = @ such that

Calfy &) ~ Oglfy &) = 0.

If the line through { that confaing 4, and ; has direction 6, then 9 is
called a corresponding direction of ambiguity of f at ¢,

Let 0 < 6 < 0y < 0y < . It was shown in [2], Theorem 11, that (I,)
implies the existence of a function f whose range is an at most enumerable
set, such that every point of P is an ambiguous point of f with 6, or 6,
or fly as direction of ambiguity. This result was improved in [3], Theorem 7,
by showing that the number of points in the range of # can be reduced
to four; it cannot, however, be reduced to three ([3], Theorem 8). Con-
versely ([3], Theorem 9), the existence of a function f whose range is
an at most enumerable set, such that every point of P is an ambiguous
point of f with 6, or 8, or 6, as direction of ambiguity, implies (F;). These
results will be generalized in the present paper.

We begin by proving

TrEOREM 1. Let n be o natural number, and suppose that 0 < 0, < 0y
<o < Opia < . Then (Bs)=(Hy).

Proof. The argument we use is a modification of that given by
Dayvies ([5], pp. 277-278) to prove that (Qn) = (H,). Assume to the contrary
that (Ba) is true and (H,) is false. Then

T <Ry <8 < o < Mgy < 200,

We define n-+3 subsets 0y, 0, 0y, ..., Opyy of P as follows. Lot 0, consist
of some single point ¢ ¢ P. Let 0, be an enumerable everywhere dense
subset of the line with direction 0, that contains ¢. For f=2,..,n-2
let ¢y bfa the union of ;_; disjoint sets, each of which is a translation
of C;_, in the direction 0;, where 'O, lies on 8y, lines with direction 0.

That these sets exist is evident from the analysis given hy Davies. Thus
we have :

lonl = 19 |01| = 8, !02[ =Ry e, ‘OPH'E\ =2 Ryt

Jin :NOW ﬂl? "set Oryz lies on w, lines with direction On4s. Bach of these
ines; -aceording to ‘(;B,,), eontains at most x, points of the set By is. Con-
sequently, these x, lines contain altogether at mogt &} = x, points of Fyis.
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But Cpiz is the union of 8,4, digjoint congruent sets, and if each of these
sets contained a point of H,,, we should have at least N,41 points of B, s
on the s, lines in question, which is impossible. Hence, at least one of
the 8,41 disjoint sets congruent to Cp.y, call it Oy, containg no point
of Ey.e. Pursuing a similar argument with the set 0., now, we arrive
at the conclusion that ome of the n, disjoint sets congruent to O, of
which Op41 is the union, call it (7, contains no point of Ey.;. Continuing
in this manner, we obtain a descending sequence of sets

04D 04D .0 0,

where C7 is congruent to C; and contains no point of By (§ = 1,2, ...,n 1),
Consider, finally, the set (. Since it is congruent by translation to ¢,
the set €7 is an enumerable everywhere dense subset of some line with
direction 6,. But by (B,), this line intersects X, in a linear nowhere dense
set of points, and hence ¢f contains a point ’ that does not belong to F,.
The point ', however, does not belong to any of the sets B (j = 2, 3, ...,
n +2) either, which contradicts (Bx). Our assumption is therefore untenable,
and the theorem is proved. -

We are now in a position to establish

THEOREM 2. Let n be a natural number, and suppose that 0 < 0, < 0,
< oo < Opas < 7. Then the emistence of a function f with an at most enumerable
range such that every point of P is an ambiguous point of f with 6, or 6,
07 ... 07 Opyp as direction of ambiguity, implies (H,).

Proof. Assume that a function f possessing the indicated property
exists. Define Fy (j=1,2,...,n42) to be the set of all those points
of P that are ambiguous points of f with 6; as direction of ambiguity.

+2
Then P = nUE,. According to [3], Theorem 3, F, intersects every line
i=1 :

with direction 6, in a linear nowhere dense set of points, and by [2],
Theorem 7, By (j =2, ..., n+2) intersects every line with direction 6,
in an at most enumerable set. Hence (By) is true, and this, according
to Theorem 1, implies (Hj).

THEOREM 3. Let n be a natural number, and suppose that 0 < 6, < 0,
< oo < Opys < m. Then (Hy) implies the existence of a fumction f whose
range is o set of at most 2"*—1 values, such that every point of P is an ambi-
guous point of f with 0, or 8, or ... or Oy40 as direction of ambiguity.

Proof. Assume (Hy) to be true. According to Davies ([5], p. 278),
P is the union of n-+2 mutually exclusive sets B (j=1,2,...,n+42)
such that every line with direction 6, intersects Hy in only a finite number
of points, If L is a straight line in the plane and (z,, y,) is & point of L,
we say that a point (z,y) of L different from (w,,y,) precedes (2, ¥,)
if y< g, or both ¥y =y, and = < x,, but succeeds (@0, ¥o) otherwise. If
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2 €L, and if z ¢ I precedes 2, we write 232, whereas if z succeeds ¢,,
we write 2z &> 2.

We first define »-+2 functions f4(2) (j= 1,2, ...,n+2) for 2 ¢ P ag
follows. Given 2 ¢ P, denote by L? the unique line with direction 0; that
contains the point 2, and let Ej be the unique one of the aforementioned
n+2 sets that contains z. First of all, we put fu(e)==0. Next, let
&4, ., A} be the (possibly empty) set of finitely many pointy
of By that lie on L9 (j=1,2,...,n4+2; j # k), where

A" < e << zf,,?g;u)) .

If this set is empty, put fi(#) = 0. If this set iy not empty, we continue
in the following way. If 22, put fi(e) = 0. It 2 &2lrm), put f(z) =0
or 2/37 according as m(L?) is even or odd. Tf neither of these two relations
holds, then since 2 ¢ By, there exists a unique natural number r such
that 2 <2< 2%, Put f;(2) = 0 or 2/37 according as r is even or odd. This
completes the definition of the fumetions fi(2) (j =1, 2, ..., n+2). Now
define
nt2

1) = D iw)

7=1

(e P).

It is easy to verify that the range of f is a set of at most 2"*—1 values,
since every value of f iy of the form

=1

where each % is either 0 or 2 and at least one # is 0. Suppose finally that
{eP. Then there is a unique natural number j, (1 < jo < n+2) such
that { ¢ By, as well as a unique line L7 with direction 6, such that
{ eI"™. Tt 2 and #' are points of LY on opposite sides of ¢ and sufficiently
close to £, then the distance between the points f(2) and f(2') is at least 1/3%,
so that { is an ambiguous point of f with 0, as direction of ambiguity,
and the proof of the theorem is complete. ‘

By combining Theorems 2 and 3, we obtain the following

COROLLARY. If n is a natural number and 0 < 0y < Oy < vio < Oy < 1,
then (Hy) is equivalent to the existence of & function f whose range is a set
of at most 2" 1 values, such that every point of P is an ambiguous point
of f with 6, or 0, or ... or Onye as direction of ambiguity.

Remark. In connection with Theorem 3, let ¢(n) be the smallest
possible number of values in the range of a function 7 with the indicated
ambiguous behavior whose existence is implied by (Ha). It has been
shown in [3], Theorems 7 and 8, that o(1) = 4, whereas. the value of the
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expression 2""*—1 appearing in Theorem 3 is 7 for n = 1. Tt is very likely,
therefore, that o(n) < 2"*2—1 for # > 1. The proof that (1) = 4 might
lead one to conjecture that g(n) = 2" for every natural number n, but
this remains an open problem.
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