168 I0. . Toper
B uactrocri, 510 Kacaerca (- CyMMUPOBAHUA IOCIENOBATENBHOCTEY MeT0-
famm, HempepsBHBME To JI. Bromapcromy (cm., mampumep, [67).

He paccmaTpuBas BOIPOC O KOHTHHYAIBHOCTH OTDAHMYEHHEIX MONel:
CyMMHDOBAHHA TAKMX METOJOB, OTPAHMYHMCA B STOM HANDABIEHHN Cle-
myiolneit TeopeMoii:

Tropsua 3. Ecau peeyadpHulii NOAYHENDEPHIGHBUL MemMod CYMMUPOBa-
nus T o6aadaem ceoiicmeom (o) U cymmupyem HMeKOMOpYIo O2DAHIYEH-
HEI0 paczodauyyloca nocaedosamebHOCM®, MO OH CyMMUpYem Hecenapagens-
Hoe ¢ npocmpaecmee m (a cae0ogamenbHO U HECHEIMHOe) MHOMCeCmeo
oepanuenHyx nocaedosamensrocmell, pacroduyuLcs 00HOSPEMEHHO ¢ A1060L
UT HempueuaJbHOU KoHeuHol aumelinoli KomOunayueil.

TeitcTBATENHHO, ecIi OB YIOMAHYTOE B SaKIIOYEHNH TEOPEMBl MHO-
FHECTBO II0CTENOBATETHLHOCTE 6BUI0 cenapalelbHBIM, TO MOMKHO OBUIO
6H, B3AB MPOUW3BOJBHYI0 DPErYIAPHYIO MATPHULY {dmn}, OPPAHHYEHHO He
coBMecTHYI0 ¢ MeTomoM T, BBINENNTH M3 Hee PEryuAPHYIO MOAMATPHUIY,
roTopas Grua 66t He caaGee Meroma T ([1], Teopema 8.5.2) M OTpaHMIEHHO
HEe COBMeCTHA C HAM. A 5TO IPOTHBODPEYWIO OBl IOIYHENPEPEHIBHOMY
aHamory Teopemsl Masypa-Opawda, KOTOpPHH, KAK H3BeCTHO, CIpaBef-
JUB JA TONYHENpPEpPHBHEX METOROB, obmamaiommx csoiictBoM (x) ([4],
cTp. 242).
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Estimates for eigenfunctions
by

JAAK PEETRE (Lund)

0. Introduction. As is well known (cf. e.g. [8], vol. 1, p. 45) the
Riemann-Lebesgue lemma says that if f is a periodic function ¢L; and
@, = ff(:c) e "Tde (v = 0, +1, 42, ...) are the Fourier coefficients of f,
then a, = 0(1), v — 4 co. We recall also that the proof follows by a
dengity argument from the following facts: (i) The trivial fact that
the functions ¢** are uniformly bounded hich already implies a, = O(1).
(i) The fact that a, = o(1) in some dense subset of L;, say L,, in which
case }a,|2 < oo, if we presuppose Parseval’s formula, or the space of
continuously differentiable functions, in which case a, = O(1/»), by
partial integration.

What is the analogue of the Riemann - Lebesgue lemma for eigenfunc-
tion expansions? In this paper we attempt to answer this question
for the case of the eigenvalue problem

(0.1)

where 4 is any formally positive self-adjoint elliptic partial differential
operator of order m, the essential (and very restrictive) assumption
being that the leading part A, of A has constant coefficients, and Q is any
domain of R", self-adjoint boundary conditions (say of the Dirichlet
type) being imposed on the boundary of 2. We assume further that the
spectrum is discrete, so that there exists a complete set of eigenfunctions
in the usual gense. (It is not clear to us what happens in the case of con-
tinuous spectrum, i.e. generalized eigenfunction expansions.) Then every
f ean be expanded in a series

Au = Ju in Q

where

(0.2) £(@) = D (fy oo (@ = [ D on(@)en)f @)y,

the summation being extended over an orthonormal basis (necessarily
finite!) of eigenfunctions ¢,. belonging to the sth. eigenvalue 1,. We
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shall show that if feL, and vanishes off a compact subset of £, then the
formula

(0.3)

holds uniformly on compact subsets of £ (analogue of the Riemann-
Lebesgue lemma). What the proof concerns it turns out that now step
(ii) is the trivial one and the whole difficulty lies in step (i). Indeed, we
shall show that any normalized solution of (0.1), regardless if it satisfies
the boundary conditions or mnot, satisfies

fo(@) = o (a9,

» — 00,

(0.4) u(z) = 0(AP—DE™, ] - oo,

uniformly on compact subsets of 2 and in u. From (0.4) and (0.2) easily
follows with the aid of Sehwarz’ inequality

fi(@) = 0 (A

and therefore by a density argument (0.3) too. The proof of (0.4) again
depends on an estimate of a certain fundamental solution. Similar results
hold in L,, 1 < p < 2. For instance, for p = 2 we have

(0.5) fi(@) = 0™, v — oo,

whenever feL, and vanishes off a compact subset of Q.

In the special case m =2 the above results (notably (0.4)) and the
method are due to Minakshisundaram and Titchmarsh (cf. [7], chap.
XVIII, in particular pp. 186-193; concerning the work of Minakshisun-
daram in this area, cf. also [1]). However, this case is particularly simple
because the fundamental solution can be expressed in terms of Bessel
functions while as we, in the general case, have to give direct estimates
for it, which is our main new contribution. In the special case m = 2
one can also see that the exponent in (0.4) and consequently the one in
(0.5) cannot be improved (cf. [7], pp. 192-193). However, the exponent
in (0.3) ean now be replaced by (n—1)/2m. It is conceivable that this
will not be so if m >2 so that (n—1)/m is the best one can hope for in
general. Cf. [3] where a similar phenomenon occurs.

Our method fails when the leading part 4, is not constant; this
case would require a much more careful analysis of the fundamental
solution. However, there is one instance of variable coefficients where
(0.3) still holds true; this is the case of an expansion in spherical hai-
monics (Laplace series); thus 2 is now a manifold not immersed in R™
A proof of this, based on the theory of Gegenbauer polynomials, was
essentially given by Shapiro [6], p. 10. We give here a different proof
making use of an idea similar to the one in [5], Section 3.
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The plan of the article is as follows. We start in Section 1 by proving
(0.4) in the special case m = 2. Then we extend the method sucecessively
in Section 2 and Section 3. In Section 4 we prove the estimate of the
fundamental solution used in the previous sections. In Section 5 we
give the applications to eigenfunction expansions. Finally, in Section 6
we treat the case of expansion in spherical harmonics, indeed in a some-
what more general framework.

1. An illustrative special case. Let us consider the equation

(1.1) —du =iu, |2j<1,1>0,
02 02
where 4 = —5 +...--— is the Laplace operator. We assume that
ox] 0x,
wel, is normalized by
(1.2) [ lultdw =1.
Je<l

Without loss of generality we may assume () gradueL, together with
the estimate

(1.3) [ lgradulrdz < €22

El<l
with C independent of u. B
It we set v(z) = u(x/R), B = V2, we get in place of (1.1):

(1.4) —Adv =9, |2 <R,

and in place of (1.2) and (1.3):
(1.5) IREREES [ lgradoj2de < OR™.

12| <R <R

Next we set w(z) = ¢(w)v(z) where p(s) = gy(¢/B) and g (z) is
any infinitely differentiable function such that @ (z) =1 if |2/ <1/3
and g,(z) = 0 if |#| > 2/3. Then we have

(1.6) — Aw = w—2grade-gradv— dgv.

Let F be any fundamental solution of (1.4), i.e. —AF = F--§, where
0 is Dirac’s function. Then holds

1.7) w(0) =0(0) =w(©0) =— [ F(—2)(grade gradv-+Apv)ds.
%<1zl<23§

(1) Because if necessary we can as well work with a smaller sphere, say || < 3.
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Now a particular fundamental solution is

Y(n_z)/z(lwl)

F(z) = ¢n Pl

where Y, is Bessel's function of the second kind of order u and ¢, is a
suitable normalization constant. But

Y, (1) = o(i), t - oo,

Po)de < C:R, R>1.

It follows that

R R
-<Izi<~—

Therefore we get from (1.7) in view of (1.5)

Ol <0( [ (F@)aa)” (B lgradolz+ [ B4l
R
< ORllz(R~1RnI2+R—2_Rn/2) < OR(‘n—-l)[Z — C%(n—l)[tl-, 2 > 1.

(Here and in the sequel constants are denoted by one and the same let-
ter C.) We have thus proved

TemorEM 1.1 (Minakshisundaram-Titchmarsh). Any normaliced solu-
tton of (1.1) satisfies

(1.8) [u(0)] < CA=YH,
We note also the following

CoroLLARY 1.1. If v is a solution of (1.4) such that

Az=1.

(1.9) [ @)pds < 0B, R

1z <R

=1,e>0,

then v = 0.

It is readily seen that this is false if & = 0.

Similar consequences may be obtained from the results of Sec-
tion 2 and Section 3.

Remark 1.1. The same methods work also in L,. We then find

that (1.8) holds for any solution of (1.1) with the normahza,tlon condi-
tion (1.2) being replaced by

f lu|Pde = 1.
|z <1

2. Generahzanon I. We shall first extend the result and method
of Section 1 to the equation
(2.1)

Apth =du, |o| <1,
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where A4, is any homogeneous of order m formally positive elliptic
partial differential operator, i.e.

y A Dm

Here and in the sequal we use D™ as the general mth order partial dif-

a \™m 9\ .

ferentiation, D™ = (—4)™ (——) (W) with m = m;+...+m,; simi-
‘T

laxly &™ stands for &£7'1...&pn.

0w,
We assume again that

(2.2) Ay = Ap(D) = Ap(8) = D a,§™ >0 unless & = 0.

[l ds =1.

|Zj<1

Then we may assume without loss of generality that

(2.3) [ IDMurae < 0™, 0 <k <m.
[z[<1
If we set v(2x) = w(z/R), B = A'"™, we get
(2.4) Agp =9, |o]<R
and
(2.5) | D*pj2de < O2R", 0 <k<m.

[Zl< R
= p(z)v(s) with ¢ as in Section 1 we get
Z DrpA®w

I<k<m

Writing w (z)

(2.6) A0 = wt
where A% stands for a partial differential operator of order m—Fk (Leib-
nitz’ formula).

If F is a fundamental solution of (2.4) we get (ef. (1.7))
F(—z) DipAPvis.

(2.7) u(0) =

R 2R
I<ksm fz[<‘—

We now use the following lemma which we prove later in Section 4:
LeMMA 2.1. It is possible to choose F such that
C*R, R=>=1,

(2.8) [ F@pds<

R<lzj<2R

where C is a constant. If the order m is sufficiently high (m > n[2), the same
inequality (2.8) holds also with the range of integration |z << E.
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As in Section 1 we now get with the aid of (2.5), (2.7), (2.8), recalling
also that D% is O(R™"), the following estimate:

@i <o( [ (F@prdal” 3 swiDpl( [ 14fojaa)®

_2_<|$|<:{ Ikssm x| <R
< ORM? Z R_kRn/z < ORM-VE Qpm—nizm
I<ksm

This proves
THEOREM 2.1. Any normalized solution of (2.1) satisfies

(2.9) [w(0)] < AR-DE™ 55y,

3. Generalization II. Next we consider the equation

(3.1) Aw = Iu, |z <1

where 4 is any partial differential operator with leading part 4,,, where
A, is as in (2.2), i.e.

A=A4(,D) =AnD)+ D @)D
oi<m—1

where the coefficients a;(x) are supposed to be “sufficiently” differen-
tiable.

With v(x) = u(z/R), B = '™, we get the equation (cf. (2.4))

(3.2)

(3.3) Apo =v— D' a(w/R)E~"Dh

If<m—1

which again yields (ef. (2.7))

u(0) = 3

I<ksm R
3

(3.4) f F(—z) Do AP vdx—

. AR
<ITj<—3

- X [ F(—a)pa(@/R) R~ Dvda.

0 m— 23
3
We Flearly may assume that (2.5) holds. Using the estimate obtained in
Section 2 for the first term and estimating the second one in a similar
fashion we obtain

1
12 <

Iu(o)f < GR(n-—l)/z — Cl‘"_l)/m,

und.er thf) auxiliary assumption that m <> n/2 (cf. lemma 2.1). However,
by iterating (3.1) we can get as high order in 4 as we want to so this is
1o real restriction. Therefore holds

THEOREM 3.1. Any normalized solution of (3.1) satisfies (2.9).
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Remark 3.1. ITf (3.2) would contain additional terms of order m,

we would get A% in place of A 2™ in (2.9). Therefore the present

method is strictly limited to operators with constant leading part.

4. Proof of the estimate for the fundamental solution. We have
yet to prove lemma 2.1. For this purpose we use a Fourier transform
technique analogous to the one of [3]and [4]. We define F (formally) by

%3
F(z) = (2@*’”[%5)_?15.

We write
Plz) = ZNI’F,(m)
where "~
Fy(x) = (2n)™™ ?g;ﬁ—?d;ﬁ

N
and y; is a finite partition of unity, } z;(£) = 1, with each y; infinitely

i=o
differentiable, such that (i) the support of y, is contained in the set where
A(&) <1, (i) the support of x, 0 <j< N, is compact and, in the
neighbourhood of it, it iz possible to introduce new local coordinates
such that A(£) =1 goes over to & = 0, (iii) the support of y, is con-
tained in A (&) >1. We shall treat each case separately.

j = 0. There is no difficulty because F, is the inverse Fourier trans-
form of an infinitely differentiable function with compact support,
thus in particular it is square integrable.

j=N. Again there is no difficulty because integration by parts
shows that «"Fy is bounded when 7 is sufficiently large so that Fy too
is square integrable over |z| >1. If m >n/2, we see directly that Fy
is square integrable over the whole of R". This eventually leads to the
second half of lemma 2.1.

0 < j << N. Here arises the essential difficulty. We have the following
inequality:

1/2

(+.1) By (@)da) " < OR*(f(1-+1al2) | Fy (o) da)

R<lz|<2R
12

<CR”"U|(1~A)"”ﬁ,~(§){2d5) , R>1,

for any s % 0. Here powers of 1—A are defined by

— T
(A —AyPT = (1+|a|*) T
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for any tempered distribution T=T (&); T is the inverse Fourier transform
of T. Let us introduce the spaces H® corresponding to the norms

1/2 1/2

171 = (@m)" fla— 2y pag)™ = ([ +1al*|7 (@) da)

Let F; = Fj+F; where Fy and Fy, are arbitrary. Then (4.1) yields;
Jor any s, 8;, to fix the ideas we assume s, < s,,

([ 1#@)de)" < OR*0(|1 By loy+B50 1| By )

R<lzj<2R )
or, if we put (ef. e.g. [2], [4])

K (t, ) = inf (| Fyoll, -+t Eplle,)
even . )
11ﬂ,-(as)[2dac)”Z < CR~%K (R4, F)).
R<|2|<2R
Thus we see that
\Fy (@) da) ™ < OBV, R >1,

Rcizj<2R

holds, which would complete the proof, if we can show that

K@, F) <0, t<1 with —} =s,(1—0)+s,0,

ie. FreH %% = (H% HY),,, (cf. e.g. [2], [4]). To show this we remark
that the spaces H** are invariant for changes of local coordinates. (This
ig immediate for H®, s integer, from which the actual statement follows
simply by interpolation.) Thus in view of (ii) it suffices to show that

1 . . . 1
i e(H-M=y o or logl&| (smtable integral of E—)e(Hlﬁ*"")M.
1 . 1

But the spaces H*® (0 < s < 1) are characterized by the condition
(J1z(E+m—T@ag)” < omr?,  TeL,.

Therefore everything follows from the following elementary inequality
J Moglé,+hi| —log|&[2dé, < Oyfh

which ig immediate since we can reduce it to the case h; = --1 by a change
of variable.

Collecting together the information contained in each of the three
above steps, we see that we have proved lemma 2.1.
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Remark 4.1. The same method is applicable in Z, too, as long
as p < 2. We then obtain analogous of theorem 2.1 and theorem 3.1
with the exponent (n—1)/p (cf. remark 1.1). However, the results of
the following sections can be deduced from the case p = 2 alone 5o we
shall not carry out details.

5. Application to eigenfunction expansions. Consider now the eigen-
value problem

(5.1)

where A is the operator (3.2) and 2 any domain of R", self-adjoint boun-
dary conditions being imposed on the boundary of Q.

‘We assume that the spectrum is diserete. Then every f can be expanded
in a series

Ay = lu in Q

fl@) = D'f.(=)
where

(5.2) 7A@y = D (fs o) pu(@) = [ D o (@) pu()f(0) Ay

r Q

the summation being extended over an orthonormal basis of eigenfunc-
tions ¢,, belonging to the »th eigenvalue 1,, i.e. ¢, satisfies the eigen-
value equation

Ap, = 1,9, in Q
together with the boundary conditions, and moreover the normalization
condition
1, r=3:,

5.3
(5.3) 0, 7r+#s.

fg"""(‘”)—?:s(m) de =

‘We shall prove the following

THEOREM 5.1. Assume feL, and vanishes off a compact subset K
of Q. Then holds
(5.4) fol@)y = o(AI™),
uniformly on any compact subset K, of Q.

Proof. By Cauchy’s inequality we get from (5.2) when zeK,

FAC) <1§3%Z|%(m)12 1-! f (@) do.

¥ = 00,

(5.5)
We claim that

(5.6) D lenla)lz = 009"

12 — Studia Mathematica


GUEST


178 J. Peetre

uniformly on any compact part K, of Q. To this end let us apply theo-
rem 3.1 to

= Y@ en(@);, Bk,
We get
Slentali = fue] < 04 [ i)

But in view of (5.3)

Jrui@)rde = 3} ¢ (@0)0s (@0) [ pur (@)ps (@) = 3 |un ()2

and (5.6) readily follows. Now (5.5) and (5.6) together imply (5.4) except
for an “0” in place of the “0”. But a density argument, as explained in
the Introduction, at once gives the improvement to “o”. The proof is
complete.

Remark 5.1. We note also that if fel, and vanishes off a compact
subset K of Q then

fi(@) = O(AE:n“l)/m)r v — 09,

uniformly on any compact subset K, of L. Indeed, since f, satisties equa-
tion (5.1), we only have to involve theorem 3.1 directly. Similarly if feLp s
1 < p < 2, and vanishes off K we obtain by interpolation

filw) = 0 (A=),
uniformly in K,.

6. On the expansion in spherical harmonics. This section is essen-
tially independent of the rest of the article.

We start by considering a somewhat more general situation. We
consider any compact infinitely differentiable manifold £ of dimension
nupon which acts transitively a Lie group @, and an elliptic partial differen-
tial operator 4 on Q which is left invariant by the actions of @. We choose
also an invariant measure dx on £ assuming that 4 becomes self-adjoint
with respect to the associated scalar product fupdz. Then the eigenvalue
equation

Aw = Au in Q

has a denumerable number of eigenvalues 4, and choosing an orthonormal
basis ¢, of eigenfunctions for each » we get a complete set of eigenfunc-
tions. Every f can be expanded in a series

=@  with  f(a) = [ g (@) g @) f@) dy

©

EBstimates for eigenfunctions 179
as in Section 5. We now observe (cf. [5], Section 3) that
D loa(@)?, v fixed,
7

ig independent of #. Thus integrating over Q and using the normalization
of ¢, we get

(6'1) 2 [(l’lr = V

where M, is the multiplicity of the eigenvalue 4, and V. the wolume of Q,
V= f dx. Using now (6.1) in place of theorem 3.1 in the proof of theo-

rem 5.1 we get
THEOREM 6.1. Assume feL,. Then holds uniformly

(6.2) Bo(@) = o(2L,).

‘We consider some simple special cases.

Example 6.1. If Q = T" = torus of dimension n, @ = transla-
tions, A = —A4 (Laplace operator), we get expansion in ordinary
multiple Fourier series, by choosing g, () = 6™ = g1t +lmZy)
W+...+hs = 1,, b; integer, so that

= Son=
r

where a; are the ordinary Fourier coefficients. From additive number
theory (Waring’s problem) it is known that M, = 0 (A" 7). Thus in this
case (6.2) can be replaced by our previous f,(#) = 0 (A" /™) with m = 2.
However, this has a liftle interest because the same result follows in a tri-
vial manner already from the usual Riemann-Lebesgue lemma for multiple .
Fourier series, a; = O(1).

Example 6.2. Let 2 and & be as in example 6.1 but let A be any
elliptic operator with constant coefficients, which is then automatically
invariant for @. Then we may combine the present results with those
of Section 5 to obtain a result in a different sense. Indeed, by (6.1) and

'(5.6) we get M, =0 (A" V™). Now M,, as above in example 6.1, can be

interpreted as the number of integer solutions of A (k) = 1 = 4,. Thus
we have obtained a (rough) estimate of the number of solutions of this
“Diophantine” problem. We do not know whether this has any interest
from the point of view of additive number theory.

Example 6.3. Finally, we come now to our main case, let Q = unit
sphere in R"™!, ¢ = rotations, 4 = —A (Laplace-Beltrami operator).
We are thus dealing with expansion in gpherieal harmonies (Laplace
series). The eigenfunctions (spherical harmonics) belonging to 1, corres-
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pond to harmonic polynomials of degree » in R™1. Using this it is eagy
to see that M, = O(»"~') and, since moreover 1, = »(»+n—1), we again
get f,(x) = O (A" with m = 2. As already noted in the Introduction
this was proved by V. Shapiro [6] by a different method. Thus we have
at least one (nom-trivial) instance of variable coefficients when we get
the same estimate as in the case of constant coefficients (Section 5).

Let us finally indicate some would-be consequences of our Riemann-
Lebesgue lemma in the case of a compact manifold. We assume now
that

(6.3) D lgwrl@)]® = 028

holds uniformly over £, the operator 4 may or may not be invariant
under @; but, strictly speaking, our only example is the case considered in
example 6.3 (spherical harmonies). Then we have of course

(644) fv(m) = 0(1&11,_1),7”),
uniformly, if feL,. But a similar argument gives also
fulz) = 0(25“‘1)/27'1)’

uniformly, if feI, (cf. remark 5.1). Noting .that the mapping f - f, is
a projection in L, we see that

sup |, (@) < 04V ( [ |,(a) 2da)"

’V—)-OO’

Y — 00,

with ¢ independent of » (and f). Taking the sum, we get

(6.5) (2(

This may be considered as a form of Parseval’s formula. By interpolation
we get from (6.4) and (6.5):

sup [ f,(2)|
2

FICREED

)z)m< of [1F@pas) "< oo it feLy.

sup | f, (@)} \ @\ 1 .
7] Ip .
(6.6) (2(';@—7)/7?)) < o(f |f(m)|’(la;) <oo if feLy,,
7 ” Q
1 1
-p*—l-?!—:l, 1<p<?2 2<g<oo,

which is a form of Hansdorff-Young theorem (ef. [8], vol. 2, p. 101).

We contrast this with a previous result (cf. [5], Section .3, cf. also
[6] for the case of. spherical harmonics), now again under the assumption
that 4 is invariant under G: '

(6.7) ZSI;P va(ﬂ’l')l << oo if fEW;L/E’l
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where W37 denote Sobolev spaces of fractional order (cf. e.g. [2], [4],
[5]). This is an analogue of a theorem of Bernstein (c¢f. [8], vol. 1, pp.
240-241). By interpolation we get from (6.7) and (6.4):

szplfv(m)i o\ e
( (TL”‘W)) < oo if feWye,

2 <p < oo,

11 11
s =n|—m—|, —t— =1, l1<g<2.

9

This again is an analogue of a theorem of Szdsz (cf. [8], vol. 1, p. 243)
and extends somewhat a previous generalization of this theorem (cf.
[5], Section 3).

‘We may sum up the above results (6.4)-(6.8): we have

sup|fo ()| \q 112 11
2
(2 ("hs’n—l)lzzm ) ) < o9, ;’}'? =1

provided
feL, if =1 (Riemann - Lebesgue),
felLy it 1<p<?2 (Hausdorff- Young),
feL, it p=2 (Parseval),
FeWRHa—IRE it 9 <9 < oo (Szész),
feWnizt it p=oo (Bernstein),

all this thus under the sole assumption of (6.3) along with the assumption
of invariance of 4 under G.
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Uber die Methode des ,,schnellsten Falles” fiir das
Regu par la Rédaction le 7. 2. 1966 Minimumproblem von Funktionalen in Hilbertschen Riumen

von

T. LEZANSKI (Warszawa)

Auf einem reellen Hilbertschen Raum sei ein reelles, differenzierbares
Funktional @(a) erklirt. Unter einem Gradienten von & versteht man
. bekanntlich dasjenige Element: grad ¢ (x), welches die Gleichung &' (x, k)
= (grad @ (w), b} identisch in heH erfiillt. Die in dieser Note betrachtete
Methode besteht in folgendem: man nimmt an, daB die Gleichung
dx (1)

(I el —grad @ (z (1))

eine Losung fiir alle 7 > 0 besitzt; dann konvergiert nnter gewissen Voraus-
setzungen @ (z(t)) gegen sein Minimumwert inf®(z), oder auch ()
gegen Element 2, mit &(z*) = inf&d(z). Auch der Fall, wenn die Glei-
chung (I) nur anndherungsweise erfiillt ist, wird behandelt.

Die Idee dieser Methode rithrt schon vom A. Cauchy her, und wurde
von anderen Verfassern verallgemeinert (s. [1] und [2]).

SaTz 1. Sei @(w) ein auf H erkldrtes, konvexes, stetiges von unien
beschrimktes Funkitonal, dessen Gradient stetig ist. Die abstrakte Funktion
. x(t) erfiille die Qleichung (I). Dann gilt:
im @ (2(t)) = inf® ().

Beweis erfolgt in folgenden Schritten:
Lemya 1. Brfillen die Elemente »,, x, die Ungleichung @ (@,) < @ (wy),
so gilt:
1B () — D (2,)]| < llgrad @ (w,)]| - floo, — o]
' Aus der Konvexitit von @ ergibt sich nidmlich

D(my e —2y) < D) +e[D(w)—D(ey)] fir 0<e<l
also:

1 ) :
z {@(351‘{"'5(@2-%))_@(“’1)} < O (22)—P(24)
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