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Par suite, pour « assez grand

i
fUn(l‘) @) dp
Re 2 —pe Blyt1

a
) sy
V(@) AT (85+1) fs(“’ @) duw

ol &(p, @) - 1 uniformément quand @ — oo, ¢ < u < B.

Supposons que Re(B/A) > 0; alors les conditions du théoréme 2
sont remplies.

8i, au contraire, Re(B/4) < 0, les conditions du théoréme 1 sont
satisfaites. La suite (2,) doit rester sur la droite arg # = 6, cos(6—y) 6 > 0.

Ces frois théordmes ne peuvent pas épuiser toutes les possibilités
que nous donne la théorie bien connue de lintégrale de Laplace. Ils
peuvent eux-mémes aussi étre modifiés.

Maintenant nous allons montrer que le théoréme 3 a pour congé-
quence immédiate que la fonction exponentielle exp(-—le‘”s“’), w>1
A>0, 0 <6 < 2w, nexiste pas. ’

Pour les fonctions u(1) et v de I’équation (1) on prend () = P
v= 2 d’otr u(A)fv = s"¢" et 'équation différentielle correspondant,s
a (1) est ' (1) + s®¢"x(A) = 0. Comme d’aprés le théoréme 3 cette équa-

tion n'a pas de solutions, la fonetion exponentielle exp (—A6%s®) n’existe
pas.
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On. generalized topological divisoxs of zero
in real m-convex algebras

by

W. ZELAZKO (Warszawa)

In a previous note [3] it was shown that a complex locally m-convex
algebra either has generalized topological divisors of zero or it is homeo-
morphically isomorphic with the field of complex numbers. Here we
extent this result onto real m-convex algebras: such an algebra either
has generalized topological divisors of zero or it is isomorphically homeo-
morphic with one of the three finite-dimensional division algebras over
real numbers (i.e. field of real numbers, field of complex numbers or
division algebra of quaternions). The proof will be obtained by suitable
modification of the proof given in [3], the “trick” lies here in considering
complex-valued functionals in algebras over the field of real numbers.
As before, we may Limit ourselves to complete commutative algebras.
In fact, it is sufficient to construct such divisors in any commutative
m-convex algebra not being a field, since, if any commutative subal-
gebra of a real algebra 4 is a field, then 4 is a division algebra.

We assume here the same notation as in [3], moreover R will denote
the field of real numbers and ¢ — the field of complex numbers.

1. The complexification. Let. A be an m-convex algebra over R.

The complexification A of A is defined as direct product A@A equipped
with multiplication defined in the some way as multiplication of com-
plex numbers defined as pairs of real numbers, i.e.

(@, ) (u, v) = (2U—Yv, BV+YU), Ty Y, U ved.
A becomes an algebra over O with scalar multiplication defined as
(a+pi) (@, y) = (aw—pY, oy +p2).

If 4 iz an m-convex algebra with a system of submultiplicative
pseudonorms P, then A4 is an m-convex algebra with submultiplicative
pseudonorms given by

@) (e, Il = SllaPIff“(w, AR

1
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where {(z, ¥)| = =]l llvll, || eP. Moreover Ais complete if A~is complete
(cf. [1], Theorem (1.3.1)). The system of pseudonorms in A4, given by
formula (1), will be also denoted by P. The set A’ = {(x,0)ed: zed}
is a real subalgebra of A4 isomorphically homeomorphic with A since

ol < i@, 0)f < V2lafl, -] <P.

If 4 has a unib e, then (¢, 0) is the unit element of 4.

The following remarks will be useful in the sequel.

Remark 1. Let f be a continuous (complex-valued) multiplicative
linear functional defined on 4 ; then its restriction f* to A’ may be con-
sidered, by the isomorphism between A’ and 4, as a complex-valued
multiplicative and linear functional in 4, i.e.

(2) Pley) =P@)f(y), o,yed,
(3) Flaw+By) = af (@) +Bf°(y), @, ycd;a, feR.

On the other hand, if f is a functional defined on 4 and satisfying (2)
and (3), then the functional defined on A by the formula

4) I U@, 9)] = f(=)-+if(y)

is a multiplieative and linear functional defined on A. Obviously, f~° = f*,
so there is a one-one correspondence between multiplicative and linear
functionals of A and functionals satistying (2) and (3) defined on A.
These functional will also be called multiplicative and linear. Note also
that if f is a multiplicative and linear functional defined on A, then its
complex conjugate is also such a functional.

Remark 2. Let 4 be a complete commutative real m-convex algebra
with unit ¢; then an element z ¢4 is invertible in A if and only if f(x) # 0
for each continuous multiplicative and linear functional f defined on 4.
This follows from the fact that an element (z, 0)cd’ is invertible in A
if and only if « is invertible in 4, from the Remark 1, and from correspond-
ing fact on complex complete m-convex algebras. .

Remark 3. If 4 is a real m-convex algebra with unit e, and W,
is & sequence of polynomials with real coefficients of one complex variable,
which tends uniformly to zero on each compact subget of C, then
]]Wn(m)l’].—+ 0 for each ze4 and [|-||<P. In fact, 'Wal(2 y)]]| - 0 for each
(z;4)e4 and ||-||<P, so the conclusion holds for 4’ and therefore for 4,

Remark 4. 4 is semisimple if and only if lim V@] = 0 for each
l-leP implies =0, med, where A4 is a commutative complete real
m-convex algebra. This condition implies therefore that in A4 there is
a total family of continuous multiplicative and linear funectionals.

icm®
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2. Proof of the theorem

LemwmaA 1. Suppose that A is a commutative complete real m-conver
algebra with unit ¢ and that its complexification Adisa semisimple algebra.
Then either A has generalized topological divisors of zero or A is isomorphi-
cally homeomorphic with one of the three finite-dimensional division algebras
over real numbers.

Proof. If 4 were finite-dimensional, then it would be a Banach
algebra and the conclusion of Lemma 1 holds for example by [2]. Suppose
that 4 is an infinite-dimensional algebra. By Remark 4 it follows that
in A there is defined an infinite family of (non-zero) multiplicative and
linear continuous functionals. Take two of them, say f, and f,, one being
not the complex conjugate of the other. There exists an element zeA
such that f; (2) # fa(®) # fi(2). The polynomial W,(1) = (—f,(2)) (A—f1(2))
has real coefficients, and ¢ = W, (f,(#)) # 0. Taking V(3) = (Wy(4)—2) X
X (Wl(l) —f), we obtain again a polynomial with real coefficients. Setting
y =V(0), we get yed, fi(y) = V{fi(2)) = |£[* # 0 and fu(y) = V(fa(®))
= 0. So, setting » = (2y— |{|2%¢)/|(|? we get zeA and f,(2) =1, fo(2) = —1.
Taking now polynomials ¢, and y, of Lemma 1 of [3] and observing that
oo and v, have real coefficients we see that x, = @,(2) and y, = wa(?)
belong to A, lim|@,y.|| = 0 for each ||-||eP, and fi(2,) = fa(yn) = 1, 80
(2) and (y,) form a pair of generalized topological divisors of zero in A.

LeMMA 2. Suppose that A is a commutative complete real m-convex
algebra with unit e. If there ewists in A a non-zero element © such that

hm?/m == 0 for each |-||eP, then A has generalized topological divisors
of zero.

Proof. Take the subalgebra 4, of A defined as the smallest complete
subalgebra with unit of 4 containing . By Remark 2 the argumen?; of
Lemma 3 of [3] works as well in this case, so there are in 4, generalized
topological divisors of zero.

Combining these two lemmas with the fact that any m-convex al-
gebra is a dense subalgebra of a complete algebra and t‘hz?t any dense
subalgebra of an algebra with generalized topological divisors o‘f zero
also has such divisors, and also with the fact that any m-convex division
algebra over reals is isomorphically homeomorphic with one of the three
standard finite-dimensional division algebras over reals and that a.ny
m-convex algebra which is not a division algebra con.ta.ins a commutative
gubalgebra which is not a field, we get the following

PROPOSITION. In any real m-conven algebra A with unit either there

are generalized topological divisors of zero or A is ?somorphical.ly. i'wmeo-
morphic with one of the three standard finite-dimensional real division al-

gebras.
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To obtain our theorem let us remark that in paper [3], when deriving
the general result from the result on algebras with unit, we never uged
the fact that the field of scalars is the field of complex numbers. So these
arguments work as well in the case of real scalars and we can formulate
our main result:

TurorEM. Let A be a real m-convex algebra. Then either A has gen-
eralized topological divisors of zero or A is isomorphically homeomorphic
with one of the three finite-dimensional real division algebras (i.e. field of
real numbers, field of complex numbers or division algebra of quaternions).
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Continuity of operator functions
by
EDWIN F. WAGNER (Reno)

1. Introduction. By % we shall denote the complex algebra, the
elements of which are continuous complex-valued functions of a mon-
negative real variable. The operation of multiplication is defined by
finite convolution; the operations of addition and scalar multiplication
are defined in the usual way. ¢ has no zero divisors, hence the quotient
field may be constructed. This quotient field, which we denote by #,
is termed the field of operators.

It is the purpose of this paper to extend the definitions of operator
function and continuous operator function as defined by Mikusinski
in [3] (Part III, Chap. 1). A uniform convergence structure [2] is defined
on .# and is shown to be the direct limit of uniform structures of linear
subspaces of /. The Limitierung defined by M-convergence [4] is the
Limitierung induced by the uniform convergence structure of .#. A uni-
form convergence structure is defined for a locally compact Hausdorff
space as the direct limit of uniform structures of compact subspaces. It
is shown that an operator function is continuous, in the generalized
gense, if and only if it is uniformly continuous from a locally compact
Hausdotff space provided with the “compact” uniform convergence
structure to the uniform convergence space .#.

2. Preliminaries. Let X be an arbitrary set. B(X) shall denote the
family of filter bases on the set X. If 3eB(X), then the filter generated
by S is denoted by [3]. F(X) shall denote the family of filters on the
set X. The class F(X) is partially ordered by the relation < defined by:
[8] < [B] iff for each Fe3 there exists a G<® such that @ < F. This
in equivalent to: [J] < [®] iff Fe[TI] implies Fe[B].

Let X and Y be sets and suppose X = Y. If JeB(X), then J«B(Y).
In this case [$] could refer to an element in F(X) or an element in F(Y).
In those cases where confusion could arise a subscript will be used to
indicate the precise meaning. Thus [§]y refers to an element in F(Y);
[B1x refers to an element in F(X).
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