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Or, -
N'Po,t—,u'Pt_l,z = 2 [M'Plc_1,t—M'P/c,¢],
f=1 .
done
i1
lim 2 [/L'Pk_l,t“ll'-Pk,t] =0,
tybo0 o1

clest-a-dire (iii).
On peut également remarquer que Py yp—u = My_yx o My ,;
est un vecteur dont la somme des composantes vaut 0, ¢’est-A-dire tel que

-1
Mlc— 1,k ("’) = - 2 Mk—l,k (7‘) .
=1

D’on
WPy y—wPry = (wPy_yp—u)Prs = My_1 1P,
c’egt-a-dire
r—1
D) Moy (0)Pisliy ) = D) Moy 1 (9) [Pra(3s ) —Pra(r, )1
e i=1
La condition (iii) s’écrit alors

-1 7-1
i 31 3 M 1(8) [Praliy ) —pra(r, )] = 0.

bty {21
Nous retrouvons alors 1’énoncé donné par Kozniewska dans [3].
Pour les exemples, le lecteur peut se reporter aux articles [2] et [3]
et & ceux qu’ils citent en 1éférences. D’autre part, nous pensons que les
résultats énoncés ci-dessus pewvent &tre étendus & des processus de Markov
d’ordre » > 1. Signalons enfin que dans [5], son auteur énonce une con-
dition nécessaire et suffisante pour Dergodicité forte uniforme et une
autre pour Pergodicité faible uniforme des processus de Markov d’ordre n.
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Let X be a real or complex Banach space which has a Schauder
bagis, & = {1 ¢ =1,2,...},andlet #F = {f;: ¢ =1, 2, ...} be the sequence
of continuous linear functionals biorthogonal to &. If & = {y;} is any
sequence in X, there is an infinite matrix 4 = (a;) such that & = 4
in the sense that

00
Y; = Zai,-mi for §=1,2,...
q=1

In this paper we intend to further the investigation begun in [3]
concerning conditions on 4 which imply that # is a basic sequence in &
or a Schauder basis of X.

The notation used here will be the same as that in [3]. By s = (8;)
we mean a scalar sequence which we handle as an infinite column vector.
If §is a linear space of such sequences, 8§’ is the g-dual of 8§, i.e.

{t = (#;): D sit; converges for each seS}. Given an infinite matrix
i=1
0 = (¢;;) each row of which is in 8’ we write C(8) for {t = Cs: seS}.
00
Let 8, = {s: D] s;w; converges in X} = {(f;(w)): wX}; then 8, with

=1
norm ||(f;(«))|| = lle]| is a Banach space isometric to X under the corre-
spondence

(1) 7a(fila)) = a.
Since @; corresponds to &' = (8;)2,, {e €2, ...} is a basis for S,.

Define S, to be {s: Y s;9; converges in X}; then Sj is a Banach norm

dml
ol = sup |3 v

and {e!, ¢?, ...} is a bagig for 8. Of course, we must assume that y; ;é 0
for all 5. We ghall agsume this condition satisfied throughout the remain-
der of this paper.
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Let
Y ={yX:y= Dt
A=1

then there is a function from S} onto Y given by

m(®) = Dt
=1
By Lemma 1.1 of [3] each row of 4 is in (83) and A(87) = 8,. Let
the closed linear span of {y;:4=1,2,...} in X be denoted by L.
The following diagram summarizes the relation among X, L, Y, §,,
8y and A4:

YeclcX
1
Ny ] | N
A: 8 -8
In section 3 of [3] it was observed that with the correspondences
(3) For (18, (fe))ebs,
(4) g (g(e))ge(S)*,  (9(e))<(8y)".

S; and (Sj)’ can be given BK-topologies which make them equi-
valent lto the conjugate spaces Si and (S9)* respectively. We here note
that 8; is also equivalent to X* under the correspondence

(5) ' for (f@)feX*,  (f(a)esSs.

LEMMA L. For each feX*, A" (f(m;)) exists and is equal to (f(y),
where AT is the transpose matriz of A.

Proof. Given feX*, we have

o) = f(za’f'iwf) = jadif(‘wf)-

7=1 f=1

But é‘la,-,;f(m,) is the i-th coordinate of A”(f(z;)). Also (f(ys))eS; since

0
if iZtiyi converges 5o does
=1

1Y) = é‘tif(yf).

From Lfsmma, 1 we observe that AT represents the adjoint of the
operator defined by A from &) into S, in the sense that

(6) (A*F(e) = A7 (f(e)) for  fes.

icm
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THEOREM 1. The following statements are equivalent:
(a) the sequence ¥ is basic in X;
(b) A maps Sy one to one onto the image of L under the mapping 17

(e) (i) A(S) is closed in Sy and (i) Dty; =0 implies t; =0 for
each i; =l
@ (89" = {(f(w): feX*};
() AT maps Sy onto (S3)';

(f) (i) i ty; = 0 implies t; = 0 for each i and (ii) AT (8%) s closed
sy,

Proof. (a) < (b). By definition the sequence % is basic if and only
if each yeL has a unique expansion of the form y = S’tiyi. By Lemma
1.1 of [3), if te8Y, 7z ny(1) = 4(¢). Thus, 4 maps S;‘;:f)lnto 7z L it and

only if ¥ =L and 4 is one to one if and only if Ztiy.; = 0 implies
t; = 0 for each. 1. =1

(b) < (). Since @ is dense in L, A(S}) is dense in n7'(L) so that
(i) of (e) holds if and only if 4(Sy) = 4z '(L). That (ii) of (b) holds if and
only if A is one to onme was noted above.

(a) <> (d). By a theorem of Grinblyum [2], % is a basis for I, the
closed linear span of @ in X if and only if (8}) = {F(y:): F<L*}. Bub
each FeL* can be extended to X and each feX* can be restricted to
L so that

{F(y:) : FeL*} = {(f(ws)) : fX*}.

(d) < (e). This follows immediately from the fact that the image
of 8, under AT is precisely {(f(ns)):feX*}.

(e) = (f). Obvious.

(f) = (c). From (i) of (f) and equation (6) we conclude that the
image of §F under 4* is closed in (83)*. By [1], Theorem 4, p. 488, A(S3)
is closed in S

Tmvma 2. The sequence ¥ is fundamental in X if and only if AT s
one to one on Sg.

Proof. Recall that # is fundamental in X if and only if f(y;) =0
for each 4 implies f = 0 for feX*. If A7 is one to one and f(y;) = 0 for
each 7, then by Lemma 1, f(z;) = 0 for each ¢ so f = 0. If AT is not one
to one on S, there must be f 5 0 in X* such that AT (f(2:)) = (f(3:)) =0
50 that @ is not fundamental.

TuuoREM 2. The following statements are equivalent:

(a) the sequence @ is a basis for X;
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(b) AT maps 8, one to ome onto (85)';

(c) A(85) = 8, and AT(8) = (8)';

(@) () 3ty =0 implies t, =0 for each 4, (i) AT is one to one

i=1
on 8L, (iii) A7 (8y) is closed in (8p).

Proof. (a) < (b). This follows from (a)<-(e) of Theorem 1 and
Lemma 2. This statement is Theorem 3.2 of [3].

(a) < (¢). By (e) of Theorem 1, A (8;) = (8)) if and only if @ is
pasic. In the proof of Theorem 2.1 of [3] it is shown that A(8}) =8,
if and only if # is fundamental in X.

(a) <> (d). Thisfollows from (f) < (a)in Theorem 1 and from Lemma 2.
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On the characterization of sequence spaces
associated with Schauder bases

by

W. RUCKLE (Bethlehem, Penn.)

1. Introduction. An F-gpace which has a Schauder basis is esgentially
a space of sequences ([9], . 207). This paper discusses the question:
What kinds of sequence spaces are associated with a Schauder basis of
a locally convex F-space? The chief results are contained in Theorems
3.1, 3.2 and 3.3. They are correspondences between (a) Schauder bases
and y-perfect FK-spaces (b) unconditional bases and a-perfect FK-spaces
(¢) symmetric bases and o-perfect FK-spaces. (See 2.1 and 2.2 for defi-
nitions of y, a and o-perfect.)

1.1. Definition. An F-space is a complete linear metric space.

A sequence y = {®;, ®s,...} is a basis for the F-space X if each
point # of X has a unique representation

oc
(1.1) o= )t
=1

where (#;) is a sequence of scalars.

The sequence y is an wnconditional basis if the convergence in (1.1)
is unconditional.

In the sequel we shall limit our consideration to y a basis for a lo-
cally convex F-space.

Tt is known ([9], p- 207) that the linear functionals defined by

oo
fn( ti@'i) =1n
i=1
are continuous. Thus if the linear space of sequences
oo
8= {(ti): Ztimi converges in X}

qe=1

is given the identity topology with respect to the isomorphism

(1.2) Dt (t).
=1
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