Or,

$$\mu \cdot P_{0,t} - \mu \cdot P_{t-1,t} = \sum_{k=1}^{t-1} [\mu \cdot P_{k-1,t} - \mu \cdot P_{k,t}],$$

donc

$$\lim_{t\to+\infty}\sum_{k=1}^{t-1}\left[\mu\cdot P_{k-1,t}-\mu\cdot P_{k,t}\right]=0,$$

c'est-à-dire (iii).

On peut également remarquer que $\mu \cdot P_{k-1,k} - \mu = M_{k-1,k}$ où $M_{k-1,k}$ est un vecteur dont la somme des composantes vaut 0, c'est-à-dire tel que

$$M_{k-1,k}(r) = -\sum_{i=1}^{r-1} M_{k-1,k}(i)$$
.

D'où

$$\mu \cdot P_{k-1,t} - \mu \cdot P_{k,t} = (\mu \cdot P_{k-1,k} - \mu) P_{k,t} = M_{k-1,k} \cdot P_{k,t},$$

c'est-à-dire

$$\sum_{i \in \mathcal{X}} M_{k-1,k}(i) \, p_{k,t}(i,j) = \sum_{i=1}^{r-1} M_{k-1,k}(i) [p_{k,t}(i,j) - p_{k,t}(r,j)] \, .$$

La condition (iii) s'écrit alors

$$\lim_{t \to +\infty} \sum_{k=1}^{t-1} \sum_{i=1}^{r-1} M_{k-1,k}(i) [p_{k,t}(i,j) - p_{k,t}(r,j)] = 0.$$

Nous retrouvons alors l'énoncé donné par Koźniewska dans [3]. Pour les exemples, le lecteur peut se reporter aux articles [2] et [3] et à ceux qu'ils citent en références. D'autre part, nous pensons que les résultats énoncés ci-dessus peuvent être étendus à des processus de Markov d'ordre n>1. Signalons enfin que dans [5], son auteur énonce une condition nécessaire et suffisante pour l'ergodicité forte uniforme et une autre pour l'ergodicité faible uniforme des processus de Markov d'ordre n.

Travaux cités

- [1] J. L. Doob, Stochastic processes, New York 1953.
- [2] I. Koźniewska, Ergodicity of non-homogeneous Markov chains with two states, Coll. Math. 5 (1957), p. 208-215.
- [3] Ergodicité et stationnarité des chaînes de Markoff variables à un nombre fini d'états possibles, ibidem 9 (1962), p. 333-346.
 - [4] J. Neveu, Bases mathématiques du calcul des probabilités, Paris 1964.
- [5] M. Iosifescu, Conditions nécessaires et suffisantes pour l'ergodicité uniforme des chaînes de Markoff variables et multiples, Revue Roumaine de Mathématiques pures et appliquées 11 (1966), p. 325-330.

Reçu par la Rédaction le 1. 8. 1966

by

LEE W. BARIC (Carlisle) and W. RUCKLE (Bethlehem, Penn.)

Let X be a real or complex Banach space which has a Schauder basis, $\mathscr{X} = \{x_i \colon i = 1, 2, \ldots\}$, and let $\mathscr{F} = \{f_i \colon i = 1, 2, \ldots\}$ be the sequence of continuous linear functionals biorthogonal to \mathscr{X} . If $\mathscr{Y} = \{y_i\}$ is any sequence in X, there is an infinite matrix $A = (a_{ij})$ such that $\mathscr{Y} = \mathscr{X}A$ in the sense that

$$y_j = \sum_{i=1}^{\infty} a_{ij} x_i$$
 for $j = 1, 2, \dots$

In this paper we intend to further the investigation begun in [3] concerning conditions on A which imply that $\mathscr V$ is a basic sequence in $\mathscr E$ or a Schauder basis of X.

The notation used here will be the same as that in [3]. By $s=(s_i)$ we mean a scalar sequence which we handle as an infinite column vector. If S is a linear space of such sequences, S' is the β -dual of S, i.e. $\{t=(t_i): \sum_{i=1}^{\infty} s_i t_i \text{ converges for each } s \in S\}$. Given an infinite matrix $C=(c_{ij})$ each row of which is in S' we write C(S) for $\{t=Cs: s \in S\}$.

Let $S_x=\{s\colon \sum_{i=1}^\infty s_i w_i \text{ converges in } X\}=\{(f_i(x))\colon x\in X\}$; then S_x with norm $\|(f_i(x))\|=\|x\|$ is a Banach space isometric to X under the correspondence

$$\eta_x(f_i(x)) = x.$$

Since x_i corresponds to $e^i = (\delta_{ij})_{j=1}^{\infty}$, $\{e^1, e^2, \ldots\}$ is a basis for S_x . Define S_y^0 to be $\{s: \sum_{i=1}^{\infty} s_i y_i \text{ converges in } X\}$; then S_y^0 is a Banach norm

$$||s|| = \sup_{n} \left\| \sum_{i=1}^{n} s_i y_i \right\|$$

and $\{e^1, e^2, ...\}$ is a basis for S_{ν}^0 . Of course, we must assume that $y_i \neq 0$ for all *i*. We shall assume this condition satisfied throughout the remainder of this paper.

Theorem 1. The following statements are equivalent:

Let

$$Y = \{ y \, \epsilon X \colon y = \sum_{i=1}^{\infty} t_i y_i \};$$

then there is a function from S_y^0 onto Y given by

$$\eta_{y}(t) = \sum_{i=1}^{\infty} t_{i} y_{i}.$$

By Lemma 1.1 of [3] each row of A is in $(S_v^0)'$ and $A(S_v^0) \subseteq S_x$. Let the closed linear span of $\{y_i : i = 1, 2, ...\}$ in X be denoted by L.

The following diagram summarizes the relation among X, L, Y, S_x , S_y^0 and A:

$$Y \subseteq L \subseteq X$$

$$\eta_{y} \uparrow \qquad \qquad \uparrow \eta_{x}$$

$$A: S_{x}^{0} \longrightarrow S_{x}$$

In section 3 of [3] it was observed that with the correspondences

(3)
$$f \leftrightarrow (f(e^i))f \in S_x^*, \quad (f(e^i)) \in S_x',$$

(4)
$$g \leftrightarrow (g(e^i))g \in (S_y^0)^*, \quad (g(e^i)) \in (S_y^0)'.$$

 S'_x and $(S^0_y)'$ can be given BK-topologies which make them equivalent to the conjugate spaces S^*_x and $(S^0_y)^*$ respectively. We here note that S'_x is also equivalent to X^* under the correspondence

(5)
$$f \leftrightarrow (f(x_i))f \in X^*, \quad (f(x_i)) \in S_x'.$$

LEMMA 1. For each $f \in X^*$, $A^T(f(x_i))$ exists and is equal to $(f(y_i))$, where A^T is the transpose matrix of A.

Proof. Given $f \in X^*$, we have

$$f(y_i) = f\Big(\sum_{j=1}^{\infty} a_{ji} x_j\Big) = \sum_{j=1}^{\infty} a_{ji} f(x_j).$$

But $\sum_{j=1}^{\infty} a_{ji} f(x_j)$ is the *i*-th coordinate of $A^T(f(x_i))$. Also $(f(y_i)) \in S'_y$ since if $\sum_{j=1}^{\infty} t_i y_i$ converges so does

$$f\left(\sum_{i=1}^{\infty}t_{i}y_{i}\right)=\sum_{i=1}^{\infty}t_{i}f(y_{i}).$$

From Lemma 1 we observe that A^T represents the adjoint of the operator defined by A from S_y^0 into S_x in the sense that

(6)
$$(A^*f(e_i)) = A^T(f(e_i)) \quad \text{for} \quad f \in S_x^*.$$

(a) the sequence Y is basic in X;

(b) A maps S_y^0 one to one onto the image of L under the mapping η_x^{-1} ;

(c) (i) $A(S_y^0)$ is closed in S_x and (ii) $\sum_{i=1}^{\infty} t_i y_i = 0$ implies $t_i = 0$ for each i:

- (d) $(S_y^0)' = \{(f(y_i)) : f \in X^*\};$
- (e) A^T maps S'_x onto $(S_y^0)'$;
- (f) (i) $\sum_{i=1}^{\infty} t_i y_i = 0$ implies $t_i = 0$ for each i and (ii) $A^T(S'_x)$ is closed in $(S_y^0)'$.

Proof. (a) \Leftrightarrow (b). By definition the sequence $\mathscr V$ is basic if and only if each $y \in L$ has a unique expansion of the form $y = \sum_{i=1}^{\infty} t_i y_i$. By Lemma 1.1 of [3], if $t \in S_y^0$, $\eta_x^{-1} \eta_y(t) = A(t)$. Thus, A maps S_y^0 onto $\eta_x^{-1} L$ if and only if Y = L and A is one to one if and only if $\sum_{i=1}^{\infty} t_i y_i = 0$ implies $t_i = 0$ for each i.

(b) \Leftrightarrow (c). Since $\mathscr V$ is dense in L, $A(S_y^0)$ is dense in $\eta_x^{-1}(L)$ so that (i) of (c) holds if and only if $A(S_y^0) = \eta_x^{-1}(L)$. That (ii) of (b) holds if and only if A is one to one was noted above.

(a) \Leftrightarrow (d). By a theorem of Grinblyum [2], $\mathscr Q$ is a basis for L, the closed linear span of $\mathscr Q$ in X if and only if $(S_v^0)' = \{F(y_i): F \in L^*\}$. But each $F \in L^*$ can be extended to X and each $f \in X^*$ can be restricted to L so that

$$\{F(y_i): F \in L^*\} = \{(f(y_i)): f \in X^*\}.$$

(d) \Leftrightarrow (e). This follows immediately from the fact that the image of S'_x under A^T is precisely $\{(f(y_i)): f \in X^*\}$.

(e) \Rightarrow (f). Obvious.

(f) \Rightarrow (c). From (ii) of (f) and equation (6) we conclude that the image of S_x^* under A^* is closed in $(S_y^0)^*$. By [1], Theorem 4, p. 488, $A(S_y^0)$ is closed in S_x

LEMMA 2. The sequence \mathcal{Y} is fundamental in X if and only if A^T is one to one on S_x' .

Proof. Recall that $\mathscr Y$ is fundamental in X if and only if $f(y_i)=0$ for each i implies f=0 for $f \in X^*$. If A^T is one to one and $f(y_i)=0$ for each i, then by Lemma 1, $f(x_i)=0$ for each i so f=0. If A^T is not one to one on S_X' there must be $f\neq 0$ in X^* such that $A^T(f(x_i))=(f(y_i))=0$ so that $\mathscr Y$ is not fundamental.

Theorem 2. The following statements are equivalent:

(a) the sequence V is a basis for X;

- (b) A^T maps S'_x one to one onto $(S_u^0)'$;
- (c) $A(S_y^0) = S_x$ and $A^T(S_x') = (S_y^0)';$
- (d) (i) $\sum_{i=1}^{\infty} t_i y_i = 0$ implies $t_i = 0$ for each i, (ii) A^T is one to one on S'_x , (iii) $A^T(S'_x)$ is closed in $(S^0_y)'$.

Proof. (a) \Leftrightarrow (b). This follows from (a) \Leftrightarrow (e) of Theorem 1 and Lemma 2. This statement is Theorem 3.2 of [3].

- (a) \Leftrightarrow (c). By (e) of Theorem 1, $A^T(S_x') = (S_y^0)'$ if and only if $\mathscr Y$ is basic. In the proof of Theorem 2.1 of [3] it is shown that $A(S_y^0) = S_x$ if and only if $\mathscr Y$ is fundamental in X.
 - (a) \Leftrightarrow (d). This follows from (f) \Leftrightarrow (a) in Theorem 1 and from Lemma 2.

References

- [1] N. Dunford and J.T. Schwartz, Linear operators, Part I, New York 1958.
- [2] M. M. Grinblyum, On a property of a basis, Doklady Akad. Nauk SSSR (N. S.) 59 (1948), p. 9-11 (Russian).
- [3] W. Ruckle, Infinite matrices which preserve Schauder bases, Duke Math. J., 33 (1966), 547-550.

Recu par la Rédaction le 8. 8. 1966

On the characterization of sequence spaces associated with Schauder bases

by

W. RUCKLE (Bethlehem, Penn.)

- 1. Introduction. An F-space which has a Schauder basis is essentially a space of sequences ([9], p. 207). This paper discusses the question: What kinds of sequence spaces are associated with a Schauder basis of a locally convex F-space? The chief results are contained in Theorems 3.1, 3.2 and 3.3. They are correspondences between (a) Schauder bases and γ -perfect FK-spaces (b) unconditional bases and α -perfect FK-spaces (c) symmetric bases and σ -perfect FK-spaces. (See 2.1 and 2.2 for definitions of γ , α and σ -perfect.)
 - 1.1. Definition. An F-space is a complete linear metric space.

A sequence $\chi = \{x_1, x_2, ...\}$ is a basis for the F-space X if each point x of X has a unique representation

$$(1.1) x = \sum_{i=1}^{\infty} t_i x_i$$

where (t_i) is a sequence of scalars.

The sequence χ is an unconditional basis if the convergence in (1.1) is unconditional.

In the sequel we shall limit our consideration to χ a basis for a locally convex F-space.

It is known ([9], p. 207) that the linear functionals defined by

$$f_n\left(\sum_{i=1}^{\infty}t_ix_i\right)=t_n$$

are continuous. Thus if the linear space of sequences

$$S = \left\{ (t_i) \colon \sum_{i=1}^{\infty} t_i x_i \text{ converges in } X \right\}$$

is given the identity topology with respect to the isomorphism

(1.2)
$$\sum_{i=1}^{\infty} t_i x_i \leftrightarrow (t_i).$$