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Proof of Theorem 3.3. In the case of S associated with a symmetrie
basis of an F-gpace it is necessary to prove that 8§ = 8%, and this fol-
lows from 1.3 and 2.6.

If 8§ is a o-perfect FK-space, then either § = s in which case we
are finished or 8§ = m [4]. In the second case for each u in 8° define

o
Py (s) = sup {2 [tagey8il: @ is & permutation on the natural numbers}
7 4=l
and proceed as in the y-perfect case. The seminorms P; defined in the
course of the argument will all be symmetric by 2.10 so that & will be
a symmetric basis for its closed linear span by Definition 1.2.

The following is a generalization of (SB,) < (SB,) of Singer [8], 6
Theorem 5.3.

3.4. CoROLLARY. A basis {x,} of a locally convex F-space X is a sym-
metric basis if and only if every permutation {Z,m} of {,} is @ basis of X
equivalent to {@,}.

Proof. Without loss of generality we may restrict our attention
to & a basis for a locally convex space S.

The necessity of the condition was given in Lemma 1.3.

If every permutation of & is a basiz for § equivalent to &, then
se8 implies (8,4) 8 so that 8 is symmetric. Therefore, §° = 8 so
that, by 3.2 and 3.3, & is a symmetric basis for S.

2
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An example concerning reflexivity
by )

R. HERMAN and R. WHITLEY (Maryland)*

The spaces ¢, and ! not only fail to be reflexive but contain no infin-
ite-dimensional reflexive subspace [7, 12]. It is natural to conjecture
that each non-reflexive space contains an infinite-dimensional closed sub-
space with thig property; this conjecture is false. Here we give an example
of a Banach space which is not reflexive (or even quasi-reflexive [4])
yet has the property that each. of its closed infinite-dimensional subspaces
contains a subspace isomorphic to the Hilbert space 2. We also discuss
this type of non-reflexive space and show that it has some properties
in common with reflexive and quasi-reflexive spaces.

LeMMA 1. Let X be the quasi-reflexive space constructed by R.C.
James ([8], also see [9], p. 198). Ewery infinite-dimensional closed sub-
space of X contains o subspace isomorphic to 1.

Proof. Werecall that the space X consists of vectors z = (a4, a,,...),
 a sequence of scalars, where 2 is in X if and only if lima, = 0 and

n "
el = sup[ 0y, —ayy |2+ 0y, 7]
te=1

is finite, where the supremum is taken over all finite increasing (or one
term) sequences. The vectors z;, with a one in the ¢-th place and zeros
elsewhere, constitute a Schauder basis for X.

Using a theorem due to Bessaga and Pelezyniski ([2], C.2, p. 157),
each infinite-dimensional closed subspace M of X contains a sequence
{yn} which is basic ({y,} is a Schauder basis for its closed linear span
[#.]) and is equivalent to a block basis [z,], With respect to «n, i.e. each
2, i8 given by

41
2p = Z g @
1=gp+1

* The first author was supported by a National Defense Education Act fellowship
and the second by National Science Foundation grant GP 5424.
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With ¢ 2 ¢nya f0.1“ all », and we may choose |jz,)| = 1. By the equivy-
alence o'f the basis {yn} and {#,} we mean that the linear operator induced
by §endmg g{n fno %, 13 an isomorphism of [y,] with [#,]. Because of thig
eqmvaleneg it is enough to show that [2,] contains a subspace isomorphj{:
FO 1, .We will sl?ow, in fact, that [2y,] is isomorphic to 2. To simplify our
gide;mgtze will suppose that we have already discarded every other
ock in the basis {z,} so that there is a space between each b i
N ed lock
sense that az , =0 for all n. o tn the
Let .p7 = {pl, ...,;pg,w} be a sequence which yields the norm of 2
Let an integer m Dbe given. Combine the first m se m

1 ) . quences pl,...,p™"
into an increasing sequence I as follows: Poood
I={pi,...,p} Ny DY : r

{11, 3 Pony415 1 Py ooy Dang1y Fag woey Py D1y o ey P;?Lmﬂr Tmy1s DT},
where 7y, ..., ave chosen so that each 2; i8 zero in the r-th coordinate

for each 7; note that we need the space between the z;,

paragraph above, to do this. mentioned in the

Set I =
Thon {0 ) qoesn} and let Ytz = {b:} be an element in [g;].
m . k
” Ztizi“ = Z ’qui»l‘b’lzilz
i=1

7y

= t 12 et —al |2 1
ig;’ 1‘ | D21"5—1 af’;ftl +”1|2|a’7-’%n1+1~012+

"2
e Li2lads  —g2, 02 2
. ;I d?lay  —ap | +!t2]2|apgnz+l—0]2+...

m

= PP o A [ el = Y 12
Since this is true for each m BN
2t > (S
F k] 4 (Ee) = ] .
or any elemen.t Db = {b:} in X and any increasing sequence
1.)1’ ++eyPanyy We consider the sum

n
(*)
gJb””*l—bﬁzilz-l-lb?’zn-l—l‘a'

A typical
ypical term [b,,ﬁﬂ—bpﬁ]? has two possible forms. The first form

is [tya), —t;af, 2. Let 4 be the
44, o o . .
o oclem-s o h;awgf all the indices ¢ for which a term of

bp,. . —by, |2 = 1% |a, 3
“Z;l Pai—1 ”2«;! g it?fi’la"ihag;‘i]2 < th"lz'

J=1
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For indices ¢ not in A4 the term is of the form |4 a.fli— ik aﬁ,;:.k]?. Using
the fact that |af’| < |zl = 1 for all m, we see that this term is bounded
above by 2[|t|*+1t;,.x]?]. Since p; is an increasing sequence, for any j,
the sealar ¢; can occur in at most two terms of this second type. Hence

2 By = bayyl* < 42 L
=

i¢4

Putting these two estimates together we see that

| S| < 5] 3]

From the upper and lower bounds we have obtained for || Y42 we
can conclude that the map T from 1 to [z;] defined by T(t;) = Ytz is
an isomorphism of 12 onto [#;] and that completes the proof.

Lemma 1 suggests the next result.

LEMMA 2. Let X be a quasi-reflexive space [4]. Then every infinite-
dimensional closed subspace of X contains an infinite-dimensional reflexive
subspace.

Proof. Since each subspace of a quasi-reflexive space is quasi-
reflexive ([4], corollary 4.2, p. 909), it suffices to show that each infin-
ite-dimensional quasi-reflexive space contains an infinite-dimensional
reflexive subspace. From theorem 3.5 of [4], p. 908, for each quasi-reflex-
ive space X there is a quasi-reflexive space Y with ¥* = X. Since for
M reflexive (, M)* = M, an easy duality argument shows that X con-
tains an infinite-dimensional reflexive subspace if and only if Y has an
infinite-dimensional reflexive quotient ([12], theorem 5.2, p. 258). The
space ¥ is not reflexive and so by [3], problem 9, p. 119, there is a closed
non-reflexive subspace M of ¥ with ¥ /M infinite-dimensional. (We
remark that a proof of this result can be obtained from the theorem of
[10]). Suppose that ¥ is quasi-reflexive of order n. Asin [4] for a Banach
space X we let Ord (X) be the dimension of X**[x(X), where z is the
natural map of X into X. Then we have Ord (¥ /M)-+Ord (M) = Ord Y =n
([4], corollary 4.2, p. 909). Thus ¥ /M is an infinite-dimensional quotient
of ¥ with Ord(Y/M) < n~1. An inductive argument completes the
proof.

For a sequence {X;} of Banach spaces, the l*-sum X = >*X; is the
Banach space X of sequences {w;} with @; in X; and with finite norm

el = [ Xl (153, ». 31).

Lemma 3. Let X; be o sequenceé of Banach spaces, X = DX, the
I2-sum of these spaces. Suppose that M is an infinite-diménsional closed
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subspace of X. Then cither M contains an infinite-dimensional closed sub-
space which s isomorphic to a subspace of some X; or M contains a sub-
space isomorphic to I2.

Proof. Let @; be the map of X into X; given by @;({z})
= (0,0,...,0, 2,0, ...), where o; occurs in the -th position. Let M be ;Jn
infinite-dimensional closed subspace of X. If any @; has a bounded in-
verse on an infinite-dimensional closed subspace of M, then M contains
an infinite-dimensional closed subspace isomorphic to a subspace of X,
and we are through. Thus we may assume that each @, is strictly Jsinguf

"

lar ([6], p. 76) and in this case P, = }'Q; is also strictly singular ([6],
T=21

theorezm II1.2.4, p. 86). In particular, no P, has a bounded inverse on
M. We now use a standard gliding hump argument. Let y° be any ele-
ment of M of norm 1. Choose N, 8o that ’

oc

[ 3 meie]™ < 1jee.

i=Ny

.Since Py, has no bounded inverse on M, we can find an element
yt in M, |y =1, with [|Py 4]l < 1/25. Choose N, so that

[ 2: o] < 125,

Continuing we obtain a sequence #!,y2 ... of elements of M and

integers N; 5 N, 5 N; 5 ... such that

(1) ly"l =1 for all =,

and
NTL oo

@) [ D™+ 3 ] ™ < e,
=1 =Ny

i P P L ;
. Define 2" by & =47 for ¥, < i < N,,; and 2} = 0 otherwise. We
e

| S| <] S
We also have

| Yar']| > || Xoe'|| —suplad 3 1/~ > @) 3 1ede]™
Hence the map 7'(a;) = Zaﬂ/i is an isomorphism of 1* onto the sub-

space [4'] of M.
‘We use Lemma 1 and Lemma 3 to give our example.

suplad 3 Iy 3 < 2] 3 fod] ™.

icm
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ExAMPLE. For each i let X; be the quasi-reflexive space described
by James [8]. Let X = ZZXL- be the I>-sum of these spaces. Note that
X is not quasi-reflexive since X** = n(X)®{* Then the space X has
the property that any infinite-dimensional closed subspace of X contains
a subspace isomorphic to the Hilbert space 1>

Say that a Banach space X is somewhat reflexive if each closed infi-
nite-dimensional subspace of X contains an infinite-dimensional reflexive
subspace. From Lemma 2 we see that & quasi-reflexive space is somewhat
reflexive and from Lemma 3 we see that the I2-sum of somewhat reflexive
spaces is again somewhat reflexive. We do not know much about somewhat
reflexive spaces. We ask, for example, whether the quotient or the con-
jugate of a somewhat reflexive space must be somewhat reflexive. It is
interesting, however, that some of the results of [4], proved there for
quasi-reflexive spaces, are true for the somewhat larger class of somewhat
reflexive spaces.

LEMMA 4. Let X be a somewhat refléwive space as defined in the above
paragraph.

(1) If X has an unconditional basis, then X is reflexive ([4], corol-
lary 4.5, p. 910). .

(2) Any bounded linear map of X into 1 is compact ([4], theorem 5.1,
p. 9.1).

Proof. A space with an unconditional basis which is not reflexive
contains a copy of either ¢, or I ([5], theorem 4, p. 76), neither of which
is somewhat reflexive and (1) follows.

We claim that there is a non-compact continuous line
from X to I if and only if there is a continuous projectior
a subspace isomorphie to 1. Result (2) follows from this. To
claim is true, suppose that X contains no complemented subspace ise-
morphic to 1. Then by [2], theorem 4, p. 155, X* contains no subspace
isomorphic to ¢, Since m = 1* is a space of type C(8), each map from
m to X* is weakly compact by [11], theorem 1, p. 35. Thus the conjugate
of each map from X to ! is weakly compact and so each map of X tol
ig itself weakly compact. Weak and norm convergence is the same for
sequences in I ([1], p. 137) and so each weakly compact map with range
in 1 is compact. The converse is obvious; hence our claim is verified.
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Perron’s integral for derivatives in L”

by

L. GORDON (Chicago)

Introduciion. The notion of the classical Perron integral is by now
very familiar. It is based on the notions of major and minor functions
and of upper and lower Dini derivates and serves the purpose of showing
that an exact and finite classical derivative of a function is integrable
and the function itself is the indefinite integral of the derivative.

Since the time the Perron integral was initially introduced the notion
of derivative has developed and has undergone various generalizations.
Every generalization of the derivative can serve as a basis of generali-
zation of Perron’s integral. The idea is not new. As far back as 1932
(see [1]) Burkill developed a theory of Perron integration based on ap-
proximate derivatives. There also have been other generalizations.

Here we return to this topic but base the theory of the Perron in-
tegral on the notion of derivative — and derivates — in the metric L.
The notion of derivation in I has been introduced by Calderén and
Zygmund [4] and unlike the idea of the approximate derivative has
proved to be quite effective in applications (partial differential equa-
tions, area of surfaces, ete.). It seems likely that Perron’s integral based
on that notion deserves study. I would like to add that though the results
of this paper have points in common with earlier results, the extensidon
is not entirely routine.

The present paper consists of three parts. Tn the first part we define
the notion of Dini derivates in the metric I" (briefly, L'-derivates) and
prove a number of properties well known for the classical derivative
(and due primarily to Denjoy and Lusin). In the second pairt, using pre-
vious results, we develop the theory of Perron’s integral for derivates
in I’. In the third part we give applications to Fourier series.

The author gratefully acknowledges the help and guidance of Pro-
fessor A. Zygmund in the preparation of this paper.

PART I

1. Definitions and elementary properties of I - derivates. Let f(x)
be finite and real-valued in an interval (a, b). (In what follows, unless
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