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On a condition for almost everywhere Bochner- Riesz
summability of multiple Fourier series

by

CHAO-PING CHANG (Hong Kong)

1. Let f(x) be a periodic function with period 2x. We say that
f satisfies the condition I, (p >1) if and only if

£

(1) f fﬁ%—l—t{(w_‘:ﬂ didr < co.

The following theorem is due to J. Marcinkiewicz [2]:

THEOREM A. If f(x)el”[—=, =], f is periodic and satisfies the con-
dition I, (1 <p < 2), then its Fourier series converges almost everywhere.

The purpose of this paper is to prove the k-dimensional (k = 2)
version of the above theorem. '

We now introduce notations and definitions in connection with mul-
tiple Fourier series. E; will denote the k-dimensional Euclidean space.
A single letter such as @, 4, %, t, ... will usually denote point in Ej.. A point
@ = (®y,..., %) is called a lattice point if its coordinates z,..., o, are
integers. The letter n will always denote lattice point unless otherwise
stated. For any two points z = (%, ..., %), ¥ = (Y1, ..., ¥x) We define
a scalar produet z-y = 2,%,+ ... +2x¥r- The usual Euclidean norm in
B, is then given by |2| = (#-2)'2. dw = da, ... dzy, will denote the k-dimen-
sional Lebesgue measure in &, while d¢ will denote the (k—1)-dimensio-
nal Lebesgue measure in Fj. . )

The term function throughout this paper is understood to be com-
plex-valued function unless it is stated to the contrary. A function f(x)
= f(®y, .., %) is said to be periodic if f is periodie with period 2= in each
of its variables z,,..., z;. @ will denote the fundamental cube in Ej
consisting of all points z = (2, ..., %) satisfying the inequalities

—T T

_ —m<y<r ((=12-..k.
If f(4)e L(Q), f is periodic, we define the numbers
a, = (2r)7" [ fl@)e ™dw  (n being lattice points)
Qk
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and call them the Fourier coefficients of f(x). The formal series

in.x
2",

where n ranges over all lattice points, is called the multiple Fourier series

of f(), and will be denoted by S[f] = S[f(x)]. Following the notation

of the one-variable cage this relationship is indicated by f(z) ~ Ya,e™=,
For an R >0 and a complex number § we define '

Sh(o) = Sp(@,f) = D) (A—|nf*|B* a,é™*
In|<R
and call it the Bochner - Riesz means of order & of the Fourier series 3 a,e™,
We say that the series is Bochner- Riesz summable of order 8, in symbol
summable (B-R, d), to a finite complex number s if

Lim 8% (w, f) = s.
R-s00

Bochner-Riesz summability for multiple Fourier series of % varia-
bles is a generalization of Cesiro summability for Fourier series of one
variable. In fact, when k = 1, summability (B-R, d) is equivalent to the
classical Cesaro summability (C, 8) of order 6. Bochner- Riesz summa-
bility of the special order d = (k—1)/2 is particularly important and
throughout this paper we shall consider only summability (B-R, (k—1)/2)
for multiple Fourier series of % variables. This method of summability
is, in fact, the analog of the ordinary convergence of Fourier geries of
one variable because it has been found that some theorems on the con-
vergence of Fourier series of one variable have their analogs valid for
multiple Fourier series when ordinary convergence is replaced by summa-
bility (B-R, (k—1)/2) in multiple Fourier series of % -variables.

Llog*L(@) will denote the class of all measurable funetions flz)
defined on @, such that Qf’f(m)[log*lf(a;)[dm < oo.

K

2. In analogy with (1) we now. define the condition I, for functions
of % variables. Let f(z) = f(w,, ..., 2) be periodic with period 2 in each
of its variables «,, ..., #,. We say that f satisfies the condition I, (p=1)
if and only if

_— —_1\|P
@) T = [ [TEFITOIE G140 < oo
Qe M

where the integral is interpreted as a 2k-dimensional integral taken
over the cartesian product Q;xQy (i.e. Qy) in H,,. We now state below
the theorem to be proved in this paper.
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THEEOREM L. If f(2) = f(®y, ..., Tx), k& > 2, is periodic, f(2) e LlogT L(Qx),
f(x)e " (Qr) and satisfies the condition 1,, where 1 < p < 2, then its Fourier
series is summable (B-R, (k—1)/2} at almost every point.

We remark that the assumption f(z)eL logtL(@;) is essential only
when p = 1. When p >1 it is implied by f(2)eL”(Qx).

A review of the proof of Theorem A reveals that the following three
theorems (Theorems B, C and D below) on Fourier series of one variable
have been used.

THEOREM B (DINI’S TEST FOR CONVERGENCE). Let f(x)eL[—m, =],
f be periodic. For a point z, and a real number r >0 we define

F@o; 1) = ${f(o+r) +f{m—7)}-

Then at a point x, where f(x,) is finite-valued, the condition

]

fw dr < oo for some 6 >0

J 7

implies that the Fourier series S[f] of f converges to f(m,) at @ = ;.
TeroREM C. Suppose f(x)e L[ —=, =], f s periodic, f(x,) is finite-

volued. Then the condition.

If o) ~f(a]
7l

dt < oo for some 6 >0

A

implies that the Fourier series S[f] of f converges to f(w,) at @ = .
TugoreM D (PLESSNER’S THEOREM). Suppose f(x)e[—=, w], f is
periodic. Then the condition

™ k3 o

f f 1f (1) —f (2 —1)] (dtdz) < oo
A 2l

implies that the Fourier series S[f] of f converges at almost every point .

Theorem B is the well-known Dini’s test for convergence, from which
Theorem C follows easily as a corollary. Theorem D is due to A. Pless-
ner [3].

The question arises naturally whether or not Theorems B, C and D
above have their analogs valid for multiple Fourier series of % variables
(k > 2). The answer is in the affirmative and we state below Theorems
2, 3 and 4 being the %- dimensional analogs of Theorems B, C and D above
respectively. :

.
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THEoREM 2 (DINT'S TEST FOR BOCHNER - RIESZ SUMMABILITY). Suppose
. fla)eLlogt L) (k = 2), f is periodic. For a point @, and & real number
r >0 we define

1
fl@o; 1) = —3=1

" k
J f(@)do, where o = 2a""*|T (—) .
oy 2

|z—2gl=7
(Thus f(w; 7) is the mean value of f taken over the surface of the sphere
lg—a,] = 1.) Then at a point where f(x,) is finite-valued, the condition

(8) 2 dr < oo for some § >0

fitesn =i
J 7
implies that the Fourier series S[f] of f is summable (B-R, (k—1)[2) to
flxo) ot © = .

TeROREM 3. Suppose f(z)eLlogtL(Q:) (k= 2), f is periodie, f(z,)
is finite-valued. Then the condition

1f (o 4-3) —F ()]

Y
o It
implies that the Fourier series S[f1 of f is summable (B-R, (k—1)/2) to
flz,) at © = zg.

TagoreM 4. Suppose f(®)eL(Qx) (b >2), f is periodic. Then the
condition :

(5) f f 'ﬁw——~+t);‘,{ﬁf-1t)f (@tde) < oo
Qr @

implies that the Fourier series S[f] of f s summable (B-R, (k—1)/2) at
almost every point x in Ey. _

Theorem 2 is due to E. M. Stein (see [4], p. 107). Theorem 3 follows
from Theorem 2 because Dini’s condition (3) of Theorem 2 is implied by
condition (4) of Theorem 3 (see [1], p. 30-31 for a proof). For Theorem 4,
reference is made to [1], p. 30.

Once we have got Theorems 2, 3 and 4 the proof of Theorem 1 is
similar to that of the one variable case in [2]. We give details of the proof
in the following section.

(4) dt < co  for some 6 >0

3. Proof of Theorem 1. Let f(z) = g(#)+ih(x) where g(=),
L(x) are the real and imaginary parts of f(«). Clearly f(z)eL” (@) if and
only if both g(z) and h(z) belong to L7(@:) (1 <p <2) and the same
remark holds for the class L logTL(Qy). Setting a = g(w-+1)—g(z—1),
b = h(x+t)—h(z—t) in the inequalities

ol < la+bif?, [P < la-Hbil?, -
la+bilP < 27{la|”+[b[*},
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we have

lg (2-+1)—g@—1)” < |f(@+0)—Fle—0)7,
W@ +0) —h(@—D)P < [fle+)—Fla—t[7,
flo+—fla—t) < 27{lg(@+1)—g@—)" +h(@+t)—h@—)P}-

These show that f satisfies the T, condition if and only if both g and &
satisty the I, condition. If S[g] and S[h] are summable (B-R, (k—1) /2)
to g(z) and k(z) at almost every point » respectively, it follows that S[f]
= §[g+ih] = 8[g]+4iS[R] is summable (B-R, (k—1)/2) to g (z)-+ih ()
= f(x) at almost every point z. Hence it is enough to prove the theorem
for real-valued function.

Let f(z) be a real-valued function satisfying the condition I,. Clearly
both its positive part f*(z) and negative part f~ () also satisfy the con-
dition I,,. Hence without loss of generality it is enough to prove the theorem
for non-negative real-valued function f(x).

Consider first the two extreme cases of p =1 and p = 2. When
p = 2, Theorem 1 is precisely Theorem 4 above. When p = 1, we shall
show that the funetion f satisfies the condition

If (o +1) —F (@0)]

i dt << oo

20

for almost every point xz, and hence, by Theorem 3, the Fourier series
8[f] of f is summable (B-R, (k—1)/2) to f(x,) at almost every point ,.

Applying Fubini’s theorem twice and using the change of variables
t = 14’ we write the integral J(p,f) in (2) as

o f) — f[of o9tz e
k

Qe
_ JL Qf rf(m+%z’)ujl{(m—%t’)l dt,] i
— [[[verin-se—ionas| g ar,

2Qr Qk

where 2Q; denotes the cube consisting of all points (24, ..., #;) satisfying
<y <2 (j=1,2,..0, k) .
In the inner integral on the right-band side above, viz.

(6) [1f(@+3t)—f (0—}t)] der
Q
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the integrand |f(z+3#)—f(e—%1')], with ¢’ kept fixed, is periodic in the
variable z = (2,, ..., 2;). Hence the value of the integral (6) remains
unchanged if the region of integration @y is replaced by @+4¢". By means
of the translation z = 2’44’ the integral (6) is equal to

[ Ife+

Quitre

) —f(e—4t')| do = f]fa"-{—t Y—f (@) de’ .
Hence

s = [[ [if@ i —fea] Ly ar

20, Q lt ]

[ Iflo+1)—,

[tlk (lt] dw.

Qr 20k

In the last step above we have dropped the dashes in 2’ and ¢’ and reverse
the order of integration. Since J(p, f) < co by the I, condition on f, it
follows that the inner integral above iz < co for almost every x in Q.
This completes the proof for the case p =1.

Reverting to the general case we can now suppose 1 < p < 2 and
f(@) = 0. For each positive integer n let 4,, B,, 0, denote the sets of
those points in H; where

fl@y<n, n<f(2)

<n+l, a4+l <flx),

respectively. For a positive integer # and a point z<H) we define a set

Oy = {ll1eQu, v-+1e0,} = {1]1eQy, flat) >n+1}.

Define two functions ¢(z), p(2) (—oo < & < o) by

p(z) =f(x) it wed, v B,, @) =n+1if zeC,,

" (observe that the functions ¢(x), y(2) and the set O, defined above depend
on # but this dependence is not exhibited since we shall work on a fixed
n in the discussions that follow). From the above definitions it is clear
that

(m) =n+1,

at those point in B, wher
f(m)-— 1) points z in B, where f(x) >n-+1,

p(2) = f(x) and w(w) =0 at those pomts ¢ in By where f(w

Also @(z) = 0 for all 4 in Ek and ¢(z), - y(z) are periodie.

< n+1. ‘
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‘We first show that
flo+1)— .
(M) Itik dt < co for almost every z in FEj.

20y,

To see this we apply the change of variables ¢ = 2¢' to the above
integral and thus obtain

f!f (m+2t)—f(@

It

If(@+2t)—f (@)
I ! = S et
t Qkf I

20y,

Therefore, by Fubini’s theorem,

Q Jowan= [] [iro+

% O O

2t) —f () |”dx] lﬂk dt.

In the inner integral on the right-hand side above the integrand
If (w42t) —f(x)[?, with ¢ kept fixed, is periodic in the variable z =

(1, ..., 7). Hence the value of the inner integral remains unchanged
if the regmn of integration @ is replaced by Qr—i. Hence

(9) f fla+20)—f@)do = [ 1f(e+20)—f(2)P dw

Q-1

= [Ifla+0)—f@-n)fdo

Qe

where a translation of the variable  reduces the middle integral above
to the integral on the right-hand side. Substituting (9) into (8) we obtain

Q{ Jp<m)dm=0{ [ [ ifot—fo—nras] = T
_ f[ f If(@+2) :1{ (@—1)° ;u] .

By hypothesis the repea,ted mtegral on the right-hand side above -
1s < oo and hence J,(#) < co for almost every = in Q. Now the function
Jy() defined by (7) is clearly periodic in the variable & = (@1, -.., %)
and hence J, (%) < oo for almost every point # in Hy.
Fixing the positive integer = we now establish the following in-
equality

oy [ leetd vl

T

dt < co for almost every point x in A,.
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The proof of the above inequality is divided into the following
three steps:

(11)
wved, and J,(z) = |f__—_“_(m+tl)t';c—f(m) f il w+ltt|k—f cal dt < oo
20
(12)  wed, and If(z+1)—f(2) Tv(@41) —p(@)] it < oo
g T o
) . lp(@+8) —p (o) [p(@+1) —p ()|
(18) For every wsed,, dxf ——-‘——W f T ——dt

Clearly the above three steps together imply (10) since J,(z) < oo for
almost every z in Q.
Fix on a point xed,. We have clearly
fla+)—f(2) > —n=1
since f(z) <n and f(z--1) >n+1 for all points teC, by the definition
of O,. Therefore for every point teC, we have

(n+41) for all teC,

If@+t)—f(@)| _ [fle+t)—f(@
4" [t[*

Integrating both sides of the above inequality over C, we have

[f(e+t)—f(2 [fle+8) —f(z)[”
B s Sl
Now
JIp(@) = W———;ﬂm)—]”dt < oo
20 Il

implies that the integral on the right - hand side aboveis < oo gince ¢, < 2,
and the integrand is non-negative. This implies that the integral on the
left-hand side above is < oo, thus proving (11).

To prove (12) we observe that f(z—+t) >n-+1, p(@t+t) =n-t1 at
every point teC,. Hence

Y(@+1) = f@+0) —p(@+) = fa+1)—(n+1) < flo+t)—

Now f(2) <

o n because wed,. It thus follows from the above inequality
a

p(@+1) < flo+1) —f(o)
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Since p(x) = 0 and w(z-+1) is always non-negative, we actually have
[f(m+)—f(2)]
and integrating with

| (@+41) teCy.

Dividing the above inequality throughout by "
respect to ¢ over the set (, we obtain (12).
‘We now come to the proof of (13). Let @, be the complement of

Cy = {t| 1@y, f(z-+1) >n+1}

relative to Q. For every point teC, we have f(x+1f) < n+1 and so
w(z+1t) = 0 by the definition of p. Also p(z) = 0 since reA,. Therefore
in the integral

—p(@)| = yp(@+1) < flz+0) —f(2) =

t)—
L
&y *
the integrand vanishes identically for all points fe ¢, and so the above
integral is 0. We thus have

fiw th vl , erJ:
g %

This completes the proof of (13) and hence (10).
Lastly we now prove that

t) )
(14) f o@D =9 3140) < oo,
Qr O I I
To see this we observe that the inequality

lp(z+1t) —p(z—1)] < [flo+1) —fle—1)]

- always holds for all # and all ¢ from the definition of ¢, and hence

' pla+—pla—t)P < fl@t+) —Fla—
Tt thus follows from the condition I, on f, namely

f f]f (z41) &{(a@

Qr @

ffWWH k —)
7l

Qr O
Because @(x) is bounded the above inequality involving the p-th power
of |p(x-+t)—p(xz—1)| implies the same inequality with p replaced by 2,
e. (14) (we omit details of proof here).

(dtdz) < oo

that
(dtdx) < oo
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Inequality (10) and Theorem 3 show that the Fourier series S[y]
of p is summable (B-R, (k—1)/2) to  (#) at almost every point z in 4,,.
Inequality (14) and Theorem 4 show that the Fourier series S[¢] of ¢
is summable (B-R, (E—1)/2) to @(x) at almost every point » in Ey. Since
8[f1 = Slp+v] = S[p]+S[vy], it follows that S[f] is summable (B-R,
(k—1)/2) to p(z)+y(z) = f(x) at almost every point z in 4,.

The final part of the proof is now accomplished by passing to the
limit % — co on the sets 4,. Since S[f] is summable (B-R, (k—1)/2) at
almost every point z in each of the sets 4, (n = 1, 2, ...), it is also summable

at almost every point # in the union | J 4,. From the definition of the
sets A4, it is clear that n=1

HA” = {z|weBy, 0 < f(x) < oo}.
Since f(x) is periodic and integrable over @y, f(#) is finite-valued almost
everywhere, i.e. the set of all points in F, where f(x) = co has measure

[+
zero. This means that the union | J 4, differs from the whole space Ej,

n=1
by a set of measure zero. Therefore f(x), being summable (B-R, (k—1)/2)
o0
at almost every point » in the union |J 4,, i3 also summable at almost
n=1

every point «# in the whole space .
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Hexoropsie crabbic METOIHI CYMMHPOBAHKS

1I0. I TOPCT (HpacHOApPCK)

W3BecTHO, 4TO 1A nio6oii HEOTPAaHHUEHHOH MOCIENOBATENBHOCTIL {8}
u 7060r0 YMCIA & MOMRHO IHOCTPOUTH DETYIAPHEI MATPUYHEIH MeTOR
CYMMHEPOBAHHS, CYMMHEDPYIOIMi IIOCTEIOBATEALHOCTD {8} ® umeay @
# He CyMMUpYOIH#l HE OLHOM IOCTENOBATENBHOCTH, OTIMYHOH 0T BURA
{48,+a,}, rme A = const, a {ay} — CXONAMAACH II0CIEX0BATEILHOCTD (23
teopema 2). Ommawo, ecmm {S,} — OrpaHMYeHHAs NOCIENOBATENBHOCTD,
TO HOCTPOEHHE IOKOGHOTO MATPHYHOTO METONA OKAHBAETCH HEBOSMOM-
HpM. Bomee TOro, BeAKEIl perymApHbIE MATPUYHBIH METON, CyMMMpY-
JOLR Oy PACXOMALIYIOCA OTPAHNIEHHYI0 HOCTEN0BATENbHOCTE, CyMMUPY-
€T KOHTHHYallbHOE MHOJHECTBO OTPAHHYIEHHBIX moCTe{0BATEIbHOCTEH,
PACXOMAMUXCA OJHOBDEMEHHO C moGofi WX HETPUBHAILHON KOHEYHOM
numefinoit xoMOmmanmedt ([3], Teopema 1).

B macroameii pafore IOKA3aHO, YTO MIA NOTyHENPEPLIBHEIX METORLOB
cymMupoBaHusA (0GOCMEHHEN Npeges IOCIE0BATeILHOCTH {8,} ompe-

2]

neserca kax Hm Y Cyn(%)S,) 0KasHBACTCA BO3MOFKHEIM IOCTPOCHNUE Pery-

200 N=1 .
ISPHBIX METONO0B, CyMMHEPYIOIIIX K 3aJaHHOMY YHCIY ,,TOIABKO OJIHy”

pacxoIAIIy0Cca TOCIeNOBATEIBHOCTE, HE3aBUCUMO OT TOT'O, orpapmpyeHa oHa

MU HET.
HOHa3aTeHBCTBy OCHOBHOI TEOPEMBEL — TEOPEMBL 1— npeanouIeM cile-

AYOIYIO JeMMY:

Hmo. Tyems {8,} — nocaedogamebrHoCMb, NPUHUMGIOWAR dsa sHa-
yeHus:

b npu B = MNg, .
Ty npu m=mp (b #£Du {ud o {n} = {n})
U 6 — NPou3sobHOE HUCLO, OMAUNHOE Om bubd. Haa uucer euda x =
= k(2™ —1)[2™ (k, m =1,2,...) onpedeniLit Pynryuu

Sy

I

b —a
pY— npu no=mg k,m=1,2,...,

1 C,(z) = a—Db 7 ’ ’

1) Cula), ————  DPU M= Mgy Mgy o3 Megm1 kym=1,2,...,
m (b’ —b) :

Y 8 0CMAJbHBIY CAYUAAX.
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