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agsume # = {I,,} without affecting the set of points covered by #. Now,
it B={U L), then I is closed. Moreover I ~ I # @.

Suppose B ~ I has an isolated point @,. Then there is an open in-
terval I' = I such that mgel’ and I' A B— {w} = @. Leb Gy(x) = B (m)
on I,, and

By = {@: @cly ~ I, and Gu(2) # G (2)}.

Then, by Theorem 1, |Hyn| =0 for all m and n. Define
Golx) it @welpy—J Ty,
0 it we(U L) v (U,E‘mn).

Then, clearly G(z) = pF'(#) on I'. Bub 1I' ~ B + @, a contradiction.

Now suppose B ~ I has no isolated point. Then there iz an open
I' < I such that pF' (2) exists on P =I' ~ B 5 @. Let Gp(z) = pF' (o)
on P. Let H = B o (U Em). Define

G(z) =

Gu(z) it wel,—H,
G(x) = {Gp(p) if weP,
0 otherwise.

Then, clearly G(z) = p¥' (x) on I'. Hence I'eF. But I ~ I +0,
a contradiction. Thus & covers I. Define

Gu(z) i welp— (U Bn
fla) = Lo (U T,
0 otherwise.

Then f is well-defined and pF' () = f(w) on I.
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The Stone-Cech operator
and its associated functionals

by

JOSEPH B. DEEDS (Baton Rouge)

1.1. Totroduction. The object of this work is to provide a realization
of a certain Hilbert space of vector-valued sequences and to show how
the structure obtained applies to a class of functionals on the space & (H).
We use the symbol H to denote a separable Hilbert space, & (H) o denote
the space of bounded linear transformations thereon, and m to denote
the space of bounded complex-valued sequences.

1.1.1. Definition. A generalized limit is a bounded linear functional
L on m which preserves the ordinary notion of convergence. That is,
if lim (a,) = @, then L((an)) = @

Generalized limits may be characterized as those continuous fune-
tionals which satisfy

1) a, >0 for all n implies L{(a,)) > 0.

2) L((1)) =1, where (1) =(1,1,1,...).

3) If a, = by, for n =K, then L((as) = L{(Bn)-

A stronger requirement than 3) is the translation imvariant property:

4) L((ang)) = I((aw)),
which we will assume only in special cases. The existence of generalized
limits satisfying 1)-4) was proved by Banach [1].

1.2. Extensions and measures. It is well known that each completely
regular topological space X possesses a Stone-Uech compactification 8X
with the property that X is densely embeddable in AX and every con-
tinuous function f mapping X into a ecompact space S possesses a con-
tinuous extension f°: BX — 8. In particular, each bounded continuous
complex-valued function has such an extension, and the correspondence
f —f% is an isometric isomorphism between Op(X) and C(BX). Applying
this to m (where the integers N are given the discrete topology), we see
that m is isomorphic to O (BN), that each sequence (@) e m has a continuous
extension of defined in AN, and that

sup la,| = supla’ (?)].
neN 1efN
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This permits us o agsociate with each generalized limit I a measure
A on AN so that

L{(an)) = f of (1Y AA ().
ON

Tt is easy to see that a measure A on SN, in order to determine a gen-
eralized limit, must be a positive regular Borel measure, with A(fN) = 1,
whose support is contained in SN —XN.

1.3. The space Hz. In the sequel we shall have occasion to deal
with sequences (z,) of vectors whose terms lie in a fixed Hilbert space II.
If (m,) and (y,) are both bounded sequences in If, then their inner product
sequence ((n, ¥x)) belongs to m. It makes sense, therefore, to congider I
applied to such sequences, but rather than write L{((2ny yn))), we will
write simply L (%, ¥s). Likewise for (an)em we write L(a,) instead of
ZI((as)). Pinally, if 2 is a scalar or a vector, (2) will denote the constant
sequence whose every term is 2.

1.3.1. Definition. HY = {& = (,) | @ eH for all n, and suap (|l
< ook

We make Hy into a vector space by defining operations termyise.
We define an inner produect by

[myy] = L(wnyyn)a

where I is a generalized limit. Thus we have a vector space with a posi-
tive semi-definite bilinear form thereon. We write K = {weHr, |.L(|izal’)
=0}, and set Hy = H7 /K. Then H7, is a pre-Hilbert space, which we
complete to form Hz. The construction and an application of this space
are found in [2]. It is immediate that Hy contains a copy of H. The map
@ — (@) is an isometric embedding of H in Hy. We denote its image by ().

Calkin [3] started with the set @'’ of sequences which eonverge weakly
to zero in H. By the same process as above he constructs a space ¢ which
he shows has dimension ¢. Evidently @ < Hy, so that dimHy, > 0. We
can use his argument in the proof of the following remark.

1.3.2. ProPOSITION. The dimension of Hy is o.

Proof. For w<H; we have a; = I, (®;, €,) ¢, Where (6,) is a sequence
of bagis elements in H. (We will reserve the symbol (e,) for such a se-
quence.) Thus each # determines a matrix ay, = (2, e,) of complex num-
bers. There are ¢ such matrices. When we factor by K and complete to

form Hy, the cardinality of the resulting set is at most ¢¥ = ¢. Thus
dim H <SG

1.41..Vect0r sequence extensions. Each bounded sequence (z,) of
vectorg in H may be viewed as a continuous function on N whose
range is contained in a weakly compact set B. By the romarks of 1.2,
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there exists a weakly continuous extension function 2°: p¥N — B.
Evidently,

sup [lo® (£)]] < sup |||,
LN

and the reverse inequality is immediate from the fact that 2® extends
(,). This suggests the possibility of employing the Stone extension to
define an operator on Hy which would map it in an isometric fashion
onto a Hilbert space of functions, thus representing Hy, in a more con-
venient fashion. The natural candidate for the range space is Ly(1, N, H),
the space of norm-square -integrable functions from gN to H. The inner
product is
(flg) = [(f0), 9(0)mar(s),
BN

and 4 would be the measure determined by L. As the following example
shows, however, the Stone extension cannot be fully isometric. Let ¥
= (¥a) €Q"", s0 that y, — 0 (weakly) in H. Then for each weH, @y = (Yn, W)
defines a sequence which converges to zero. The extension af must vanish
on N —N. Indeed, if there were #<fN— N with 1a°(t,)] > & > 0, there
would be an open set § about £, with [af ()| > ¢ whenever feS. Since N
is dense in S, there are infinitely many integers in 8, and thus 1a® (n5)]
= |an;| = ¢ for a subsequence n;, and this is impossible.

Now, by weak continuity, (1) = (y*(t), w) so that (y°(t),w) =0
for all w and all tefN— N. It follows that yf = 0 on BN — ¥ and hence
is zero A-almost everywhere. If y = (e,), we have [y,y] = L(en, n)
= L(1) = 1, while (3*|3%) = 0.

1.41. TevMa. Ly(4, AN, H) o2 Ly(4, BN)Q H = 2@ Ly (4, pN) where
L,(4, BN) is the usual squm;é-imegmble complex-valued functions on BN,
and the last summation is a countable direct sum.

Proof. Let M, = {fe,|feLs(4, PN)}. The sets M, can be identified
with the spaces <e,>® L,(1, fN) by the map fe, < (e.0® f. (Here and in
the sequel, <(S) denotes the closed linear span of the set S = H.) Thus

HQLy(%, f) = [Zi® <ea> 1@ Ls(4, fN)
= i@[(e‘n>®L2(Z7 BN)] = Z,®M,.
In order to show that L,(i, N, H) = Z.®M,, we have to show
that if G eLy(4, AN, H) and G | M, for all n, then G = 0 a.e. For such a G:

[ t)en, G@D)ARE) = [F(2) (ens GW)dR(E) =0

BN 8N

for every feL,(A,N) and every «. This says (en,G(t)) =0 almost
everywhere for every n, and hence, by completeness of the basis set
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(en), G(1) = 0 a.e. The correspondence for Z@Ly(4, AN) follows from

the obvious identification between My and Ly(4, pN). .

1.4.9. Tmmma. The (strongly continuous) funclions of the form 3 fi(t) e
40

where each f;eC(BN), are dense in Ly(A, N, H).
Proof. The proof is simply & two stage approximation, using the
fact that C(N) is dense in Ly(, V) and L,(4, BN, H) o2 ZD Ly (2, BN).
1.4.3. TeuMMA. If weHY, then o eLy(A, BN, H).
Proof. We know that #° is norm bounded. Wo also obrerve that

K

ll® (#)|* is the monotone limit of the functions iZ‘ (2" (2), €)', each of which
sl

is continuous, hence measurable. Thus the integral , \f, e ()P dA(t) exists

and is finite.

Now we wish to define a manifold of sequences which are controlled
well erough for the Stone extension to operate isometrically on them.
The definition is independent of any generalized limit, but the manifold
will uitimately be closed in Hy, and the closure will depend on L.

1.4.4. Definition. U = {zelly|Ve > 0,3K.5. B‘UDIZ‘(\(()’}M el < €}
LU 28

Tt will become apparent that the definition is independent of the
particular choice of basis.

1.4.5. LEMMA. () U is a submanifold of HY containing ().

() If wel and yeHy, then the series (@, Yn) = Zi(@n, )0, Yu)
converges uniformly in n.

(¢) A necessary and sufficient condition that (U = M 48 that I
be finite-dimensional.

Proof. (a) That U is a submanifold is immediate. The constant
sequences are clearly U-sequences and these are precisely the ones that
we identify with H.

(b) If |yl < M for all n, we have

'i;];c [y €5) (65 Yn)| < L;c (@, ert)laklllz liu%:; W, (g',l)lﬂ]'/”-

00 o
<[ )ty |,
Bee I

80 that the tail of the original series can he made uniformly small.
(c) If H has dimension D, write

D
Ty = 2 (ny €)  for every ().
=

icm®
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This is evidently a. U-sequence, so Hy = (U).
Conversely, if H is infinite-dimensional, let ¥ = (¢,). Then |ly|| = 1,
and if & = (w,)e U,

lilnn (s Yn) = Lim Z;(@n, €:) (655 Yn)
n

= Dlim (@, &) (e ya) (b3 (b))
=0.

Thus [#, ] = L (%, Ya) = lim(z,, e,) = 0 and ye U™

The same argument as above applies to any sequence which con-
verges weakly to zero, and so we see that @ < UL, We will naturally
assume H ig infinite-dimensional.

1.5. TEEOREM. The following statements are equivalent:

(a) & = (za)e U.

(b) (@) is contained in a strongly compact set in H.

(¢) #f: BN — H is strongly continuous.

(@) I DI = Zil(= (1), &) P converges wniformly on PN.

(In the above, we are viewing the correspondence z — #® as defined
on individnal bounded sequences, and not on elements of Hy or Hy.)

Proof. (a) is equivalent to (b) by a well known characterization
of strongly compact sets in Hilbert space.

(b) implies (c). If (z,) is contained in a strongly compact set 8, there
is a strongly continuous extension a”: pN — §. For each weH, and neN

(ma(%)’ w) = (W, w) = (mﬂ(”)f w)

Thus the continuous functions (s%(t), w) and (#"(t), w) coincide
on the integers and hence on SN. We have 4° = #f, and in this case o’
is strongly continuous.

(¢c) implies (d). The function [l=® ()] is continuous and is the monotone
pointwise limit of the continuous partial sums of the series. Dini’s Theo-
rem shows that the convergence must be uniform.

(d) implies (a). For each & > 0, we have a K so that

i A2
2;11%31.;;“50 @), e)f <e.
In particular, on the subset ¥ < N
sup 3l (n), &)t = smp 2 Nl ef <,

whence (w,)eU.
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1.5.1. COROLLARY. The definition of U s independent of any choice of

basis. . ‘ .

1.5.2. CoroOLLARY. The Stone extension maps U < Hy onto a dense
subset of La(A, BN, H). o ‘

Proof. The strongly continuous functions are denﬁg in Ly(A, SN , )
and each, when restricted to N evidently determines a U-sequence. Since

)
ion is unique, we are done. ' o
e eNX'zierlswlne will slfctlow’ that the Stone extension induces a well defined
operator from Hz — L,(%, BN, H). To extend the map rx}»lg(sbzrmuaﬂy
from Hy to Hz, we need to show that if L(|lalf) = 0, then a” = 0 ;.xlmogt
everywhere. To get from Hi to Hy we need boundednoss on the former
space. Both of these requirements are fulfilled by the following theorem:

1.5.3. TEmoREM. The Stone extension mapping Hy, into Lg(A, fN, ")
is norm reducing.

Proof. First, if o« U and y e Hz, then we have («, Wty = (& (8), y“(t)).
That is to-say, the extension of the inner product sequence (.wm ﬁ'/n.) is
just the inner product of the two vector extension functions. Thu_x dem'ves
from the fact that (mﬁ W,y (t)) is 2 continuous complex-valued fanction.
Tor, let sefN be fixed. Then for tepN:

2 (), 4 () — (&' (), 4" D)
< (@) — 0 (5), 9" )|+ (e (), 4" (1) — " &))]
< () — 2 ()] 1 )+ (e (5), 9 () — 9" ()]
By strong continuity of #°, and by the boundedness of ", .11110 DO,
expression above can be made arbitrarily small. Also, since yf is weakly

continnous, the last term on the right can be made small.
Thus, whenever weU,yeHy we have

(%) (2, 9] = Lian, ) = [ (2" (), " () da(t) = (a"19")
o
and in particular @ — 2’ is isometric on U. Moreover

LI By By e= ) :”t,\/’t(lt)
Io%) = sup 1(£19") u%%}@l"” )l “Skﬁ&’,,i(”” o (0)da(i)|

= Bup 1Ly m)| < [l Hlylt =yl

G

Now we can define the Stone extension on Hy, because if L (|lyal*) = 0,
then [y’ = 0 as well and so 3 = 0 a.e. Since the map is bounded on
Hj, we can extend it by continuity to the completion Hy. The map

which results from this two-stage process will still be denoted by @ — o,
and we will call it the Stone-Cech operator.

icm®
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Equation (x) says that the Stone-Oech operator preserves inner
products as long as one term i in U, or, equivalently, has strongly con-
tinuous extension.

1.5.4. TunorEM. The Stone-Gech operator is a partial isometry from
Hy onto Ly(A, N, H). It is isometric on <U> and annihilates T,

Proof. We know that (U will be mapped isometrically onto
Ly(4, BN, H). by the Stone-Cech operator. Equation () will extend by
continuity o that for axbitrary #«(U) and yeHp we have (2°|yf)
== [, y]. If, in particalar, y U+, we have (a7 |¢7) = 0 for every e(U>.
But this implies ¢ == 0.

1.5.5. Remarks. We have seen that Hy = (UD@UL, where
KUY =2 Ly(4, pN, H) and @ = U*. Although the dimension of U+ ig
always ¢, the dimension of (U) varies with L. If L is a point mass, i.e.
L(ay) = a?(t,), where (ay)em and tyefN—N, then dimIL,(i,sN) =1,
and L,(2, BN, H) o2 L,(2, AN) @ H = H. That is to say, the only U-se-
quences are esgentially constant. On the other hand, if L is translation
invariant, Douglas [5] has shown that (U} is non-separable.

2.1. The representation 4 - A°, Let 4 «Z(H). For each & = (#,)e Hz ,
we define 4°(x,) = (4x,). Thus A maps Hy into Hy and it is immediate
that 4 — A° determines a -isomorphism of & (H) into #(Hy). The defi-
nition is identical to the one given by Berberian [2] and by Calkin [3],
except that the latter applied it to @ only.

2.1.1. PROPOSITION. (H), <U)> and @ are all reducing subspaces for
A’ when A <Z(H). ,

Proof. The proposition is a statement of the fact that each operator
(and its adjoint) preserves congtant sequences, compact sets, and weak
convergence 4o zero.

2.1.2. PrOPOSITION. A maps Hy, into <UD iff 4 is @ compact operator.

Proof. If 4 is compact, 4 maps bounded sets into pre-compact
gets, Since every (m,)eH7 is contained in a bounded set, A%(w,) = (Awn)
will be contained in a compact set. Thus A°: Hy — U and so A°: Hy - <U>.

Conversely, suppose A% Hy - (U>. Let @, — 0 weakly in H. Then

Al (@) = (Aw,) e U and Awm, — 0 wealkly. But this implies Az, — 0 strongly,
becaure

K1 0
1Al = 3 [(Aan, )P+ D) [(Aan, &)I"

L) Ym I

and we may make the second term small by choosing K sufficiently large.
The first term converges to zero ag = increases, so Aw, — 0 strongly.
2.1.3. COROLLARY, The restriction of A to U~ is zero when A i8 compact.
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2.9, On linear functionals. In [4], Dixmier showed that every con-
tinuous functional f on & (H) may be writteq f=g¢-+h, where gelf,
the dual of the space of compact operators and h annihilates all compact
operators. The elements of Iy are just the functimmlg continuous in the
ultra-strong topology on % (H). Further, |f] = [lgl - |[hl, where ligl] is by
definition sup{lg(4)|: |4l =1, 4 eompact}, and |B]| is Jum;:‘ the norm
of T as an element of Z(H)* Since It* =2 (H), I;™ =2 (H)", and each
functional on I, may be viewed as a functional on..Z (H) by the canonical
embedding. This embedding is igomorphie, and go [l is the same whether
we think of ¢ in It or in 2 (H)*. o

Dixmier completely analyzed the ¢’s, but to date nothing is known
about the structure of the h’s. As an example of such o “eompact annihi-
lator® functional, we have h(4) = L(Ae;, &), where L is a generalized
Yimit and () is the sequence of basis elements. If we write ¢ = (¢;), and
form Hygpthen we have h(A) = [4%, ¢]. We now proceed to {Atudy fzunc~
tionals of the form f(4) = [A’»,y] where ®, yeHp, and [+, -] 18 the inner
product in that space. o .

By linearity, it suffices to consider the case where 4. is Ilermitian,
and by polarization it is enough to consider symmetric functionals [A%w, #].

92.2.1. THEOREM. [A%0, 2] = [4A°%,, ;] [A0@y, @], where @, e LU, and
@y UL, The decomposition is the same as Diwmier’s in that g(A) = (4%, ®,]
is ultra-strongly continuous, and h{A) = [Aw,, w] annihilales all compact
operators.

Proof. The decomposition exists because (U is a reducing subspace
for A° and the mixed terms vanish. The norm equality follows sinco for
f(4) =[4’z, ®] we have

Il = lwfl2 = a2+ llwal® = llgll+ |2
‘We have algo seen in 2.1.3 that & annihilates all compact operators.

What remains to be shown is that ¢ is ultra-strongly continuous. Note
that if we apply the basic decomposition theorem to g, we have g == g, + (s

where g, is ultra-strongly continuous. Since [lg|| == llgill-- lgall, £ we can
show that [lg|| is approximated by values of |g(A)| when 4 is in he unit
ball of the compacts we will be done. Tor then gl == [lf,[l and gy == 0.

This leads to the following lemma:
2.2.2. LEMMA. Let o = ()< U, and lot f(4) = L{Aw, w;). Then there
18 a sequence of norm one compact operators (4;) so that |f(A)] — If.
Proof. A, will be the projection on the space spanned by the first j
basis elements. Then ;
Ay = 2 (55 €n)ens

Pyusl

@y = T4, €n) €n,

4
(Ayme, @) = > (w1, 00)

omal
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For j sufficiently large and > 0,

7
lealt— 3 (@i, en)* < 6

-1

for all 4. By continunity of L ag a functional on m, we have

[lwlf— [47@, #]| = |L(l@lP) — L( Az, 2)|

H
= | L) =L 3 1(ai, en)lt] < e.

M=l

Sinee [|4;] = 1, and the 4; are all compact, we need only observe
that [Ifll = |l=If.

2.2.3. COROLLARY. Let g(A) = [A°®, ], where x<(U (not necessarily
a sequence). Then ||gll can be appromimated, in the sense of the above lemma, by
compact operators. o

Proof. The proof is accomplished by approximating the arbitrary
element z<{U) by a sequence y = (y;). The operators 4, above will work
for both % and w.

The proof of 2.2.1 is completed now, since 2.2.3 implies the ultra-
strong continuity of ¢.

2.3. On (U)-functionals. If I is any generalized limit, and (a)
is a bounded sequence in H, then ¢(y) = L(y, ;) defines a bounded
linear functional in H. Thus there exists a unique weH so that ¢(y)
= L(y, ;) = (y, w). The correspondence (#;) ~> % may be viewed as a map-
ping of Hy — (H) < H7 provided we associate with the weH above
the constant sequence (w) = (w,w,w,...). Then (x;) — (w) is linear
and has norm one:

llwll = llgll = sup |L(y, @o)| < sup fyll [Z(ll) T = |o] .
=1 =1

We define L°(2;) = (w) and call L® the extension of L to bounded
vector sequences. Viewed in the context of its own Hy, L° annihilates UL,
acts in a termwise fashion on U, i.e.

(@) = > Liw, en)
N=]
when (#;)eU, and is in fact the projection on (H). L' extends by con-
tinuity to <U>.

Schatten [8] develops Iy as the ideal of trace class operators and
shows that for every gelj there exists a unique 2 belonging to the trace
clags so that g(4) = tr(AY) for every A<, (and for every AeZ(H)
if we regard g as defined thereon). We may now completely characterize
the (U)-funectionals.


GUEST


) ] e
14 J. B. Deeds

9.53.1. TEEoREM. Let g(Aw;, #;), where (2;)e U. Then, ifowe represent
g(4) = tr(A), and identify ® with (x), we have Ux = L (», ®;)w; for
each xeH.

Proof. For each v, weH, define the (compact) operator {v,w} on
H by {v, w}z = (2, v)w. Then [4] we have

(Rw, v) = g({”: w}) = L({w, w}wi; @)
= L((ms, v)w, @) = L[ (2, v)(w, m)].

Let B be defined on H by Bz = L°(2, w;)@;. Thoen for every v, weH
we have
(Bw, v) = (L (w, 2) @, 0) = Li(w, @), )
= L(w, @) (%, v)] = (Yw, v)

50 that 2 = B as claimed. '

In order to extend the theorem to (U), one employs the weak integ-
ral [" of a continuous vector-valued function in a Hilbert space and shows
that L° on (U = L,(4, N, H) is given by

o) = ["a@)ar).
8N

Then
U = [7 (3, (1)) 2 () d(2).
AN

The computations are almost identical in pattern with those above,
but one uses the image under B of the representation 4 — A“ on Ly(4,
BN, H), A’[f(1)] = [4f(%)] (a.e.). Thus for each 2e{U) in Hy, 13}‘10 f1.1nc-
tional g(4)= [4A°%,s] may be represented by tr(42A), where 2 is given
by the weak integral abovg.

2.4. On U'-functionals. If 2 <UL, then the functional h(4) = [4°», o]
annihilates all compact operators. Otherwise put, the representation
A — A" (restricted to U*) is a continuous homomorphism of £ (H) th)se
kernel is precisely I,. Calkin [3] produced the first explicit represenﬁa;t;on
gatisfying this latter criterion, and his space ¢ is a subspuace of U+. We
are naturally concerned with the gquestion of whether the spaces arve
equal. In one simple case they are the same.

2.4.1. Definition. A point pefN —N iy called a P-point il every
countable intersection of neighbourhoods of p contains a neighbourhood
‘of p.

For the following facts, the reader is referred to (6] and [7]. Assum-
ing the continuum hypothesis, P-points exist in N — N, in fact they
are a dense subset. The definition implies that a continuous function which
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vanighes at a P-point must vanish on a neighborhood of the point. Finally,
[6], the open and closed sets in BN — XN for a base for the open sets in
BN — N, and every open and closed set 4’ in BN — N may be represented
a8 A" = (clyyA4)— N, where 4 is an infinite subset of N.

2.4.2. THEOREM. Let L be a P-point mass, t.e. L(a,) = a’(t)) for
some P-point tye N — N. Then the spaces Q and U determined by L coincide.

Proof. First, suppose (z,) is a sequence in U'. More formally, (z,)
lies in an equivalence clags in Uy < H. z, one of whose representatives
lies in Hz. We will show that (#) is equivalent to a sequence which con-
verges weakly to zero, and hence lies in @ < Q. Since (22) € U+, we know
that the Stone-Cech extension annihilates it, that is &(f,) = 0. Thus
the functions a(f) = (2" (?), e;) each vanish at ,, and hence on a neigh-
borhood Dy, of £,. The countable intersection of the Dy’s contains a neigh-
borhood of #,, and so there exists an open and closed set A’ about ty, ON

which all the functions a,(f) vanish. Say that 4’ = (clgyA)— N, and
define

% it ned,
Wy, =

0  otherwise.
Let b, = ||z — wy). Then
0 if
llewll®

The continuous function b*(#) clearly vanishes on the closure of A
in AN, and thus L(|lgn—wnl’) = L(b,) = b7(4,) = 0, since f,eA’. This
shows (2;) and (w,) are equivalent modulo L. Consider the sequence
Cn = (Wn, €x) Where e is a fixed basis vector. The continuous functions
w?(t) and # (1) coincide on A’ and hence (w®(t), ex) vanishes on A’. This
shows ¢’(t) = 0 whenever tcA’. On the other hand, if #,¢fN— N and
t,¢4’, then ¢, cannot belong to the closure of 4 in AN. There is thus an
open set isolating ¢, from A4 and a net {n,} -1, {n} =« N—4. Thus

ned,

otherwise.

=

() = lme (ng) = lim (w’ (ny), ex) = (0, €x) = 0.

This shows that the sequence (¢,) has an extention ¢ (t) which vanishes
on fN—N. It is easy to see that this implies lim(e,) = 0. Thus
lim (wy, ex) = 0 for each %, and since (w,) is a bounded sequence, this
proves wy, — 0 weakly in H.

Now by construction, sequences (modulo the kernel of L) are dense
in Hy. If P and R are the projections on (U) and U" respectively, it
follows that the set {R(;)} for (2;) in Hy is dense in U‘. Bus RB(a;)
= (@)—P(x;) and for L a P-point mass, <U)> @ H. In other words,
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P(z) is essentially constant and R(a?i) = (;)—(w), wel. ]?}L}:c then
R(x;) is & sequence in U+ and hence equivalent to an eleme.nt of " Thus
the set Q' is dense in Ut ?nd U+ is the closure of the weakly convergent
ie. Ut =@.

* Z?;f cssgtlau?c;s,any finite convex combination of point'masses, the
conclusion of the above theorem and its method ?f proof still hold. The
U*-sequences are still equivalent to sequences which converge _weaﬂdy to
zero, and the projection on (U> must yield sequengee only, mm}e overy
funetion in Iy(4, V) is a.e. equivalent to a continuouy function and
U = (U>. . o .

Tt seems reasonable to suspect that a generalized ].i'ml'l, for Whm’h
Q = U would be in some sense dual to the point mass limits, and this
is the cage. Professor R. Raimi has communicated to the aut.hor a eon‘stru.o,-
tion of a translation invariant generalized limit L for which @ = Ut in
Hj,. The following construction is somewhat simpler, although we can
say little about the resulting limib.

2.4.3. THEOREM. There exists a generalized limit L for which the spaces
Q and T*, regarded as subspaces of Hy, are distinet.

Proof. Let X(i) =f£~—(’[ﬁ])2+1, where [-] denotes the greatest
integer function. It iy easy to check that the funetion X assumes every
integer infinitely often. Let y; = e5(;). Consider the following sets in m:

A = {(a)em| For some e,: (a5) = (%, en))} 5
B = {(bi) em| For some vector sequences (@;) with
@ 0 (weakly), (bs) = (3, %4))}-
Thus A is the set of bagis component sequences of (y;), while B is
a linear manifold. Let M be the closed linear span of 4, B, and ¢, the
gcalar sequences converging to zero. We claim. (1) lies in the complement

of M. Suppose not. Then for £ > 0, there are numbers &, ..., &, a sequence
(@;) converging weakly to zero, and an element (¢;) ¢, 80 that

n
S‘}Plzkﬂ(’% 6:i)+(?/i7mti)‘|‘ai"“11< e

j=1
Since ¢; — 0, we can choose #, 80 that
n
sup‘(yi, Zk,ei—l—mi) '—-11 < 2e.
g i=1

Further, y; assumes the value engin fOT every ¢ in an infinite set
8 = N, which we may assume lies beyond #,. Then

SUD [(sy @) — 1| = 8up |(nyin, @) —1]| < 2e.
18 1S

icm

Stone-Cech operator 17

Since ¢ was arbitrary and @; -~ 0 weakly, this is impossible.

Now let L be a bounded linear functional defined everywhere on m
which vanishes on 3 and is equal to 1 on (1). We have immediately:

(a) L(lyd®) = L(llesl’) = L(1) = 1.

(b) For each J: L(|(y:, e5)]F) = L(ys, 65) = 0.

(e) If #; — 0 weakly, then Z(y;, 4;) = 0.

Now, viewing y = (y;) as an element of Hy, (for indeed, L is a genera-
lized limit) we see that (a) says |y = 1, (b) implies ye U+, and (c) says
that yeQt.
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