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ACTA ARITHMETICA
XIIT (1968)

A bound on the number of representations
of quadratic forms *
by
S. J. F. GitMAN (Saint Louis)

1. Introduction. Let f and ¢ be quadratic forms in » and m varia-
bles respectively, n > m, and such that their respective matrices, 4 and B,
are non-singular. B. W. Jones [4] denoted by N (4, B) the number of
essentially distinet primitive representations of B by A, and defined the
representations function M(d, B) = 3  N(Ay, B), where the sum is over
a set of n-ary forms, Ay, of determinant ¢ and such that the set congists
of one and only one form from each of the classes of determinant d. For
n>m, |[4| = d and |B| = ¢, he defined @ to be a set of forms in n—m
variables, of determinant d¢®~™', and having the following properties:

1) no two forms of & are equivalent;

2) if Ee®, there exist integral matrices D and ¢ such that
B = gD—0%(adjB)C;

3) there is no larger set having properties 1) and 2).

Jones then proved the important

THEEOREM 1 ([4], Theorem 1a, p. 889). The function M(d, B)
= 3P(d, B, B;), where the sum is over all forms E;e® and P(d,B, B)
denotes the number of essentially distinct solutions ¢ of B = —X* (adjB)X
(mod ¢). If ¢ =41, P(d,B,E;) =1.

Jones was able to evaluate M (d, B) only for the cases: n—m =1;
m =1; and n = 3, m = 1, with (¢, 2d) = 1. J. E. Fischer [2] developed
a formula for the number of solutions of B = —X"(adjB)X (mod ¢),
when n = 4, m = 2, and B is primitive. (A square matrix W = (wy)
is said to be primitive if the g.c.d. of the wy is 1.) B. W. Brande [1] ex-
tended the results of Fischer and formulated an upper bound for the num-
ber of essentially distinct primitive representations of a primitive binary
quadratic form by an nm-ary quadratic form for n = 4, 5.

* This paper is based on the author’s Saint Louis University Ph. D. dissertation.
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We extend the results of Jones, Fischer and Brande, and give an
upper bound for M (d, B) when n—m =2, 3 and B has primitive adjoint.
In order to do this, we consider, in section 2, some general theorems which
not only have important applications to our problem, but also are of
interest in themselves. In sections 3 and 4 we discuss a series of congru-
ences related to

E= —X%(adj B)X (mod ¢),

in order to establish necessary and sufficient conditions for the existence
of solutions of this congruence. These results enable us, in section B, to
count the number of solutions of the above congruence, and finally,
in sections 6 and 7, to obtain the principal result, namely, an upper bound
for the number of essentially distinet such solutions.

Throughout, we have adopted the terminology and notation of Jones
in [4]. In addition, we make the following conventions:

We denote any row vector (w,, w,, ..., w;) by (w). If a row vector
depends on a parameter k, we write (wy, Wo, ..., wy) and denote it by
(wx)s. Accordingly, if a congruence in ¢ indeterminates #,, @, ..., #; has
a golution r; = w4, 1 <4 < t, we denote this solution by (r). A set of so-
lutions of a congruence modulo », such that any solution of the congruence
is congruent modulo » to precisely one element of the set is called a solution
set of the congruence. If a solution (r); of a congruence modulo v is such
that for each 4, r;<R(v) = {0,1,...,v—1}, we say the solution is in R(v).
Two sets {w,, ws, .. ,w;} and {ful, Doy «..y U} are called order distinct iff
(if and only if) w; 5 v;, for at least one 4, 1 < i <<t All matrices consi-
dered here are understood to have rational integral elements.

2. Preliminary theorems. If W = (w;) is a square matrix, then, as
is customary, Wy; is the cofactor of the element w;;in the determinant of W.

THEOREM 2. If W is any m-square matriz, then WipWpyo= WyWy
(mod |W1), where L < hy 4,5,k < m.

Proof. Let h,d,j and %k be fixed. If ¢ =j or h =k, the proof is
trivial. Let ¢ # § and b # %, and consider the minor, SN}, obtained from
adj W be retaining rows h and k, and columns ¢ and j. Let ML be the
minor obtained from W by deletmg rows h and %, and columns ¢ and j.
By a theorem of Jacobi ([3], vol. 1, pp. 82-83):

W = (— 1+ |
Thus
MY = W Wp— Wi Wi =0 (mod |W1).
TaEOREM 3. Let V be an m-square symmetric matriz with |V| = t.

If adj V is primitive, then for any prime p such that p|t, p+Vy for at least
one 4, L <1 < m.

hm@

Representations of quadratic forms 365

Proof. Assume that p|Vy for each 4. Since V is symmetric, by The-
orem 2, Vi Vy = Vi (mod t), for each 4 and j, 1 < i, § < m. Hence, p| Vy
for each ¢ and j, which contradicts the primitiveness of adj V.

A contrapositive argument readily shows that if adjV is primitive,
V also is primitive. The converse is not in general true for m > 2.

3. Relations among the solutions of certain congruences. Consider
a set B consisting of exactly one form from each of the classes of forms in
n—mvariables and of determinant dg"~™"* A form B* of ®* belongs to ® iff
there exists an m X (n—m) matrix C which satisfies B*= — X" (adjB)X
(mod ¢). We call such a matrix a C-matriz associated with E*, or briefly
a C-matriz, and denote it by C, 0, or O,.

Let By be an arbitrary form belonging to ®* and denote its matrix
by By = (up), 1 <j, k <n—m. Consider

(1) By = — X% (adjB) X (mod g).
Sinee B = (b;) is symmetrie, adjB = (By). Let X = (2,). Thus (1) is
equivalent to:
(2) — U = Z ZB”wrmk (mod q), 1<j, k<n—m.
=1 r=

8
Let ¢ = q i, where the p; are distinet primes, p, = 2, ¢, > 0, and
U=

e; >0 if 4 > 0. For convenience, we write p°) for p$i; or, when no confu-
sion will arise, and ¢ is arbitrary but fixed, we write p or p° eliminating
the ¢’s. For each i, 0 < 7 < s, we define %; to be the least positive integer
such that p;t Bhihi' ‘When no confusion. arises, we use & for h;. By Theorem 3,
for each p;, there exists at least one £, 1 <t < m, such that p;t By; hence,
By, is uniquely determined.

Congider the following:

m m

kEA: — g = Z ZB,,mrkmtk (mod g);
=1 T=1
mn m
kkB;: — Uy, =2 YBrtmrkmtk (mod p*);
=1 1
kkCy: — By g = (mk) (mod _’Pm)
m
kkD;: — B Unr = [2 Bhrmrk] (mod 1’5({))5
=1
where ¢ and % are arbitrary, 0 <i<s, 1<k <n—m.
Define
[kkB] = {kkB;| 0 < i< s} and [kkD] = {kkD; 0 <1 < s}.
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We now establish several properties of solutions of the above con-
gruences and systems of congruences.

THEOREM 4. (din)m 98 a solution of kkA iff it is a solution of [kkD].

Proof. Itis clear (dy), is a solution of [kkBTiff it is a solution of kkA.
Let (dg)n be a solution of [k%B]. Thus, for each ¢, 0 < 4 < s, (dy)m I8 a s0-
lution of kkB; Let ¢ be arbitrary but fixed, and p°® = p*®. Since (B, p)
= 1,

m m
— U = Zéj le By Ay (mod p°)
=1 Tem
iff
m
(3) —Bup Uy = 2 B Bulig+ 2 2 By By, (mod p°).
r=1 lglarsm

By Theorem 2, By, Bn= By By (mod Pa)- Hence (3) iff

— B Uy, = [ZBrndm] (mod p°)

iff (dp)m is & solution of kkD;; iff (dy), is a solution of [kkD], since ¢ is
arbitrary. This completes the proof.

Let N (kkC;) be the number of solutions of kkC; in R( M), 1f, for each ¢
and k, 0<e<s, 1l <k<n—m, (ka) >0, let ¢g{) denote an arbi-
trarily chosen solutlon of kkC; in R(p*Y); otherwise, no ¢ is defined.
When no confusion arises, we write g or g, for gi.

THEOREM 5. There ewist N (kkC;)p™=%) solutions of kkD; in R(p°®).

Prootf. Let 4 be arbitrary but fixed. We first show (a): to each solution
of kkC; there correspond p™ % solutions of kkD; in R(p°). Let g be a
solution of %k%C;. Define the congruence, in the m indeterminates @,

n

(4) g= D' Buawu (mod p°).

=1

Since (Bu, Bapy -5 Bun, %) =1, there exist precisely p™~Y¢ solutions
of (4) in R(p®). Since ¢ is a solution of kkC; by definition, (4) implies kkD;;
that is:
m
~ By g = [Z —Brhmrklz (mod p°).

=1

Hence, any solution of (4) is a solution of kkD;; thus (a) is proved.
If g and ¢’ are distinet solutions of kkC;, the corresponding solutions
of kkD; generated by g and ¢’ are distinet.

hm@
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We next prove (b): each solution of %kD; corresponds to precisely
one solution of kkC;. Let (di)n be a solution of kxD;; that is

(5) b B;,J,‘Mkk = [2 Brhdrk]g (mOd Pe) .

T=1

Now there is precisely one ¢ in R(p®) such that

(6) 2= D' Budy (mod p).

r=1

Thus by (5) and (6) « is a solution of k%kC;. Hence, to each solution, (@:)m,
of kkD; there corresponds precisely one solution of kkC, in R(p®); thus
(b) is proved. Consequently, there are N (kkC;)p™ ¢ solutions of kkD;
in R(p®) and these occur in N (kkC;) disjoint sets. This completes the proof.

The following results are immediate consequences of the above ‘proof.
We state them as corollaries for later use.

COROLLARY A. To ecach solution, (dx)m, of kkD; there corresponds
a unique solution, g, of kkC; in R(p™?) such that

(1) o= ZBrhdrk (mod p“")

COROLLARY B. To each solution, ¢, of kkC; there correspond p!™ 2"
distinet solutions of kkD; in R(p°D). If (di)m 18 one such solution of kkD;,
then (7) is satisfied.

4. Necessary and sufficient conditions for the existence of
C-matrices. In the previous gection we discussed k%4 and related con-
gruences. We now consider

m m
jkA: — U = Z 2 Byt (mod ¢); .
=1 r=1
m m .
jkB;: — g = Z 2 By, (mod p*);

=

o~
]
-~

-

m m
JkD;: — Brpujp= [ 2 Brhmrj] [2 Bthwzk] (mod p*®);
=1 =1
where 4, § and &k are arbitrary, 0 <¢<s, 1 <j<k<n—m. Observe
that jkA, jkB; and jkD; are congruences in the sets of indeterminates
{#7)m and (%x)m. Define

[jkB] = {jkB;] 0 <i<s} and [jkD] ={jk’1)1-; 0<i<sh
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‘It is clear that jkA and [jkB] are equivalent, that is they have the
game solution set. By a proof similar to the proof of Theorem 4,.it follows
that for arbitrary but fixed 4, jkB; and jkD; are equivalent. Consequently,
jkA, [jkB], and [jkD] are equivalent.

We are now ready to give a necessary and sufficient condition for
the exigtence of a C-matrix.

TamoREM 6. There ewists a C-matriz associated with By iff there emists
a set consisting of precisely one gy for each i and T, such that

(8) Wy = — Buuy (mod p°?)

for each 2, j and b, 0 <i<s, 1 <<k <n—m,

, Proof. Let (wy,) be a (-matrix associated with ;. By the definition
of a C-matrix given in section 3, for each j and %, 1 <j <k <n—m,
the row vectors (wy)y, and (wy), (formed by taking the transpose of the
4 and kth columns of (wy,), respectively), are a solution of jk4 and hence
also of jkD; for each ¢. Let 4, j and % be arbitrary bub fixed, with j < &.
Now (w;)m and (wy)n are solutions of jjD; and kkD;, respectively. Hence,
by Corollary A, there exist unique solutions g; and g, of jjC; and kkC;
corresponding t0 (ws), and (wp)m respectively. Thus, by congruence (7)

we have:
m m
(9) Gife = [Z Brhwrf] [ZBmwm] (mod p°).
T=1 fe=1

Bub (w;)m, (Wi are a solution of jkD; for each ¢. Thus for each 4, j, and &
(9) implies (8). )

Conversely, assume there exists a set consisting of precisely one gf
for each ¢ and % such that property (8) holds. But, by Corollary B, for
arbitrary but fixed 4, j and %, 0 i <5, 1 <j <k <n—m,

and gp= ZBmdu: (mod p°),

t=1

m
g = Z Brhdrf
=1

where (dy)m and (dg), are golutions of jjD; and kkD; respectively. From
(8) and the above congruences we obtain:

m m

910k = — Buup = [2 Brhdﬂ] [ZBlhdtlc] (mod p%).
=1 =1

Thus (d;)m, (dx)m are a solution of jkD;. For fixed j < k, by the Chinese

Remainder Theorem, from a set of such solutions of jkD;, one for each

i, 0 <4 < 8, we can obtain a unique solution, say (1?7')"" (Di)m,y for [jED],

and hence also for jkA. Thus the m X (n—m) matrix (D,) which has as

hm@
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its kth column ((Dg)w)”, 1 <% < n—in, is the required (-matrix, and
the proof is complete. .

Let H be the family of all sets consisting of precisely one g for each ¢
and %, and satisfying property (8); that is satisfying

9964 = — By, (mod p®),
for each ¢, jand %, 0 <i<s, 1 <j <k <n—m.

‘We showed in the second part of the proof of Theorem 6, that any
element in H generates a C-matrix (D,;) which has for its kth column
(De)mf"; where (Dy)y, is a solution of [kkD]. In fact, any element of X
generates """~ such C-matrices associated with ¥ for, in appealing
to Corollary B in the above proof, we obtain not only one, but 5™
solutions (d;)m of jjD; corresponding to each solution g% of jiC;. Thus,
in the above proof, there are actually 9™~ possible row vectors (D;)m,
and consequently g™~ choices for each of the columns (D))", 1 <5
< n—m. Henee, ¢"~™"1 chojces for the C-matrix (D,,) arise from each
member of H.

Thus we have shown that the number of C-matrices associated with
E; depends on the number of elements in H. We state the precise rela-
tionship in the following

THEOREM 7. The number, N[H], of elements of H is the number,
N[C: By, of sets of C-mairices associated with EY, ¢"™™=Y marices to
 set. No two of these matrices are congruent modulo q.

5. The value of N[C: E}]. We first prove two lemmas, and then
use results obtained by J. E. Fischer in [2] and by E. W. Brande in [1]
in order to evaluate N[C: E;] for n—m = 2, 3, respectively,

Let 4, j and & be arbitrary but fixed, 0 <4<, 1 <j <k < n—m.
Consider the family of all order distinct sets of the form {g, g9}, Let
H{ denote the family of all such sets satisfying property (8) for the given
j and k. Let N[H[)] denote the number of elements in H{.

LemmA 1. If n—~m = 2, then

NiHE) = [[¥ED].

Proof. Let 7 be the family of all order distinct sets formed by the
union of precisely one element from each H{Y, 0 < i < s. There are ' ]f] NEN
elements in ¥ and congruence (8) is satisfied for each 4. ]E[enégoF c H.
Clearly H < F. Thus N[H] = N[F] =i[3]0N[H{?], where N[F] is the

number of elements in . This proves the lemma.
Acta Arithmetica XIIL4 o4
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Next, consider the case: n—m = 3. Let ¢ be arbitrary but fixed,
0 <4 <s; and let HYY denote the collection of all order distinct sets of
the form {g“) 0, (i’} such that property (8) holds, that is:

g = — Brpuy (mod p*¥),  whenever 1 <r < ¢ < 3.

Let N[H{)] denote the number of elements in H{.
LeMMA 2. If n—m = 3, then

§
NH] = [ ¥rad).

=0
‘We omit the proof since it is essentially the same as that of Lemma 1.
Tischer ([2], pp. 35-59) developed a formula for the value of N [H}})J,
and Brande ([1], pp. 62-84) developed a similar formula for N[H{].
We state, in the notation adopted in this paper, their results ag Theorems

8 and 9, respectively.

TEROREM 8. N[H{)] is zero, or

piel if ti(uy) > e and i = 0;

N[H@] = 1 opittui] if t(uy) < e; and i > 0;

QMU | Gf g (ugy) < e and i = 0

where t;(uy) is defined by: pltid|uy,, if % 0, and 4i(uy) = e, otherwise;
tilugy) <ti(ur); and M = 0,1 or 2 according as e— 2t (u;) 2] =1, 2
or 3, respectively.

TaeOREM 9. N[H{] is zero, or

3[e;/2]
’

Pi
NIHD] = ‘ 23t/

93lts(un1) 2]+ 2 ,

if ti(uy) =6 and i = 0;
if ti(uy) < e; and §>0;
if ti(uy) < e; and § = 0;

where t;(u;) and M are defined as above with J=1; and (%) < ti{ty)
< 1y (Uss).

Let 0(i, By) = min ([e;2], [t:(uy)/2]); E(BF) be the number of odd
primes, p;, for which e; > #;(uy;); and

1, if ¢,—20(s, BY) =2
M(Ey) =12, it ¢e—20(i,E) >3
0, otherwise.

Using this notation, and appealing to Theorems 7, 8, and 9, and to Lemmas
1 and 2, we have proved
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THEOREM 10. If n—m = 2,3 and By <®, then N[C: E}] is zero, or

# &8 *
ME)+EE,) (n—m)0(t, B )
N[C: Byl =2 """y v,
6. Conditions for essential equality of (-matrices. Assume & is
non-empty, n—m = 2,3 and let He®.

LEMMA 3. Two C-matrices, C; and C,, associated with KB, are es-
sentially equal iff there ewists an antomorph Qp of B such that

(10) (adjB)(Cy— 0, Qz) =

where (0) s the m X (n —m) zero matric.

= (0) (mod g¢),

Proof. If ¢, and C, are essentially equal C-matrices, then by defi-
nition ([4], p. 888), there is an integral matrix R and an automorph Qg
of E such that

(11) ¢, = BR+0,Qx.

Sinee B is non-singular, B~! = (adjB)/q exists, and hence (11) implies (10).
Conversely, if there exists an automorph Qz of E sueh that (10) is
satisfied, then there exists an integral matrix B = B! —C,Qz) such
that (11) is satisfied. Thus, ¢, and C, are essentially equal and the proof
is complete.
LEMMA 4. Let i be arbitrary, 0 <i <8, (2y) be an arbitrary m X
X (n—m) matriz, and t be such that 1 < ¢ < n — m. Then

m

D) Bz =0 (mod p°)

W=1

iff for each r, 1 <r < m,

ZBmzwt = 0 (mod p%).
W=1
Proof. Assume
(12) 2, Brwfui =10 (mod p°).
. W=

Let r be arbitrary, < m. Multiplying (12) by By, applying Theorem 2,
and recalling that (B, p:) =1, (12) implies:

m

ZBm,zw, =0 (mod p°).

Wa=1

Since r iy arbitrary, the sufficiency is proved. The necessity is obvious.
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Let the C-matrices 0 = (d,) and C, = (d) belong to the same one
of the N[0: F] sets of C-matrices associated with E. Then for each ¢,
1<t <n—m, (d)n and (d;)m are solutions of [¢¢D]. Then, by Corollary
A to Theorem 5, for each 4, there is precisely one i and one ¢;” correspond-
ing to (d¢)m and (d;),, respectively, such that

m
and g = Y Bundy (mod p°®).

Wa=]

m
13)  gf'= D Bundu
w=1
But, ¢, and O, belong to the same one of the N[C: E] sets of C-matrices,
hence they are generated by the same element of H, as is clear from the
proof of Theorem 7. Thus, we must have gf = g;@ for each ¢ and each 7.
Hence from (13) we obtain

m
D) Bunldin— ] = 0 (mod p°?),

W=1

(14)

for each ¢ and t.
Now the (n—m)X (n—m) identity matrix, I, is an automorph of
every form in ®, hence let @ = (V;z) = I. Thus, for each t,1 <t < n—m,
m

duw = D) dyy Vi Hence (14) is equivalent to
Fml

m T—m X
(15) D Bus[di— Y duy Vir = 0 (mod p¥),
w=1 F=1

for each ¢ and ¢. For each w and ?, let Z,; equal the expression in brackets
in (15). Thus the mX (n—m) matrix (Zy) = (0,—C,Qzr), and (15) is
equivalent to

m
(16) ZBthth 0 (mod p°®), for each 4 and #.

wW=1
By Lemma 4, (16) is equivalent to

m
> B =0 (mod p*0),

Wa=1
for each 7, 1 < ¢ < m, and for each ¢ and ¢. Since the p; are digtinet primes,
it follows that
m
ZBMZ,,,,E 0 (mod ¢), for each r and t.
w=1

Hence, by (10), C; and C, are essentially equal. Thus we have proved

TeeorEM 11. If O; and C, are O-mairices which belong to the same
one of the N[O: B] sets of O-matrices, then Oy and C, are ‘essentially equal.

hm@
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?. An upper bound for M(d, B). We show, by an example, that
the converse of Theorem 11 is not true in general.

Let A be the 6-ary identity matrix, and let B be the 4-ary diagonal
matrix B = diag(1,1, 2,3). Thus adjB is primitive, and G* may be
chosen as the set of all binary reduced forms whose discriminant is —24.

Clearly, B = (1,0,6)e®" Thus Bup, = By = 3, and B, = By
=2. A simple calculation shows that g{ =1;¢® = 0;¢ =1 and
g = 2; and g = 0. For i = 0, (8) is satistied by {400, g = (1, 0);
and for ¢ =1, (8) is satistied by {g{", g’} = (1,0) and by {gi®, ¢
= (2,0). Thus, each of the sets (1,0;1,0) and (1, 0;2, 0) yields a set
of C-matrices.

It is easy to show that (1, 0; 1, 0) and (1, 0; 2, 0) yield the C-matrices

0 0] 0

01 = and 02 =

’

H - o o

00 0
10 0
20 0
respectively. Using Qr = —I, where I is the 2 x 2 identity matrix, we find:
0

(adj B)(C,— 0Qz) = = (0) (mod 6).

[=>I>]
L=

0

Hence, by Lemma 3, C; and 0, are essentially equal ¢-magtrices associated
with the same form F = (1,0, 6), but with order distinct elements of H,
and bence belong to different ones of the N[C: E] sets of (-matrices
associated with E. Therefore, the converse of Theorem 11 is not true in
general.

By Theorem 10, for n—m = 2, 3, and F «®, we can evaluate N[C: B].
Theorem 11 and the above example show that belonging to the same one
of the N[C: E] sets of C-matrices is a sufficient, but not a necessary con-
dition for the essential equality of C-matrices. Thus, P(d, B, E) < N[C: E],
where we recall P(d, B, F) is the number of essentially distinct C-matrices
associated with B. Combining these results with Theorem 1, we have
proved our principal result, namely

TeEEOREM 12. If B has primitive adjoint and n—m = 2,3, then
8
M@, B)y< Y N[C:E;] = ) oME)+iE) [T j{n-moi.Ej)
) D 1= ]J ,

where the sum is over all forms B; defined by ®.
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ACTA ARITHMETICA
XIII (1968)

On the coefficients of the zeta function
of an imaginary quadratic field*
by

RAYMOND G. AvoUn (University Park, Pa)

§ 1. Introduction. Let K = Q(l/ﬁ), D < 0 be an imaginary quadra-
tic field of diseriminant d and let |d| = %.

Let
5 1 o F(n)
& == ————
) tx(s) 2 @y % e
be the Dedekind zeta function of K where
(2) F(n) = 2 1.
NQE)=n
It is known (see e.g. [1], Chap. V) that
(3) Cx(s) = C(s)L(s, xa)
and that

Fn) = 3 ()

1n

1
where yg(n) = (—(—) == J{ronecker symbol.
n

]

Let
(4) H(z) = D F(n).

f<a
It is known [3] that

(8) H(w) = aw-+ 45 (@)

where o is the residue of ¢z(s) at s = 1 and where 4x(z) = 0(z"®) with
the constant implied by the O depending on k.

* This research was supported by the N. S. F. under grant 4 GP-5593.
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