hm@

ACTA ARITHMETICA
XTII (1968)

A gap theorem for pseudoprimes in arithmetic
progressions

by

H. HALBERSTAM (Nottingham) and A. RoTKIEWICZ (Warszawa)

1. A composite natural number u is said to be a pseudoprime if
n|(2"—2). There exist several ways of constructing such numbers, and
from these it is possible to show that there exist infinitely many pseudo-
primes; more precisely, that there exist at least(!) clogw pseudoprimes
not exceeding #. In the opposite direction, Erdos [4] has proved that
the number of pseudoprimes not exceeding » is at most vexp{— ¢'(logz X
x loglog®)'*}, and there is evidence to suggest that Erdss’ estimate
is much closer to the true order of magnitude. The tables suggest also
that if & > 170, there is always a pseudoprime between # and 2x; but at
present all that is known is (Rotkiewicz [10]) that

(i) if m is an integer and m > 19, there is a pseudoprime between m
and m?;

(ii) given e > 0, there is a pseudoprime between z and 2™ provided
& > y(e).

Actually one can do a little better than (ii) by using deep information
about gaps between consecutive primes. For it is known that if p > 5,
p prime, then }(4”—1) is a pseudoprime; also that there exists a number 6,
0 < 6 < 1, such that the interval (y,y+4°) contains a prime, provided
only that ¥ is large enough. It follows at once that

there ewists a pseudoprime between ® and wexp{c”(logw)’} provided
only that » is sufficiently large.

From the work of Ingham [7], 6 =} represents a possible choice
of 6; recent improvements in the estimation of ¢(%-+it) (Haneke [6])
would allow us to take 6 a little smaller.

Even less is known about the distribution of psendoprimes in arithme-
tic progressions. Let @, b denote (here and throughout the rest of this
paper) any fixed pair of coprime positive integers. Then Rotkiewiez ([11],
[12]) has shown that the arithmetic progression am+4-b (m = 0,1,2,...)

(*) Throughout the paper ¢,¢’, ..., ¢, ¢, ... denote positive constants.
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contains an infinity of pseudoprimes. We now take matters a little further
and establish the following gap result.

TrrorEM 1. Let a, b be fiwed coprime positive integers. If D >0 is
given and © > @y(a, D), there exists at least one pseudoprime P satisfying

og®
P =0b(moda), <P <wexp {W}.

The condition (a,d) = 1 is somewhat artificial, because there do
exist progressions b(moda) with (a, d) >1 that contain infinitely many
pseudoprimes; for example, the fact that there exist infinitely many
even psendoprimes demonstrates this assertion for the progression 2 (mod 4).
TUnfortunately it appears very difficult to formulate a more general con-
dition on (a, b) which is likely to be sufficient to ensure an infinity of
psendoprimes = b(mod a).

The proof will be based on a combination of cyclotomy and sieve
methods.

2. In this section cyclotomy is used to locate an infinite class of
convenient pseudoprimes in the progression »(moda).

For any positive integer n, let f,(2) denote the nth cyclotomic polyno-
mial defined by

(2.1) (@®— 1),

fale) =[]

dajn

where 4 is the Mébius function, and write

Ja = Fa(2).
It is easy to see that f, >1 if » >1. For
=[] e-&
(=1
where &, is a primitive nth root of unity, and for each m oceuring in the
product |2—&p|>1 if n>1.

A prime factor of 2"—1 is said to be primitive if it does not divide
any of the numbers 2"—1, m =1,2,...,n—1.

Denote by r(n) the greatest prime factor of #n. From the theorem of K.
Zsigmondy (see [1], [21, [9], [13], [14], [15]) we have at once the following
result.

Levma 1. Every prime divisor of f,, with the exception of r(n) when
7(n) | fny 18 = 1(modn), and is a primitive prime divisor of 2"—1. If r(n)|f,
and () r(n)|n, then #(n) is a primitive prime divisor of 2"™°_1,

() *lm means that »%m but +*+lym.
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Leywa 2. If q 48 a prime such that g*|m, then f,(2) = Ju1a(29)
=1(mod2%; if also ap(a)i(g—1), then f,=1(moda).

This result was proved in [11] and [12].

We come to the main result of this section. We can assume without
any loss of generality that a is even, and hence that b is odd.

Levua 3. Let g, ¢ be any two distint odd primes satisfying the con-
ditions

(2.2) . ta, = 1(m0da(119’(“41))7
and let m be any (odd) integer such that
(2.3) m=b(moda), m=1+g,(modg}), m=1(modg?).

If p =m(modag’q}), p prime, then one of the numbers

(2.4) Dlo-1s Pfw-rynr Doy
is a pseudoprime = b(moda).

Proof. It is clear from (2.2) that (e, ¢;) = (¢1,¢9) = (g, @) = 1,
so that there does exist, by the Chinese Remainder Theorem, an integer m
satisfying simultaneously the three congruences (2.3). Furthermore, such
an integer m is necessarily coprime with ag®¢}, so that, by Dirichlet’s
Theorem, there exist infinitely many primes p = m(modag’e?). Let p
be such a prime.

We remark at the outset that, by (2.2), (2.3) and the second part
of Lemma 2 applied in turn to » = p—1, (p—1)/2 and (p—1)/gy, each
of the three numbers fo_1, fip_ 1) fo—1,» 18 =1 (moda) and hence each of
the numbers (2.4) is = b(moda); thus we need prove only that one of
them is a pseudoprime.

Denote by r the largest prime factor r(p—1) of p—1. Since p
=1(mod gq,) by (2.3), we have r > ¢ >g¢, >3, 50 that r(p—1) = r((p-—l)/2)
=1((p—1)/q;) = r. We observe that » divides at most one of the three
numbers fp_1y; (8 =1,2 or gy). For if »*[(p—1), then also r*||(p—1)/2
and °|l(p—1)/q;; and if v |fip_y, 7] fo—nys Where 2, ' are distinct integers
from among 1, 2, ¢;, then r is, by Lemma 1, a primitive prime factor of
both numbers 2-9__1 and 2@~ _1, o contradiction.

A gimilar (but simpler) argument based on Lemma 1 shows that
any other prime, and p in particular, divides at most one of the three
numbers fp_yu (f=1,2 or g).

We now show that at least two of the three numbers fy_ .
(t=1,2,q) are = 1(mod p—1), and we use here the fact that at least
two of these numbers are not divisible by r. If follows at once from Lemma,
1 thag

(2.5)

p—1 .
f(p~1)/tEI(IILOd ; ) it s
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in particular, taking {=1 gives that if 74 fp_1, fo_1=1 (mod p —1). Next
take t = ¢;, and suppose that {fip 1, Since p=1(mod ¢°) we may,
in view of {2.2), apply the second part of Lemma 2 with ¢, in place of
@ and n = (p—1)/q, to infer that f, 1, =1 (modg,). From this and (2.5)
with ¢ = ¢, it follows, since g1 (p—1)/gs, that fip 1y, =1 (modp—1).
It remains to consider ¢ = 2, and here we assume for the time being
that

(2.6) p =1 (mod8).

Then, by the first part of Lemmsa 2 with n = (0—1)/2; fip—1p=1 (mod 2%
and we note that, of course, ¢ > 3. By (2.5) with ¢ = 2 and (2.6) it fol-
lows that fp_y.=1(modp—1) if 74 fp—_yp, Subject to the assump-
tion (2.6).

We sum up this part of the argument: we have shown, subject to (2.6),
that at least two of the numbers fu_y: (¢ =1,2 or ¢1) are= 1 (modp—1).
In view of an earlier remark about the divisibility of such numbers by p,
it follows further that, subject to (2.6),

(2.7) at least one of the numbers fi,_yu (t =1,2,¢) s coprime with p
and=1 (modp—1).

We may now remove the restriction (2.6). For if p =1 (mod8)
then

P2 —1),

and therefore, by Lemma 1, p divides neither off,_1, fp_1), - But we showed
earlier that » cannot divide both these numbers, and hence that one of
them is, unconditionally, =1 (modp—1). Thus (2.7) now holds without
any restriction on p modulo 8.

It is now easy to complete the proof. Let fi,_1); be the number whose
existence is assertedin (2.7). Since f, ()] (@" — 1), wesee thatb f, gl (2771 —1);
and since p 1 fp_1; We have seen that

pf(p—l)lt](zp—l_l)'
But clearly pfip_1;=1(modp—1), whenece
Pl (@Pw-nit =1 —1);
and this shows that pfp_y; is a psendoprime.
3. It is now necessary to appeal to sieve theory. The principal result

of the section i3 Lemma 5 below, which appears to be of some inde-
pendent interes.
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LevumA 4. Let D be a positive number, and h, ¢ a pair of coprime nat-
ural numbers. If & >a (D, g), there erists a prime p such that
(3.1)

(3.2)

o< p < o1+ (loga)?),
» = h (modyg),
(p—1,Pp @) =1, where Py(z) = ”-p.

Pz
y2ed

(3.3)

The Lemma is a special case of Theorem I below. Theorem T is a gen-
eralization of the second part of Theorem 5 of Jurkat-Richert [8]; a proof
of Theorem I and of other sieve results will be given in a forthcoming mo-
nograph on ‘Sieve Methods’ by Halberstam and Richert. (Paper [5],
by Halberstam, Jurkat and Richert, is a preliminary announcement of
these results; see, in particular, [5], Theorem 1.)

Theorem I relates to the following sieve problem: Let 4 = {a,, @, ...

.., ay} be a set of N natural numbers, ¥ a natural number and z a real
number > 2. Let 8;(4,2) denote the number of elements in 4 coprime
with Px(2) (cf. (3.3)). Suppose there exist a multiplicative arithmetic
function y(p) and a number X >1 such that

(3.4) 1<y(p) <y,
y{p)—1 ( 1 )
3.5 =0 :
(3.5) ; : oas)
(3.6) Vi pl sk i @k =1
. . a | S 74, ) L (@, k) =1,
aed
die

where the error function 5(X,d) is small on average, in the following
sense: there exists an absolute constant a, 0 < a <1, and to any given
number € >ﬁ there corresponds a function A(X) satisfying 0 < p(X)
= O{(log X)"*), sueh that

(3.7) (@) O (Xyd) = 0(

X .
(log X)° )’

here »(d) denotes the number of distinct prime factors of 4. Then we have

TeroREM I. Let
(p)
nie) = | ](1—1—1’—),
D1k

1<A<XYB(X)

P
p<z
and define

Fu) = ¢ {w(u)— e(w)/u}
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where y is Buler's constont and o, o are solutions of the (well-known) dif-
ferential-difference equations

o@) ==, ow=1 (0<u<2),

W

fuo @)} = om—1), (u—1)¢(¥)=—c(w—1) (v>2).

If 2 < X and A is a sequence of the kind described above, then

1ogX) . 1oglog3k}
a Togs 1 (lOgX)llM

Su(4,2) = XTu(#) {f (

We shall need also the additional remark that f is monotonic in-
creasing with u and that
0, I<u<2,

o]

2¢”

—log(u—1), 2<u<4.
%

To apply Theorem I to Lemma 4 we take

Tlc)g:'L—m—)E)’ p=h (modg)},

(@) = dfp(a),

A ={p—«1; r<<p <w(1+
& =2g, 2 =o'

and
1 *
ST YA o
* q,(g){ (“ (1ogm)l’) ?

we may take

n(X,d)=2 max max
v<x+m(luga:)—D &gdl?dg

Ly .
7 (Y3 dg7l)_m ’

where =(y;m,l) denotes the number of primes not exceeding y that
are = l(modm). With these choices, conditions (3.4), (3.5) and (3.6) are
satisfied. It remains to check (3.7). By Bombieri’s Theorem ([3], theorem 4)
there exists a positive constant B = B(() such that

max max
¥ 1<l<
1<menm VS (IZm)Z"f

a(y; m,l)—

Ly | 0 Y )
@(m) ‘“ ((10€Y)20+D+u

provided only that

(3.8) M < Y2(logy)E.
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To apply this result we take ¥ = s+ (logz)™?, a = §, (X) = (log X)%,
M = gX**(log X)~%, and note that

1 &

D

By (3.9), M satisfies (3.8), and
Y(log ¥)7*" P71 = 0(X (log X)~20-Y).

From here on it is an easy calculation, using Cauchy’s inequality, to show
that (3.7) is satisfied with « = 4. (It is perhaps worth remarking that
our argument can be made uniform with respect to g if g < (loga)®.)
Hence, by Theorem I, the number § of primes of the kind required in
Lemma 4 satisfies

1 1 /A
- X g .
( logw) ~ 9(g) (loga)P*

§z— 2 (12
Z ol Qoga® " Togz) *

1 5 logX loglog6yg
X I I 1— —- -
( p—l){f (2 1ogm) * <1ogX>”“}
pig
p<atis
provided « is large enough. By (3.9), logX > Zlogz and hence

5 logX 9 8 .. B
2. =" e¥log —
f(z logw)>f(4) 97 %% 7
if # is sufficiently large. By the well-known theorem of Mertens

I10-5=)> 11 0=3)

p<alls p<zlls

5e”Y
logz

We may therefore conclude that there exists a constant 2,(D, g) such that

p—1 i i
p—2 (logz)+*’

(3.10) 8 > (4log?) @ > 55

®(9)

g
p>2

and this is much more than was required to prove Lemma 4.
Lemwma 5. Let (h, g) = 1. For each & >u,(D, g) there exists a prime

D satisfying (3.1) and (3.2) such that

-1 2(g, h—1
oii—ta < 227D <, 7R@A-1)

p—1 Po2(g,h—1)

Proof. Let p be a prime-of the kind described in Lemma 4; by (3.10)
there are many such primes. Any prime dividing both 2g and p—1 also
divides 2(g, h—1), since p—1="h—1 (modyg); conversely, any prime
Acta Arithmetica XIIT.4 26
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factor of 2(g, h—1) divides p—1. Thus every prime factor of p—1 that
does not divide 2(g, h—1) is at least #'°, and there are clearly at most
four such prime factors. Hence

p(p—1) - ‘P(2(g; h"l)) (l_il) > 01—~ ) > 03(1—4.’17_1/5),
p—1  aig—1 4l
el
and
p(p—1) <6
p—1

follows trivially. . .
TEvMA 6. If (h,g) =1 and @ > (D,g) there emisis a prime p
= h (modg) such that
' 2
-1 < .
s <otp—1) <a(1+ o)
Proof. Let p be a prime whose existence was established in Lemma 5.
Then

1
(loga)” |
We let y = ey(w—1)(1—4z~ "), so that y < 2, and obtain

eg(x—1)(1—457%) < p(p—1) < 6z (1+

2
y<plp-1) <y(1+m—ﬁ);

the result follows on replacing y by .

LemmMa 7. Let ¢’ be o fimed prime, and h an integer such that (h,q'g)
=1 and b = 1(modq’). If = is large enough, there ewists a prime p such
that p = h (mod gq'g) and

p—1 2
¢ <q)( q ) <m(lJr (logm)D)'

Proof. Apply Lemma 6 with g¢’ in place of g to obtain inequalities
for p(p—1). Since
_ep—1) plp—1)

)
T ¢ ¢—1"’

the result follows, by the argument used in the proof of Lemma 6, on
taking y = #/q' or #/(¢’—1) respectively.

4. We combine the results of sections 2 and 3 by means of the fol-
lowing simple remark.

LemmA 8. If n is @ natural number >1 and v(n) = k,

ge(m—2k-1 <fa< go(m+2f=t
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Proof. Since n >1, 3 u(n/d) = 0, whence
dn
— — . 1)
S 3 ioeem
djn dmn
It foll that #(njdy=1 pndy=—1
0llows a
(2%~1) 32¢
_ d__ 4\uyd) _ dinp(njd)=1 din,u(njd)=1 —ok—1
G " el TR | oy Ak
! ainu(njd)=—1 apnuifd)=—1

on writing v(n) = k. This proves the left hand inequality, and the right
hand inequality is derived in the same manner.

It is now clear what we have to do to complete the proof of Theorem 1.
Let ¢, ¢; be two odd, distinct primes satisfying (2.2), and m an integer
satisfying (2.3); we keep these three numbers fixed. By Lemma 3 any
prime p = m (modag®q}) is such that one of the integers nf,_;, P2
Pfp-1igy 8 2 pseudoprime = b (moda). If now we choose z large enough,
Lemma 6 and Lemma 7 (with ¢’ = 2 or ¢,) imply that p can be chosen
to satisfy also each of the three pairs of inequalities

o[£ <-os

(4.1) -

Z

N

2
W) (t=1,2,q);

we have o take g = ag”¢7 in Lemma 6 (the case { = 1) or we take g = ag?q,
in Lemma 7 when t = gy and ¢ = }ag*¢} when ¢ = 2. In fact, we shall
choose w, = 2,(D, a, g, q,) so large that for © > w,, p satisfies in addition
the two conditions

(4.9) z

= Tloga)””
Actually, ¢(p—1) < 2x implies that p = O(zloglogs), so that the first
of these conditions is easily satisfied; and the second follows at once
from the well-known fact that 2°™ = O(n"?) for every natural number .
Thus in particular, 27~ = 0(p"*) = 0 (z"*(loglogz)*"?).

‘We now suppose that « > », and apply Lemma 8 with # = (p—1) [tos

where t, (= 1, 2 or ¢,) is such that Pf -1, 18 2 psendoprime. Then, by (4.1)
and (4.2),

<2 1e(logay—D , o=y

D1y, > 20(@-D1k0)=271 > go—ieog) =P
and
pf(”—l)lfu < pzw(1+z(logm)“—u)+i:c(logm)‘D < 9(1+3(logay~ Dy

If now we set y = 2o ¥d®n™?
> log logy, we obtain easily that

50 that y < ¢® and therefore logz

-D
Y < Pfp-ni, < yrretosloEn™T,

this completes the proof of Theorem 1.
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Zur Anzahl Abelscher Gruppen gegebener Ordnung II

von

PeTER GEORG ScHMIDT (Marburg)

Einleitung('). 4 (z) sei die Anzahl der wesentlich verschiedenen
Abelschen Gruppen, deren Ordnung z nicht fibersteigh, und 4(z) das
Restglied in der asymptotischen Entwicklung

A@) = Ao+ A, 8P+ A0+ A(z)

A, ZIJC(%) (u=1,2,3).

vu

Ist & die untere Grenze aller 6, fiir die

mit

Adz)<a® (2> o00)

g]“lt, so zeigten (*) P. Erdss und G. Szekeres, D. G. Kendallund R. A. Ran-
kin, H. E. Richert, W. Schwarz, der Verfasser

#<1/2, 1/3, 3/10, 20/69 ~ 0.29, 518 = 0.27...
In dieser Arbeit soll & < 7/27 = 0.259... oder genauer

1) A(x) < 2 log’s (4 — oo)
bewiesen werden.

Nach Hilfssatz 1 gentigt es, letztere Ungleichung fiir das dort er-
klirte Restglied A;(z) zu zeigen. Ausgangspunkt sei daher unsere in [3],
§ 1 gegebene Darstellung der Funktion A,(s) durch gewisse Doppelsummen
(Hilfssatz 2), zu deren Abschitzung die van der Corput - Methode
(Hilfssitze 3-6) herangezogen wird. Tn unserem Falle beruht die van der
Corput Methode vornehmlich auf der wiederholten Transformation gewis-
ser HExponentialdoppelsummen vermége ,,Weylscher” und ,,van der
Corputscher Schritte” (Hilfssitze 4 und 5), wobei sowohl die Schrittfolge

it (*) Ausfithrlicheres, insbesondere weitere Literatur, findet sich in [3], Ein-
eitung.
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