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ACTA ARITHMETICA
XIV (1968)

On the divisibility properties of sequences of integers (II)
by
P. Erpos, A. SAirxozi and E. SzEMErREDI (Budapest)

Let a, < ... be a sequence of integers, we will denote it by 4. Put
A() = 3 1 and denote
<z
flz) = D)1
agla;
lZ <m

In [1] we proved that if 4 has positive upper logarithmie density
then for infinitely many  (log,z denotes the k-fold iterated logarithm,
expz = ¢°)

1/2

Fla) > wexp (e, (log,@)logy)

but there exists a sequence .1 of positive density for which for every =
Jlz) < wexp (e, (log,z) " logye).

Throughout this paper ¢y, ¢,, ... will denote positive constants, not
necessarily the same at each occurrence. lim inf [ 4 (#)/#] will be called
T=0c0

the lower density of the sequence .4, will denote numbers which can
be chosen arbitrarily small not necessarily the same at each occurrence,
¢, ... numbers which can be chosen arbitrarily large.

A natural question now was: What assumptions about A will
insure that

flo)
(1) Jim S = oo

should hold?

It is easy to see that (1) does not have to hold if we assume that the
logarithmic density of 4 is positive. It was stated in [1] that if 4 has
positive density then (1) holds. It will turn out that the speed with which
f(@)]z tends to infinity depends in a curious way on the density of our
sequence 4. In fact we shall prove the following

THEOREM 1. Let & be any integer and 1/(k+1) < a < 1/7» Then there
8 @ ey == ¢;(a) o that of the sequence A has lower density o then for all suffi-
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ciently large »
(2) fl@) > wexp e, (loge,2)logy . @).

It is rather surprising that this weird Theorem is nearly best possible.
TuarorREM 2. Let 1/(k-+1) < a < 1/k. Then there is a sequence of
denstty a and a constant ¢, = cy(a) satisfying

(3) 11n1 inf f(a (wexp (¢s(l0grr @) logy, 2aa)) = 0.

¢y = ¢y(a) tends to 0 if a —1/( L+1 ) and & is greater than 1.
Let finally a = 1]k and g(x) any function tending to infinity as slowly
as we please. Then there ewists a sequence of density 1fk for which

(8" lim inf_f(ar)(mexp (g(m)(log,u.ﬂm)]/‘“’log/c,:_zm))"1 =0.

Denote by L(a) the upper limit of the values of ¢, for whicl (2)
holds. Clearly for every ¢, > L(a) (3) holds. It would be of interest to
determine L(a) explicitly and to decide whether (2) or (3) holds for
¢y, = L(a). It seems possible that I () tends to infinity as o tends to 1/k.
We already know fromx Theorem 2 that L(a) tends to 0 if « tends
to 1/(k+1) and & > 1. We can only prove that L(a) tends to infinity
if @ —>1.

LQ(n) will denote the number of prime factors of »n multiple factors
counted multiply and £2;(n) will denote the number of prime factors not
exceeding I (multiple factors counted multiply). To prove Theorvem 1
we need some lemmas.

Lenma 1. To every n > 0 there is a Oy = Cy(7) so that for every | < o
the mumber of integers m < m for which

1£21(n) —log,l| < € (log, 1)
is less than na.
Lemma 1 can be proved easily by the method of Turin [6]. In fact

it is easy to see that as I — oo (2j(n)—log,l)/(log,l)* approaches the
Gaussian distribution (see [2]).

Lemma 2. Let 1< O(loglogz)'®. Then we have uniformly in

1
Z 7 = [L+o(1)) togaa)1.
I<i<e
@)=t
The proof of Lemma 2 is easy by complete induction with respect
to 1 [4].
Using Lemmas 1 and 2 we now prove the crucial and difficult

¥
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Lemaa 3. Let d <1, 6 < d be arbitrary numbers, n'* <m <n <7
depend on a parameter © and satisfy

7 n\*  r
(4) — — 0o, (log——) >—.
7

Let further m << by < ... < bs <n be an arbitrary sequence B of in-
Ie(/m.v fo; which for every 7 there is a C, > 1/n so that for every Cym <t < n
(B(1) 2 1,0, depends only on 97)

(5) B(t) > (d—n)7.

Denote by g{u) the number of b’s dividing u. Then there is an v = w (8, d)
so that the number of integers n << u << r for which

G : n )1/21 n
(6) g(u) > exp (U(ng ) 108

18 yreater than (d—38)r. Further for every fized d, as 6 tendsto d, 0 = w (5, d)
can be made as large as we please. In other words for every C there is
a b6 = 0,(C, d) so that for every 6, << 6 < d (6) holds with » = C.

To prove Lemma 3 denote by b} ,..., by the b’s satisfying

2

n\Y
(7) Qn/m(b ) 10g’ i\< 01 (10g2 ) :

By Lemma 1 and (5) we have
(8) B*(t) > (d—2#)t

for every Com <t < n.
Let now y = (6, d) be a number which will be determined later.
Put

12
(9) b= [y(logz —::7) ]

and consider the integers of the form bj¢, ¢ =1,...,v, where ¢ runs
through all the integers satisfying

(10) Qq) =Ek, —<q Tom

Denote by ¢*(w) the number of solutions of b} ¢ = w where ¢ satis-
fies (10). Clearly

(11) , g(u) =g (u),

50 that to prove our lemma it will suffice to show that g*(u) satisties (6)
for at least (d— d)r integers n < w <C7.
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Now we estimate from below 3 ¢"(u), or in other words we
NLULT

estimate from below the number of integers of the form bf¢ where g
satisfies (10). Let ¢ be a fixed integer satisfying (10). By (&) and (10)
we have since »/n — oo

r n ¥ 3 r
12 P*(—) —B*(——)> d—29)— — —> (d—8y) —.
(12) v 7 ( ﬂ)q q/( 17)([

From (12) we evidently have (in Y’ ¢ satisties (10))

(13) Z 7)) = }_7 (L* ({f) —B* (%)) > (4_317)4-2';;-.
“ A

NULT

Now by Lemma 2 we have from (4) by a simple computation

v 1_ k
(14) \ NS V 1—17)(10g2 ——) //v'—‘-’lngcm
q Qa)=k Q r t ¢
o< Orm <

n k
> (1—2%) (logz 77;) [k!.

Prom (13) and (14) we finally obtain
x
n
(15) 7 (u) > rd(1—by) (log ——) [%1.
Now we estimate max ¢*(w) from above, in other words we esti-

NLUP
mate from above the number of solutiong of

(16) Vig =

where « satisfies (10). Clearly (16) has at most 7) solutions where |

('k
T = Qum(u) and % is defined by (9). Further by (16) v
" n n\¥
Ry (8) = Qo (b Y+ Cum(q) < k—{—logg—’rﬁ- -+ (logﬂ 71?) P

or by a simple computation using (9)

(log2 m)llz ( i .
log, m

* L z* Cy+y
17 < (k <7< 1%—-—-—;@_“_2 St
(10g2 ——)
m .
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Write
(18) 2 g =) qw+ Y gt

NCULT

where in 3 the summation is extended over the n < u < 7 satisfying
&
(19) g (u) < nd (Iog2 ) JEl =

and in Y the opposite inequality holds. Clearly 29" (w) <rU. Thus
from (15) “and (18)

(20) 3 g ) > ar(1— o) (1% )/z

From (17) and (20) we obtain that the number of summands in
20" () is greater than
1/2

wtr \ e

(21) dr(1—67) (14 —2 pav:
o3
"
Hence finally from (21), (19) and (11) there are at least V = Viy)
integers n << u < 7 satisfying

(22) g(u) > U.

Now sinee y is at our disposal we can immediately obtain from (22)
the statements of Lemma 3. If y = y(d, §) is small enough then clearly
V= r(d—0) (if » = n(d, 8) is sufficiently small) and by a simple com-
putation for a suitable o = w(y)

n\'2
U>explo (log —) 1ogsm

(the factor 4 of U causes no trouble since u = 5(d, d) is fixed and n/m
tends to m[uut y). Thus (6) holds for (d— 6)r integers, as stated.

On the other hand for an arbitrarily large o there is a y = y(w)
s0 that

= ( ) : ! 1
) 0
U X [¢3] 12 s )
and for this value of y @ SINY ple OOI]].‘NXLaL]OD. gives (8 = S(V)_)

V > er > (d—d)r,

if 6 > d—e¢. Thus the second statement of Lemma 3 is also proved.
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Instead of assuming (4) we could prove our lemma by assuming
#n > M(5,d) and nm > M(5,d)exp(r/n)” but our computations
would be more complicated and Lemma 3 suffices for our purpose in
its present form.

Perhaps a more interesting question is to what extent can the condi-

2
tion (log in—) > #/n be relaxed. It seems to us that the best possible con-
m

dition for the truth of our lemma is that n/m and »/n tend to infinity so
that for every fixed % eventually n/m > (r/n)* but we have not worked
out the details of the proof.
Now we are ready to prove Theorem 1. Assume first 1/(%--1) << « <C 1/k.
We ghall prove that (2) holds for a suitable ¢, = ¢;(a) and all sufficiently
large . Put 7 < [a~1/(k+1)]/3 and let ¢; = ¢ (7) be a suitable constans.
Put

&
AT - b =1 k—1
By = @ i vy b—1,
’ ? 7 exp (e (logiy, @)Plogiysa)’ T
(23) . .
T = Ly =&
e 10g’k+1w H fo4-1

Now we define inductively the sequences 4;,4 =1,..., k-1 (the
sequences .4; depend on # but since there is no danger of misunderstanding
we do not indicate the dependence on #). 4, is the sequence of a’s belong-
ing to the interval (a,, z;), in other words: ted, if and only if @, <t < &,
and teA. Assume that for ¢ < j < k-1 the sequence 4; bas already been
defined. The 4, is defined as follows: 4; = A o AP where tedlV if
and only if @w;_; <t < ; and ted, teAP if and only if @, <t <
and ¢ has at least
(24) exp (20, (log;2)"*log;.,,) = 1T
divisors amongst the 4, ,. Now we prove

Luvva 4. Eovery integer te AP, 2 < j < k+1, has at least Ty divisors
amongst the a’s (i.e. amongst the members of the sequence A).

The lemma is obvious for j = 2 and follows by a simple induction
argument for j > 2. Assume that it holds for j—1 and we will prove it
for j. Let te AP, By (24) ¢ has at least T} divisors amongst A;_, == A, u
o A, Assume that t has D divisors in A", these divisors are a’s in
(®j_gy ®—1). If D = T; our lemma is proved. If D < 7, our ¢ is divisible
by at least one t eA{®; which by our induction assumption is divisible
by at least T;_, > 1 a’s, hence Lemma 4 is proved.

Now we show that (2) holds for sufficiently small ¢, = ¢,(a, %) if
@ > y(c,). Assume first that for some 2 <j <%+1 (|8| denotes the
number of elements of the set §)

(25) 145 ~ AP > 1y

icm®
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(25) immediately implies (2). To see this observe that by AP < A4
(25) implies

(26) 4~ AP = 2,.

(26), (24) and Lemma 4 clearly implies for j <%

o
=)

flw) = Ty14 A AP > z;_ exp(2e, (logy@)"*1ogy .1 2)

= wexp (e(log;»)"log; ., @) > wexp (¢ (logy.4, 2 10g) o)

which proves (2) for j < k. For j = k-1 (25) implies (2) by a simple
computation which we leave to the reader.

Henceforth we can thus assume that for every 2 <j < k-1 and
all sufficiently large =
(27) JAD ~ AP < 2;_,.

We shall show that (27) leads to a contradiction, and this will complete
the proof of (2).

From (27) we deduce that for every 1 <j < %k-+1 and every 5 > 0
(28) . logr o < 2 <y,
(29) 44(2) > 2j(a—37)
if ¢, =¢,(n) is sufficiently small and z > @y(c;) is sufficiently large.

We prove (29) by induction with respect to j. First of all we remark
that (23) implies ;_,log,.1# < @7, (29) clearly holds for j = 1 since A
has lower density «. Assume that (29) holds for j—1, we will prove it
forj. We apply Lemma 3 with m = a;_,loge @, n = a;_,,7 = 2, B = 4, ;.
From (23) we deduce by a simple calculation that (4) is satisfied. By

a further simple computation we obtain from (23) that for sufficiently
large

" n
(30) loggﬁ > 4log;x.

Now we ean use (6) of Lemma 3. By our induction hypothesis (29)
holds for j—1 hence (5) holds with d = (j—1)(a—3%) hence if we put
0 =75 we have by Lemma 3 if ¢ = ¢(y) is sufficiently small (use (6)
and (24))

(81) AP > 2((j—1a—3(j—1)g—7n) = #{(j—1)a— (3j—2)1).
Further since the lower density of 4 is «
(32) AP(2) 2 2(at0(1) > 2(a—1).
From (31), (32) and (27) we finally obtain for sufficiently large =
Ay (2) = AP(R)+AP () — |40 ~ AP)| > zj(a—3n)
which completes the proof of (29).
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Now we show thab (29) leads to a contradiction and this will complete
the proof of (2). Apply (29) with j = k41, ¢ = & = @5, We then obhain
from 5 < (a—l/(k—{-l))/S, 2 = Apa (@) = (k41)@(e—3n) > o an evident
contradiction. Thus (2) is proved.

It follows immediately from Temma 3 that to every ¢ there iy an ¢
so that if 4 has density > 1—e then

F@) > aexp (U (log,e)logya).

We leave the simple proof to the reader. Thus as stated in the introduc-
tion, L(a) - oo as a — 1. Unfortunately we were unable to prove that
L(a) - oo as a—1/k if k> 1 (from below).

Now we prove Theorem 2. Assume 1/(k--1) << a << 1/k, kb 2= 2, Firgt
of all we show that there exists a sequence of density o for which (3)
holds for a suitable ¢, == ¢a(a). We will not give all the details but leave
some of the simple arguments to the reader.

Let 5 = n{a) be sufficiently small and let
(33) D 1,9,

3 i=1,2,..,k—1,

be k—1 disjoint sequences of primes so that for every j ==1,2, ..., k-1
the density of integers divisible by at least one of the pf, ¢ =1,2,...
and none of the p{, ¢ =1,2,...; s <j is @

It is easy to see that such a sequence of primes exists. It suffices
to have for j =1,2,...,k—1

. 1y 1a—j
34 I (=)= Tt

A simple argument then shows that any set of k—1 disjoint sequences
of primes satisfying (34) also satisfies (33).

Now we are ready to construct our sequence A of density o satisfying
(3). Let oy =10 and logp®, = ®,_;. Assume that our sequence 4 has
been defined up to #,_y, we extend it up to , as follows:

Let j=1,2,...,k-1. Put

y 2,
o) =l
log;x,

(35) o = @,

Let now of™" <1< af). ted if and only if ¢ for some ¢ bub
PP 41 for every s < j and every ¢. This defines the sequence A up to
@, flogy_ 2. Clearly by (33) for every 2z < ®p/logi_.@,, A (2) == (a—l«o(l))z.

icm®
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Now we have to define the sequence A in (z,/log,_,#,, #,). Denote

by B the sequence of the integers in (m./log,_,#,, z,) which are not di-

visible by any of the p{), i =1,2,...;1 < j < k—1. Clearly by (34) for
every mflog,_,, < 2 < @,

(36) B(e) = (1+o(1))a(%—/a+1)z.

Determine now ¢ from the equation

1 . 1 -1
(87) —— {e‘“‘z’“dm=(—-k+1) .
V2x o a

—c

Let now @,/logy_ 2, <t < #,. teA if and only if teB and (I = logy_, %)
(38) [92(t) —logr 1 2] < e(logpa ).

From (36), (37), (38) we easily obtain by the well known theorem
of Erdds and Kac [2], that for every # < @, A (2) = az-+o0(2). Thus the
induetive definition of our sequence 4 is completed and our sequence 4
clearly has density a.

Now we show

(39) fla.) < a’rexp(62(10gk+1mr)1l210gk+2a’"r)-

Observe ‘that i a,lay, a, <X, then either a, <#” or for some
0<j<k—1, oY < a, < a, <2 or finally 29 < ¢, < a, < @». Thus

(40) f@y= "1+ D1+ 31
aylay Ayly Ayl

where in ¥ a4, <o =a,_, in 3 al"V < a, <a, <2 for some

j=1,...,k=1 and in 3" of*V < a, < @, < @. We evidently have
(41) Mi<a, N 1t <2mlogw,_; < 20,1084,
gy t<ap_y

Further (in YO of~9 < a, < a, < o)

7) &,
(42) ay < N1 < 2,
Ay ltty 08;r t<logy_yz,
Thus
(43) V1< 2ka,.
X -

yy\thyy
Now we estimate Y'''. Let w/logy_ @, < @y < @,. Then by (38)

Ql(l) < logk+1 &y ‘}‘ c(logk—l—l wr)}/z'
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Put
]0g1;+150r+0(10g/c+1-”’1-)1l2 =Ty, 2clogp. 3 = Ts.
Clearly for fixed a, the number of ws for which ay| @y, 2,/108k_1 @ <I @y << &5

ig at most
Ty i
(44) Z( ,1;1) < gexp (02(10gk+1wr)1/210gh+2mr)
=
for a suitable ¢, = ¢,(c) = ¢y(a) (¢ by (37) is determined by «). Thus
from (44)

EW 1< % exp ((52(It)gm_lmr)lﬂl()gk,i,zmw).
O}y

(40), (41), (43) and (45) clearly imply (39) and thus (3) is proved.

By the same method we can prove that (3°) holds, to see this it suffices
to let in (88) ¢ tend to infinity sufficiently slowly depending on g(@).
We leave the details to the reader.

To complete the proof of Theorem 2 we now have to show that if
% >1 and « tends to 1/(k+1) from above ¢, = ¢,(a) tends to 0. We will
only outline the proof and leave some of the details to the reader.

More precisely we shall prove the following result: Let & > 1. To
every ¢ there is a 0 so that for every 1/(k+1) < a < 1/(k-+1)+- 4§ there
is a sequence A of density « for which (3) holds with & ¢y = ¢y(a) <e.

To prove this statement we define our sequence 4 in the interval
(%_y, @pflogr_,2,) just as previously. Thus the whole proof proceeds as
previously until (36). Determine now # from the equation

7
1 2 1 -1
e TPy = |— —k-+1) .
Vor f@ v (a i )

-0

(45)

(46)

Clearly as a tends to 1/(k-1), n will tend to 0 from above.

Let now «,/loge_1@ <t < wfloge®,. ted if and only if teB and
(l = 10glc—lmr)
(47)

24(8) > 10gs1 % — 7 (101 %0) .

Let- finally @,/log;®, < ¢ < @,. Then ted if and only if {«B and
O(t) < 10gp1 84 77 (l0grsr ).
From (46), (47) and (48) it follows by the theorem of Krdds and

7 oo,
Kac [2] that A has density o (we use | oy = J T Pln).
A n

(48)

As in the previous proof we easily obtain for our sequence A (see
(40), (41), (42) and (43))

(49) fl@) < 37140 (@ logez)

Ayl

icm®
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where in Y

Py <
_— a. Ly
10g %%y K 7

< Oy <
logy_1@r * ™ log,,
Put

’

10gk+1wr+77(10gk+1mr)m = Ti) 27 (10gk+1m7.)1’2 = Ts.
We have as in (44) and (45)
‘ * ; i €
\ | 9
PEES) ( i‘) < @yexp (—2— (l0gy..,#,)*10gy 2
Ayl Gy =0

(50)

if # = #n(e) is sufficiently small. (49) and (50) clearly implies that (3)
holds with a ¢, < ¢ ag stated. Thus the proof of Theorem 2 is complete.

Unfortunately we were unable to complete the proof in the ease
k=1 (ie. if a—1/2 from above) and in fact are uncertain if the result
continues to hold in this case.

For each # denote by I(z) the smallest integer % for which 1 < logyx
< e. It seems to us that by the methods of this paper we can obtain the
following results: Let a; < a, << ... be a sequence of integers satisfying
for a certain £ > 0 and all sufficiently large

A@) > (14¢)

@

W)

Then f(z)/z — co. On the other hand there exists a sequence a; < ...
satisfying for all large «

@
A 1—g)——
(@) > (1—e)7 @
and nevertheless liminf f(x)/z = 0.
Z=00

We have not in fact worked out the proof of these theorems and
we can not be absolutely sure that they are correct.

The following result can be proved by the methods of [1]. Let ¢ be
a sufficiently large constant and assume that the sequence 4 satisfies

logl 2 1
lim sup _(ig_og_m)__ — > .

Zmco logw oo

Then limsupf(#)/z = co. Perhapsy the following result holds: Assume

T=00
) .
E — > 0.
@

that
(loglog x)**
a<x

(51) logz

lim sup
T=o0
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Then limsupf(x)/z = co. We proved that (51) implies that a;la; hag
T=00

infinitely many solutions [3].

Put F(z) = Y'1 where the dash indicates that the summation
ajlag
e

is extended over those a;|a; for which all prime factors of a;|a; are greater

than the greatest prime factor of a;. It is casy to see that there is a sequence

of positive density for which liminf#(x)/e = 0 but for every such
L==00

sequence
Limsup F(z)/x (loglog w)* =- 0.
Q=00
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ACTA ARUCHMETICA
XIV (1968)

O npeacraBiennn ynce] OmHapmbivi KyOmwecknMn (opmamu
NOJIOXKATENHHOr0 HCKPAMIHAHTA

9. T. Asamzcos (MBanoso)

IIyers  F(z,y) = o*-+gx’y—rey*+sy® Henpusopumas Oumapras
wyGuueckas (opma ¢ IensMu Koaduumenramm u mucKpEMuHAHTOM D.
Ecmn D < 0, To 3apada OmpefelleHus BCeX LeHX pewreHuit (#,y) He-
OIPENEIEHHOr0 YPABHEHUA

(1) Fx, y) = o g’y —ray’ sy’ =1

paspemraercsa ¢ moMmompio pesymsraroB emome [1] u Haremma [2]. IIpu
D >0 px Merox OKasbIBaeTcd, BooOHle TOBOPA, HENPUMEHIMEIM.

B cuny ussectmoit Teopemst Ty, ypaBmenne (1) mMeeT KOHEUHOE
GICI0 UENHIX pemeHunit (z, y), a, ¢ TOYKH 3PEHHs TEOPUH ENUHUL, IpK
D >0 9T0 ypaBHeHUE O3HAYAET, UTO #-+yn €CTH EAMHHNA, T.€.

(2) atyn = Lejel,

I'Ie & M &, — OCHOBHEIG eNUHMIBI KoIbLa O (), MOPOMIEHHOrO HPOU3-
BOJIBHEIM HOPHEM YPaBHEHHT

3) F(n, —1) = fln) = 1 —gg" —ry—s =0,

n, TakEM 06pasoM, 3ajAava CBOMUTCA K OTHICKAHMIO ABYYNEHHBIX EIHHMNIL
B romnie O(xn). OcuoBHAA TPYAHOCTH, BCTPEYAIOUIAACA IPH TAKOM IOX-
X0je, BARIIOUAETCA B TOM, WUTO JJIA ONpEHNEeNeHHd [BYX FHEM3BECTHBIX
moxazaTenedt o M f UMEETCH TONHKO OJHO YypaBHEHHE.

B aroit crarpe (§1) mpemuaraeTca MeTOM, I03BOIAIOMME CBecTH
samaqy pemenps ypasuenua (1) mpa D > 0, mam, 4T0 OJHO I TO IKE,
LOKABATENBLHOTO YPABHEHUA (2), R HMCCIETOBAHUI0 HEKOTOPOH CHCTEMBI
ypasuenui, B KOTOPOH 4YHCIO ypaBHeHMH, [0 KpafiHel Mepe, cOBUAfaeT
¢ UHCIIOM HEOUPCHETCHHEIX -IOKasaTelell cremeneil, YKasanHoe CBeNeHHS
OCYICCTRIAETCA ¢ MOMOLIBIO NEPEXOA OT KOAbIa Tperbelt cremern O (1)
K KOIBIIAM LIECTOI CTEITeHY, OUpeReNsdeMblM Y PABHEHNAMA, AMEIOIUMY X0TA
OBl ONHY HAPY KOMINIEHCHBIX KOpHel. IIIA TAaKmxX KONel, KAk M3BECTHO,
BOBMOKHO TIPUMEHEHHE JTOKAIbHOro merona . Cromema [3].
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