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Some concluding remarks might not be amiss. It is easily seen that
Theorem 1 and as a result its logical corollary Theorem 2, can be relaxed
to include forms @ with rational coefficients, the only proviso being
that the denominators of the coefficients are relatively prime to k. In
particular Theorerns 1 and 2 hold for @ and y replaced by @ and %'. In
fact since 7' = y and the diseriminant of § is @"~* which is relatively
prime to k if and only if (d,%) =1, under the original hypotheses of
Theorems 1 and 2 the conclusions are valid not only as stated but for
@, % and o replaced by @, 7' and ag as well (g is defined from (=7 ) and (8)
except that d is replaced by 4"~ and x is replaced by ¥'). Since @ = 4**¢
and the diseriminant of § is d®~Y", 4

Theorem 2 for @ yields
kd-Dm s o kd(""’l)zm nr-s g " -
(0 )F(S)L(S:XI: o) =a§(——0“——) F(k"s)L = 7% Ld"Q

9 27 2

kA= g "
= ag (A" (T) F(__S)L(—f?*s’ X’Q)‘

T

If we compare this with Theorem 2 with s replaced by n/2—s we see that
(43) @ = agy(d"?).

There is unfortunately no new information in (43) although it talkes
considerable algebraic manipulation to prove (43) dirvectly from (7)
and (8).

There is always more than one way to derive a functional equation.
Theorem 2 can be easily derived from Theorem 1 and the functional
equation for the general Epstein zeta function in much the same way
that the functional equation of Dirichlet’s L-function is derived from
Lemma 1 and the functional equation of the Hurwitz zeta function.
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On certain additive functions (II)
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P.D. T. A. Erurort (Nottingham)

A function f(n) which is defined on the set of positive integers is
said to be additive if for any coprime integers a, b, we have the relation

flab) = f(a)+F(0).

Let 0 < @y << @y ... be a set of integers, and let 4 (x) denote the number
of these not exceeding x. It was shown recently [4], that if A (z) is not
too small, then in the usual terminology f(a;) has a normal value. How-
ever, in order to prove this result a weak but inconvenient condition
was introduced. It is our present purpose to show that this condition
can be removed. More especially we prove the following:

THEOREM 1. For any drreducible polynomial g(y) with integer coeffi-
cients, and any integer u, we define o(u) to be the number of residue classes r
for which g(r) = 0(modu).

Let f(n) be an additive function assuming only non-negative values,
and for any positive value of % let w, = max f(p*) taken over the prime
powers not exceeding x, and

o

Then if A(w) > wexp(— z(2)u; " Sa) for some function e(x) which tends to
zero as x —> oo, whilst uz; = 0(8;), we have the asymplotic relations:

) D (e ~A@)8E, k=1,2,...
<z
COROLLARY. f(g(a)) is normally Se,.
We first show that the corollary is satisfied.
It is clear from the theorem that we have

D (flo(an)— 8a) = o(4(2)82),

<
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and in order to prove the corollary it will be enough to show that

D) (8e—8a,)* = of4 (2)83).

[
We do this by dividing the range of summation into two parts.

For the first range we take 0 << a; << a = A (2)/loge. Over thix in-
terval we obtain a contribution which does not exceed
82 D1 < A (@) S3loga.
umga

For the remaining values of a;, it is plain that

B logz 1 }
Sx——Sa,,.<uma%x——< ,ux{log(loga) 4 0(10gu) .

In view of the lower bound on A4 (), it is easily checked that

logafloga = 1-+ 0 ({logloga -+ uz* Sa}/loga),

loglogz\? 8 \*
S 88, < iA(w{( >+( — }
ala<n (Ba=-Be) # ) logo /zzl/logw

Putting our results together we obtain the desired inequaliby. Iere we
have used the fact [5] that ¢(p®) < 1 holds uniformly for all prime-powers.
It is clear that the above result holds even if we weaken our condition
on g t0 p, <€ Sy.

Before we begin our proof we show that we may assume that f(n)
behaves like a bounded strongly additive funetion.

Firstly we note, as in [4], that we may assume that f(n) satisties
f(»") < 4. This can be easily seen if we use instead of f(n) the additive
function f*(n) defined by

8o that

F@92pe i p*<ua,
0 otherwise.

") =

Secondly, we consider the additive function f(n) which is defined by

F(p®) =f(p) for each value of a.
Clearly:
2 e@)p™ = D'f(®) e(p)p™+ 0 (i)

PELET py

= D@ e8P+ 0 (ua) ~ 8,

<
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and thus, if we can show that for any positive integer & the following
result is satisfied:

@ D) {flota)—Fg )™ = o( () 8¥),

apsT

we can obtain that -

D @l = 3 {Flo(an))*+o(4 () 5.
a;<T ;<
It is clear from this that it will then suffice to prove Theorem 1 with f(n)
in place of f(n).
In order to prove (2) we first recall the following
Leyna 1. Assuming only that f(n) is non-negative, we have for any
positive integer k the inequality

S 3 1) <ot k)

n<z - p%jg(n)
pektl) <z

.

Proof. This is an immediate consequence of Lemma 7 of [4]. We
apply this result to prove some further lemmas.

LeyyaA 2. Let py < 8, and A(x) > wexp(—o,8./u;) be satisfied for
some posltwe constant ¢,, and all large x. Then for each k > 0, there is a fur-
ther constant c,, depending wpon ¢, and F, so that

2 {Flg(a)))* < e, 4 () SE.

Proof. We apply Lemma 1 with f(p*) replaced by A(p®) where

o @Y it p* <exp({eploga}/sy),
(»°) = .
otherwise,

and e is a small positive constant. If now s is any integer satisfying
(s+1)eu; 87" <1, then

D Mg < @(Se+spa)".
nLL

. . 1/(8, I . e
In particular, if ¢ =% % ———1||, which is certainly positive if e
o \ ey
is small enough, we may apply Hélder's inequality to obtain

(3 {Hot@)™ < 4@y 3 (algm)y

T n<w

< w{d () 18+ sps).
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Hence
D Pla @) < A (@) (So+spa)" o] A (@)},

and

k8, e S,

{w] A (5)}"* < exp (—8— 01—/‘;—) < exp (03 sgm _/i) = 0y

whilst

U < &7 8,
By these inequalities
(3) Mg (@)} < oA (@) 85

;<%

Finally
g0 that
(4) D lg (@) —2{g (@)l < osA () 85.

a;<e

The lemma now follows easily from the inequalities (3) and (4).

LevmA 3. If the conditions of Theorem 1 are satisfied, and f'(n) is
any additive function satisfying f'(n) <f(n) for all integers n, then in
an obvious notation

P g(a))* < A (@) (St o (S))-

4<E

Proof. The proof follows the lines of Lemma 2 save that we replace ¢
in the argument by a function #(2) which — co with 2, but is chosen so
that n(®)e(®) = o(1).

Applying this lemma to (2), with f'(n) = f(n)—f(n), we see that
under the conditions of Theorem 1,

2 o) —Tload)* < 4@ { 3 oo (@)= o) ="+ o (S}

<z i<z
az2
Since

D eI @) —F) < 6pe 3 57 = 0(8a),

i<z »

az2
we gee that the desired result (2) is satistied. Thus both of our assump-
tions are justified and we shall make both of them from now on, but
we shall preserve our original notation. The condition on 8, then be-
comes §; — oo, and that on A (z) becomes 4 (z) > wexp(— &(w)8,).

icm®

On certain additive functions (II) 55

‘We need some further lemmas. For convenience we shall denote
logsflogy when 2 <y < x by D, so that D > 1. For any integer m we
use (m), to denote the product of those prime divisors of m, without
multiplicity, which do not exceed y.

Levma 4. Let 3 denote that the integers m in the sum run over those
for which (g(n))y > &> Then we have the estimation

2’1 < ¢,wexp(—cyDlogD),

provided only that e
)64

(logz)* < 9* < 2.

Proof. This result can be proved on the lines of Khmirova [6],
we do not give the details of the changes which are simple. More exactly
one can show that if % > (logx)® and % > y* > (logw)®, then the number
of n <o for which (g(n)), > u is at mosb

1 !
C3eX]p (—-04 ogu 1og( ogu))‘

logy logy

The lemma now follows if we take u = 2", The inequalities restricting
the values of y are needlessly strong, but are sufficient for our purposes.
‘We note that for the present it would be enough to use a weaker form
of Lemma 4 which does not have the factor log D, and with merely the

- eondition D > ¢; to be satistied by y. This particular result follows from

a more general result of the same type proved as in Barban [3]. The
above result will however enable us to sharpen some interesting ine-
qualities. .

We now define two new functions. We denote by f;(n) the additive
function defined by
_|fo). dEp <y,
o otherwise.

(%)

We then define a multiplicative function H(v) by

H(p®) = zfl(pa)_zfl(p“'l), a=1,2,...,
80 that
NHE) = A0,

vin
Thus H(») is the Moébius inverse of the function 21,

Luvma 5. Let t(n) be a multiplicative function satisfying ¢(p%) < o™
for some fized constant m > 0, uniformly for all prime powers. Furthermore
let t(p% = 1(p*™"), a =1, 2,... hold. Then we have the inequality

Sifg(m) < oyvexp (Zﬁ%{t(p)—l})-

m<x pLE
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Proof. This result is a particular case of a result proved by Bar-
ban [2]. The conditions #(p*) = t(p“~") ensure that the Mobius inverse
of #(n) assumes only non-negative values. In particular we need that
t(p) > 1.

LuMMA 6. If ¢, ¢y are positive constants, and ¢, < 2 < 1+cy, and y
satisfies the inequalities of Lemma 4, then

DUH ) o)™ < gexp(enls—1]8,— § Dlog D).

pall?

Proof. For convenience we denote logD/logy by a. Then the sum
whiclh we wish fo estimate does not exceed

@ D) ol
=1

Now
DHEM ) = [ {1+ 1Hp)l o(p)p™) <exp(es Y 1H(p)p™"*).
r=1 P<Y : vy

Let y’ = exp(logy/logD). We divide the sum over primes p <y, into
two parts. Into the first part we put those primes p which do not exceed y'.
These then contribute

D) 1H (p)ip~ exp(alogp) <e ) H®)p™,

<Y’ <Y’
since
logD
logy

alogp < logy’ =1.

Moreover, in our range for z,

H@) =| [ @)D dy| < eofi(p) e—11.

Hence
D @) < erela—11 Y fulpp™

<Y <Y’
For the second sum. we have y' < p <y, so that,

IH@)p7 <orle—1] 3 p7i*e
' <PY V' <p<Y
Now here

a logD
p* = exp(alogp) < exp(logy 10g1/) =D,
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-1

ot

and

> pt=1tlog

¥ <p<Y

logy
(E’}/—') << 10g10gD,

so that altogether

D IH D) a(p)p™* < ey{]2~1]8, -+ Dloglog D}.
DY

Finally
. @™ " = exp(—4DlogD),

and thus for large values of D,

_5;, IH() o)™ < ¢sexp(e4le—1{8,—34Dlog D),
v>m1 2
as required.
Lmanva 7. If ¢y, ¢, are positive constants, and ¢, < z < 1-+c¢,, then for
a value of y satisfying the conditions in Lemma 4, we have the inequality
szl("‘”’) < egmwexp ((2—1)8,) + e,wexp (s |2 —1| 8, — ¢, Dlog D).
nge
Proof. We first notice that if > 1 then 1™ gatigfies the con-
ditions of Lemma 35, since if k>1 or p >y,
(ol F1(pF—1
LU = 1 = S )’

whilst if p <y

P 1,

Thus the result stated in the present lemma will follow provided we can
show that

DD —1) o (p)p < (2—1) 8, + O(1).

<y

By applying a well-known mean-value theorem we see that the left-hand
side here is

D (==1)f1 () o )P~ 3. (0) {fa(0) —1} o (p)p~ %,

Y

for some value of 7 satisfying 0 < 5 < 2. Since f1(p) < 1 we obtain the
desired inequality.
We shall therefore assume for the rest of this lemma that = <1
holds.
Let ¥ = N(2,y) denote the set of integers m <« for which
(g(n))y < 2™, and let
T — szl(ﬂm)).

<y
neN
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Now
T= ) H( DI

—1[2 ML, g(1) =0(modr)
»egal = (m)eN(

for H(») = 0 unless the primes dividing g(m) do not excee'd y, and. SiI.lCG m
belongs to N we must then have that » < 4. Thus the inner smm is

E—]—6@(1})— 1, 101 <1.
v mgw,y(m}f’o(modv)
Hence
T=un Q(v)Ho:)Jro( 2 9(11)0‘”(”))—2 Zﬂm,
< = e

where o(v) denotes the number of distinct prime divisoxrs of y. Thus we

see that
szl(”m’) = 2 —Q—,(:—)H(v)—}-O( Z o(¥) 0‘"(”)) —

n< vl /2 »a /2
§ 1 2 1 _5.7 n
— , H ()4 S ))7
m<r  vlg(m) NLL
MmN cqlf2 N

= X2y —23+Z,, say.

We estimate these sums in turn. o
By applying Lemma 6 we can extend the range of summation in Xy

g0 that
21——002 9(:) H(»)| < eyexp(cgle—118,—3Dlog D).
Moreover
;1 2?) ( e(p)H(p)) ( o) )
H(v) = 14 ———==) < gexp [(p))-

We can then estimate this final product as in the above note.
Clearly, for any s> 0, X, < g'** . .
To estimate X, we first apply the Cauchy-Schwartz inequality,

Z< Y13 3 Ee))
ML MK 1r|g('m§
m¢N vl
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Now

2D EeN) = Y EeEE) Y 1

m<z :za(;lm/; vl,v2<m112 g(m)so};bl%g[ul,wz])
where 4 = [, »,] denotes the least common multiple of v, and v,. Clearly
[¥1,7.] < @, 80 that the innermost sum here is at most zp (1)1~ Collecting
together terms for which (#;, »,) the highest common factor of », and »,
has a particular value », we see that this sum does not exceed

H 2
o D52 3 3T cssts e

t<all2 eyt~
(81.89)=1
For, since H(u) =0 unless w is squarefree, the functions considered
here are for our purposes completely multiplicative. Clearly the above
sum does. not exceed

mg; o(t) B2 (1)t} (;1' o (&) 1H (s)ls7.

Before proceeding we note that even if we allow 2 to assume complex
values, then

z

H(p) =fi(p) [ "ag

1

where the integral is taken over the straight line segment I joining 1
and z. It follows from this representation that

H(p)l < f1(p) z—llnglCI"l“’)'l <f1(p)MaX(

1 1 1—z|
2 ) I &~ .
Similarly we see that
. I 1 ’
H (p)2 < fa(p) Maxl I——1 L=zl
Putting these estimates into our above considerations we see that

< Z C10eXP(cy [#—1(8,).
ML
mgN
If we write B for the sum in the statement of the lemma which we wish
to estimate, then we now have the inequality

B < B+ orp0xp (03 [—118,) | Y1) 200,
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with
B = cymexp ((z—1)8y)+ b exp (615 |e—118,— e, Dlog D).

But once again appealing to the inequality of Cauchy-Schwartz,

( ¥ zmmm))ﬁ <Y1 Do < B D1

] ME MK ML
nelN 1N m¢N

We can therefore write

mee M
meN meN

so that
<WaL Y1) <om+2 1.
B< ([/E| (7%1) ) < 2B+ 7év1
meN neN
Using our above estimate for I, and applying Lemma 4 to give an upper
bound for the final sum on the right-hand we obtain the result stated
in the lemma.

In view of one of our above remarks we can consider the case when
= may assume complex values. If we put 2z = ¢ for a complex number &,
we state the following lemma which is a corollary of the above result.

Lemma 8. If || < ¢ for a constant ¢, > 0, and if y satisfies the con-
ditions of Lemma 4, whilst S, < dDlogD holds for a sufficiently small
value of & depending upon ¢, only, then

D) e mZ o (v) H (v~ - O (wexp (— ¢, Dlog D)).
m<e
Here we understand that H (v) is defined as before but with ¢ in place of 2.
The constant ¢, may well depend upon the polynomial g(m).
If it is required we can then express the infinite sum in the form

F)exp( Y plo(p) (e —1}),
DY
where, for any fixed value of x, F'({) is an integral function of £, and is
uniformly bounded for all values of in [{| < ¢,.
’ ‘We can clearly extend this result to cover sequences of the Z'p-type
as considered by Barban [2]. »
‘We can now continue with our lemmas for the proof of our theorem.
We set y == exp (10gm/{l/a(w)8x}) from now until the end of our
theorems.

m@
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This clearly satisfies the conditions of Lemma 4, for if » is large

enough Ve(a)S, > 8 so that y® < ®, whilst Ve(2)S, does not exceed
loglogz+ ¢, so that

y > exp(elogw/loglogm) > (logms)™.

Leynra 9. Let k be a positive integer. Then the following inequality
is satisfied:

( g (n))— S) < e;wexp(—{e(@)}*°8,).

1fy(gems)— Syl >{e(@yyHi3s,,

Proof. For any positive integer s and any value of g > 0, we have
the relation

(f1 (g(n)— )2(k+8) - ?1__ f Z Ao ~8y) g~ @454 g
= T il w

(2% +25)!
Now if |{] < ¢,, Lemma 7 shows that we can write

D FAOMIS) — ()41 (0),

nLL
where if 29 <1 and |{] = o,

[h:(0)] < ecomwexp (Re{f—1— £}8,) < c.wexp (g 6°8,),
whilgt
e (D) < eq@exp (e;08,— csDlog D).,
Corresponding to these expressions we split the integral in the above

representation into two parts.
The integral

(°k+2s

— (2k428+1)
g [

can be estimated as in Lemma 5 of [4]. Hence we obtain, as there, if
(d0)* = &(2) and s = — &+ [3os(2)*38,], the upper bound

wexp (— o, (w)*8,).
During the course of the proof of that lemma certain assumptions were

made, namely that ¢(s) did not tend to zero too rapidly. We can clearly

make any such assumptions here since this merely weakens our current
condition:

A (@) > zexp(— e(2)8y),

to a similar one with a new function & (z). This effects none of our results
since we need only that &'(z) -0 as 2 — oco.
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Secondly we can apply the inequality a! < a® to estimate the in-
tegral
_(2]C+23)! f Bo C_ (24 28+1) dc.
(s(m)l/BSU)ZS m

We then obtain the upper bound:

\

CwexD (a ()28 + ¢y 6 8y — g2 (@) 8, log e (m)”zsw))

and this expression clearly does not exceed that stated on the right-hand
side of the inequality we require.
Proof of Theorem 1. Let F denote the set of integers =n <

for which |f, (g (n))— 8} > e(#)"*S,. For any positive integer & Lemma 9
shows that
e |2 2k 9
| Y (falote)=8) [ < 4@ ) (flam)—8,)" = ol{d @)},
i?fzvf fov i

since 28, = 8, (see later), whilst

|2f1 — 5 | < @8t D1 = o(4(@)8]).

CLL =X
aﬂlv

Since
3 (o) = A8+ 2( ) 3 s ihlote) -,
7 1 <

we may apply the inequality of Cauchy-Schwartz and that of Lemma 2
to easily obtain the asymptotic equality

M falg(en)}t ~ 4 ()85

di<e

Finally we note that both

loga ~ y
08, — 8, < wE@p = 10g(10gJ) Fo(1) < log 8y = 0{8y),
and
0 <flotad)—filg(a) < D' 1< ae(@)8, = o(Sa),
Dlo(2;)
D>V

g0 that we easily complete the proof of our theorem.

As wag pointed out in [4] we cannot obtain an unconditional exten-
sion of Theorem 1 by weakening the lower bound on 4 (z). We can how-
ever prove the following result which is perhaps of some interest.
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THEOREM 2. Using the definitions of Theorem 1 with the weaker con-
ditions p; < Sz and A (%) > sexp(— cSz{us) for some positive constant ¢,
the following two statements are equivalent:

(1) flg(as) is mormally Sa,s

#) g~ Alz)8s, E=1,2,..

a;<e

Proof. We need only prove that the first of these implies the second,
since an inequality of a well known type shows that the converse pro-
position is true.

For any & > 0 there is a function d(z) which — 0 as # — oo, and
which has the property that the number of a; not exceeding # for which
[f{g(ar))—8a,| > &84, is at most 6(w) A (#). Let us denote the set of these
values of a; by A.

Applying first the inequality of Cauchy-Schwartz and then that of
Lemma 2 we obtain the inequality

]2 (9(a)— )| < e2V5(a) 4 () %,

BZEM
so that
limsup| {4 (2) 857 3 {f(g(an)—8a)*| <&
Z—00 G

It is now easily seen that for each value of %,

S (g @) — Sl = o[ () 85,
e
and from this we readily obtain (ii).
The interest in this resulf is that for sequences .4 of the type above,
a necessary and sufficient condition that f(g(e;)) should normally be 8.,
iz that
D) Aflg (@) — S} = o(4 () 83).
4T
Thus the method of forming the dispersion of f( ) is efficient. A very
neat example of this is given in Barban [1] where he shows, using sieve
- arguments alone, that if 4, = 0(8,), and f is strongly additive (which it
is clear we may assume), and non-negative, then

2ur—n-sy “"(10 _ s)

It is immediately clear that if we denote by w(») the number of primes
not exceeding @, and appeal to the Theorem of Tchebycheff which states
that z(x) > ¢,@/logw, then for any integer & > 1,

D~ ~ () Sk

g
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Similarly, by modifying his proof we can deal with the more general
proposition

D Hlg@) ~ (o) S5

e

In neither of these proofs do we therefore have to appeal to any results
from the theory of complex variables.
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Dedicated to the memory of

Jacqués Hadamard (1865-1963)

§ 1. Introduction. In this paper we prove the main theorem relating
to the set (or a subset) of complex numbers at which a given set of
algebraically independent meromorphic functions assume values in a fixed
algebraic number field (we actually prove a more general result which
may be useful elsewhere). We state a few deductions in § 2 and it is in-
teresting to note that the Main Theorem gives significant results in the
case (overlooked by Gelfond) where the functions concerned do not satisfy
algebraic differential equations of the first order with algebraic number coeffi-
cienls. Since some of the deductions require lengthy preparations we post-
pone the proofs of these and other deductions to part II, which is a contin-
uation of this paper. We give a brief history of this theorem in this section.

In the year 1929, A. O. Gelfond made the important discovery that
a’ = ¢"'°* is transcendental for every imaginary quadratic irrationality b
and every algebraic a different from zero except for loga = 0 (}). Assuming
the result to be false Gelfond applied the interpolation formula

f(2) = ayFo(2)+ a, Fy(2) + ay Fo(2) +. ..

[T{z—=), a,_, = k;f(zk){lf’,',,(zk)}’l, and 2,2, ... i8 4

1=1
previously given sequence of complex numbers (for the conditions of
validity see Biegel’s monograph [6], §14, Chapter I) to the function
f(2) = ¢”'°*% and arrived at the contradiction that the above expangion -
for f(2) for a suitable sequence 2y, 2,, ... must terminate. It 4s important
to note that the only property of the exponential function required in the
proof is the addition theorem ¢ = ¢”¢”. Gelfond’s proof was carried over
to the case of a real quadratic irrationality b by R. O. Kusmin [2]in 1930.

where F,(z)

(1) As a consequence we have thé remarkable result that the decimal expan-
sion of ¢™ = i~? never terminates. Ref. A. O. Gelfond, Sur les nombres transcen-
dants, Comptes Rendus Acad. Sci. Paris, 189(1929), pp. 1224-1226.
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